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Mapping the stocks in MICEX:

Who is central to the Moscow Stock Exchange?�

M. Hakan Eratalayy Evgenii V. Vladimirovz

Abstract

In this article we use partial correlations to derive bidirectional connections between

major �rms listed in the Moscow Stock Exchange. We obtain coe¢ cients of partial

correlation from the correlation estimates of the Constant Conditional Correlation

GARCH (CCC-GARCH) and the consistent Dynamic Conditional Correlation GARCH

(cDCC-GARCH) models. We map the graph of partial correlations using the Gaussian

Graphical Model and apply network analysis to identify the most central �rms in

terms of both shock propagation and connectedness with others. Moreover, we analyze

some network characteristics over time and based on these we construct a measure of

system vulnerability to external shocks. Our �ndings suggest that during the crisis

interconnectedness between �rms strengthens and becomes polarized and the system

becomes more vulnerable to systemic shocks. In addition, we found that the most

connected �rms are the state-owned �rms Sberbank and Gazprom and the private oil

company Lukoil, while in the top most central in terms of systemic risk contributors

Sberbank gave its place to NLMK Group.
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1 Introduction

The �nancial crisis of 2008 exposed the need for a better understanding of risks in �nancial

markets and in economies in general. More speci�cally, systemic risk became one of the

most important issues and encouraged a lot of literature in �nance mainly after the crisis of

2008. There are several approaches to measure systemic risk, such as the SRISK proposed

by Brownless and Engle (2016) or the CoVaR method by Adrian and Brunnermeier (2016)

among many others.

Linkages between �rms is one of the key channels by which systemic risk spreads through-

out the system. Once a �rm experiences a negative shock, the value of it falls and it becomes

dangerous not only for the �rm and its stockholders, but it might also negatively a¤ect the

whole economy through trading or loan channels. Hence, estimating these connections plays

a central role in understanding the behaviour of such systemic risk. A widely used approach

to describe the connectedness among a number of companies is the use of graphs as a net-

work theory application. Moreover, network theory helps us not only to visualize the graph

of connectedness but also to analyze interrelations based on di¤erent network measures.

There are a number of papers, that describe and analyze �nancial and economic interre-

lations from the network theory perspective. For example, Acemoglu et al. (2012) show that

the level of aggregate �uctuations in an economy depends on the structure of the intersectoral

network; that is, idiosyncratic shock in sectors might not cancel out through diversi�cation.

Battiston et al. (2012) use network representation of �nancial system to extend the meaning

of "too big to fail" institutions to "too central to fail". In order to identify such central

institutions they proposed DebtRank measure of systemic impact based on the centrality

measures of �nancial graphs. Following the similar idea of centrality implementation and

using the concept of partial correlations, Anufriev and Panchenko (2015) found strong con-

nections between several Australian banks and determined which banks play a central role in

the shock propagation. Diebold and Yilmaz (2014) modeled time-varying network of �nan-

cial institutions in the US including the period of the �nancial crisis based on the variance

decomposition measure. For more examples of the network modeling and, in particular, of

the network application to systemic risk modeling we refer to the recent surveys of Bougheas

and Kirman (2015), who review studies on the measurement of systemic risk mainly with

network tools, and Iori and Mantegna (2018), who focuses on empirical analyses of networks

in �nance.

In our paper we identify top connected �rms and top systemic contributors using static

and dynamic models in the Russian Stock Market. In addition, we calculate the vulnerability

index of the system through a principal components analysis of the measures that summarizes

the network. This magnitude can be used as a measure of overall systemic risk in the entire
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economy, as it shows the sensitivity of the system to negative shocks in general.

In order to construct a network of connectedness, we use the Gaussian Graphical Model

(GGM) approach, which is quite new for �nance, although it is widely used in biometrics

(see for example Krumsiek et al., 2011; Rice et al., 2005). The idea of the GGM is to capture

the linear bidirectional dependence between two variables measured via partial correlations

conditional on other elements in the system. The linear dependence between a pair of �rms

represented by a partial correlation shows how these �rms co-move under market conditions

and di¤erent externalities. The GGM allows us to construct a graph of interconnectedness

between components of a multivariate random vector. The nodes of a graph represent the

elements of this multivariate vector and the edges show their conditional dependence. This

type of network of partial correlations between �rms shows not only how well the whole

economy is connected, but also how the market co-moves with a company su¤ering from a

negative exogenous shock.

Firms can be connected in di¤erent ways. For example, they can be connected directly

via trading relationships or they can have the same intermediary �rms in their production

chains. However, to study interconnectedness in a �nancial market we need more frequent

data, than, for instance, company balance sheets. One of the convenient ways to identify

connectedness between �rms is to consider co-movements of their stock returns (see Diebold

and Yilmaz, 2014). The idea of this approach is that almost all �rms, especially the largest

ones, spend a lot of resources in order to manage their businesses in accordance with con-

current market conditions, and virtually all their decisions a¤ect their stock prices. That

is why connectedness between stock returns can be taken as a proxy for the true unobserv-

able connections between �rms. Moreover, such frequent data allows us to calculate a daily

measure of systemic risk, which is a considerable advantage for policymakers.

In this paper, we use an approach similar to that of Anufriev and Panchenko (2015), while

taking some ideas from Barigozzi and Brownlees (2016) and Diebold and Yilmaz (2014). One

novelty of our work is in the econometric methodology. We use a VAR model and Kalman �l-

ter to eliminate unobservable common factor. According to Barigozzi and Brownlees (2016),

common factors, which a¤ect all the return series will lead to spuriously high correlations

and a fully connected network unless they are �ltered out. Moreover, we compute partial cor-

relations from the conditional correlation estimates obtained from the Constant Conditional

Correlation GARCH model of Bollerslev (1990) and the consistent Dynamic Conditional

Correlation GARCH model of Aielli (2008). Given that we use the partial correlations de-

rived from these models for the GGM, the former model provides an idea of how the �rms

are connected throughout the data period, while the latter model allows us to pinpoint the

connections on a certain date. Therefore we can comment on how the network connec-

tions restructure in reaction to in�uential changes. Finally, we use the composite likelihood
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method of Engle et al. (2008) for the estimation. This method successfully avoids the trap

of attenuation biases observed in the cDCC-GARCH model.1 We also discuss an index of

vulnerability which we derive based on measures that summarize the network of stocks.

To the best of our knowledge, this is the �rst work examining major �rms in the Russian

Stock Market. Our data spans four years of observations and covers in particular 2014, when

Russia faced a number of problems.

The paper is structured as follows. Section 2 introduces the network construction based

on the Gaussian Graphical Model. Section 3 discusses the crucial measures of network

analysis. In Section 4 we introduce our data and in the Section 5 we discuss the econometric

models. Section 6 describes the estimation procedure of the econometric models. Section 7

shows the empirical application for the Russian Stock Market. Section 8 provides further

discussion of the vulnerability measure and the unobservable factor. Finally, Section 9

concludes the paper.

2 Network construction

Let us consider a graph G = (V;E) with a set of vertices V = f1; :::; ng and a set of edges
E = V �V . If nodes i and j are connected then pair (i; j) 2 E. Based on the type of edges,
a graph can be directed or undirected as well as weighted or unweighted. In our work we

focus on undirected weighted graphs meaning that if pair (i; j) 2 E; then (j; i) 2 E, and
each edge has a non-zero weight wij = wji that shows the strength of connectedness between

nodes i and j.

To construct a network, we use the concept of the Gaussian Graphical Model (GGM)

based on the works of Buhlmann and van de Geer (2011), Hastie et al. (2009) and Anufriev

and Panchenko (2015). The GGM helps to construct a conditionally independent weighted

graph G = (V;E) with the Markov property that if nodes i and j are conditionally inde-

pendent then (i; j) =2 E. The vertices of the graph correspond to each component of the
multivariate random variable X = fX1; :::; Xng.
According to the GGM, the coe¢ cient of partial correlation can be used to measure the

conditional dependence between any two nodes. Partial correlation between nodes i and j,

that is between components Xi andXj of the multivariate variableX, is denoted by �ijj:, and

it measures their linear dependence excluding the in�uence of the rest of the components of

variable X. The idea is that while ordinary correlation can show a high connection between

1When the number of series in consideration is large, quasi-maximum likelihood estimators of a cDCC-

GARCH model with variance targeting yields downward biases in the correlation coe¢ cient estimates, hence

implying very little variation in the correlations between returns over time. See Engle et al. (2008) for

details.
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two variables generated by the dependence of these two variables on a third one, the partial

correlation measures their connection eliminating the in�uence of the third variable from

both of them. Therefore, the two nodes are connected (i; j) 2 E if and only if they are not
conditionally independent, that is �ijj: 6= 0. Moreover, partial correlation between any pairs
of nodes is used in the GGM as a weight for an edge in the graph corresponding to that pair,

in other words wij = �ijj: is the weight of the edge between nodes i and j.

While ordinary correlations are related to the elements of covariance matrix 
, the inverse

of the non-singular covariance matrix K = 
�1 contains information on partial correlations.

A well-known result (Buhlmann and van de Geer, 2011; Hastie et al., 2009) is that partial

correlation can be derived as

�ijj: = �
kijp
kiikjj

(1)

where ki;j is the ij-th element of the matrix K = 
�1, also called the concentration matrix.

The matrix of partial correlations can be expressed similarly as follows:

P = �D�1=2
K KD

�1=2
K : (2)

Moreover, it has been shown that this equation also holds for K = R�1(for details see

Anufriev and Panchenko, 2015), that is the matrix of partial correlation can be obtained

through the matrix of ordinary correlation.

The other common way to represent a graph is via an adjacency matrix (Jackson, 2008).

An adjacency matrix A is of size n�n with a non-zero ij-th element if the nodes i and j are
connected and otherwise with zeros. For an undirected weighted graph the adjacency matrix

is symmetric matrix with entries given by weights between the appropriate nodes. In the

case of the GGM the adjacency matrix contains coe¢ cients of partial correlation �ijj: as the

ij-th element for i 6= j and zeros on the diagonal. Notice that the diagonal elements of the
matrix of partial correlations are minus units given that equation (1) holds. That is, in the

matrix form we have:

A = I + P = I �D�1=2
K KD

�1=2
K (3)

where I is the identity matrix of size n and K can be either the inverse ordinary correlation

matrix R�1 or the inverse covariance matrix 
�1 of multivariate vector X. The adjacency

matrix gives us not only a method to set up a graph but an opportunity to analyze the

graph using the tools of linear algebra. Our attention focuses on such an analysis in the next

section.

From the �nance perspective a network of partial correlation provides us with information

on the return co-movements of each pair of �rms conditional on others. It should be noted

that partial correlation does not show the direction of causality, hence we cannot say that,
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for example, the fall of one company leads to the collapse of its neighbours. However, if

we observe that one company faces some negative externalities, then its adjacencies might

also be a¤ected by this shock directly or/and through the �rst �rm. In other words, there

are three possible reasons for a connection to occur between a pair of �rms expressed as the

positive partial correlation: (i) a �rm a¤ects a second �rm, (ii) conversely, the second �rm

a¤ects the �rst one, and (iii) they are both in�uenced by some external factor. An example

of the latter possibility might be seen within one sector when �rms are connected due to

sector-speci�c common factors.

Finally, the signs of the entries of adjacency matrix, which are constructed based on

partial correlation, are important. In network theory weights of edges are usually positive.

However, as partial correlations can take values between -1 and 1, some entries of adja-

cency matrix A can be negative; therefore we cannot simply assume that the weights of

the network are positive in the case of the GGM. In social networks the negative values

of edges correspond to the relationship between foes, while positive values correspond to

the relationship between friends, and an individual can have both friends and foes (see,

for example, Kunegis et al., 2009). In �nance such relations might be rare. Barigozzi and

Brownlees (2016) found some negative edges in the network of U.S. Bluechips constructed

with the help of partial correlations and Granger causality, although these negative edges

were considerably outnumbered by the positive ones.

In our paper we obtained both positive and negative connections. Therefore, we consider

negative edges to be similar to the relationship between competitors, that is the negative

value of a partial correlation between two �rms means that the rise of one company can

encourage (or can be encouraged by) the fall of another �rms. As we will see from the

empirical results, these negative connections occur more often between �rms from di¤erent

sectors rather than one sector, where companies might directly compete with each other.

In the following section we describe network analysis with respect to the graph with both

negative and positive links.

3 Network analysis

One of the advantages of using network theory is that it can give us both the numerical

characteristics of the whole network and the features of each node in this network. The

former includes measures such as average path length, diameter, number of edges etc. (for

more details see Jackson, 2008), while the latter can help us �nd the nodes that play an

important role in the system.

One of the most substantial characteristics of a node in a network is centrality. It can

be interpreted in at least two ways for �nancial markets. First, as often used in the social
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sciences, it shows the importance of a node in terms of its connection with other nodes (see,

for example, Jackson, 2008). The second interpretation is that centrality can represent the

importance of a node in terms of systemic risk (e.g. Acemoglu et al., 2015). For example,

a more central node plays a greater role in shock propagation than a node with a lower

centrality measure. Primarily, nodes that are identi�ed as central in terms of these two

interpretations coincide, which means that the most connected �rms are also systemically

the most important. However, if a network has both positive and negative edges, which might

be the case for networks based on partial correlations, the interpretation of centrality is not

clear. In this section we discuss some possible centrality measures from both perspectives.

There are di¤erent measures of centrality. One of the basic measures is degree centrality,

which is calculated simply as a number of its adjacencies for an unweighted network.2 A

commonly used method for calculating the degree centrality of node i for a weighted graph

is to sum the weights of each node connected with node i (Newman, 2004). However, for a

network with positive and negative edges, where we should consider both interpretations of

centrality, it is useful to distinguish degree centrality as follows:

DCneti =
nX
j=1

aij; (4)

DCabsi =
nX
j=1

jaijj ;

DC+i =
nX
j=1

faijjaij > 0g

where n is the number of nodes and aij is the ijth element of an adjacency matrix A.

In terms of systemic risk contribution the net degree centrality, DCneti , represents the

net immediate e¤ect on i�s neighbours. However, this measure is uninformative in terms of

connections with other agents as it does not distinguish whether node i has only positive

connections or its connections have di¤erent signs. Absolute degree centrality, DCabsi , takes

into account the absolute values of the strengths of relations, and therefore it is valid to

measure the connectedness of a node with its adjacencies without considering the signs of

these relations. Moreover, this provides the total e¤ect on neighbours in the case of shock

transmission. To measure only positive connections, we use DC+i , which allows us to capture

the strength of the positive relations and shows the importance of a node in terms of the

consequences of a negative shock on that node�s neighbours.
2In some literature, e.g. Jackson (2008), normalized degree centrality is used for an unweighted network.

That is, it is measured as the number of adjacencies divided by n� 1; where n is the number of nodes in the
graph. However, as the number of nodes does not change over time in our case, we do not use normalization.
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To calculate centrality, one might also want to consider the number of immediate neigh-

bors a node has. The sum of the absolute weights measures total involvement in the con-

nectedness of the network but does not take into consideration the number of the edges of

each node. To illustrate this problem let�s consider an example illustrated in Figure 1. Let

node 1 be connected only to node 2 with the weight of the connectedness w12 = 7 and node 3

has �ve neighbours and let the strength of the connectedness with each of them be equal to

1. According to equation (4), the degree centrality3 of node 1 exceeds the degree centrality

of node 3. However, node 3 is more central when looking at its total number of neighbours.

Therefore, it is of importance to take into account both the sum of the weights and the

number of neighbors when calculating node centrality.

Opsahl, Agneessens, Skvoretz (2010) proposed using a tuning parameter � when measur-

ing centrality. This parameter determines the preference of the number of edges for a node

over the sum of the weights of its edges. Formally, they use the following measure of degree

centrality:

DCtunei = k1��i �DC�i : (5)

Here ki is the number of adjacencies of node i and DCi is one of the degree centralities

introduced above. It should be noted that equation (5) coincides with the equations in (4)

with � = 1; and � = 0 gives the number of edges of node, ki. In other words, DCtunei

measures degree centrality giving more value to the weights of the node when � is close to

one and providing more value to the number of edges as � approaches zero. See Table 1 for

an example comparing DC and DCtune.

Another measure of centrality is eigenvector centrality, which de�nes the centrality of a

node based on the centrality of its neighbours. Let Ce be the centrality vector of a given net-

work and Ce(i) be the centrality of node i in this network. The idea of eigenvector centrality

is that the centrality of a node is proportional to the centrality of its neighbours (Bonacich,

1987; Jackson, 2008). Formally, �Ce(i) =
Pn

j=1wijC
e(j), where � is some proportion factor.

In matrix form it can be written as

�Ce = ACe (6)

It is easy to see that this equation holds when � is an eigenvalue of adjacency matrix A

and Ce is its corresponding eigenvector. The standard approach is to look at the eigenvector

associated with the maximum absolute eigenvalue of the adjacency matrix (for more details

see Bonacich, 1987; Jackson, 2008).

In contrast to degree centrality, eigenvector centrality takes into account how in�uential

3As we do not use edges with negative weights in our example, the introduced degree centrality measures

coincide.
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the adjacencies of a node in the network are. In other words, a node is more central when

the neighbours of that node are more central. Another advantage of eigenvector centrality

is that it can be applied to networks with connections with di¤erent signs (Bonacich, 2007)

such as in partial correlation networks. Moreover, in terms of systemic risk eigenvector

centrality shows how far and to what extent a shock can propagate in the system (Anufriev

and Panchenko, 2015). On the other hand, for a graph with weights with di¤erent signs it

is possible to look at eigenvector centrality based on an adjacency matrix of absolute values

of partial correlations. This kind of centrality will give us the total connections of node in

terms of the absolute connections of its neighbours.

An important question for systemic risk is to �nd a quantitative measure which charac-

terizes the stability of a system to external shocks. This measure can be derived with the

help of network theory. Let e be an adverse shock experienced by �rm i. Mathematically,

this shock can be written as a vector with non-zero i-th element and with zeros for the rest.

First, the shock can a¤ect i�s immediate neighbours. Following Anufriev and Panchenko

(2015), we refer to this as a �rst-order e¤ect, which can be measured as A � e. We should
note that the �rst-order e¤ect of node i is exactly the net degree centrality of this node,

DCneti , if we assume a unit size shock. Next, the e¤ect on the neighbours of i�s neighbours

can be expressed as A2 � e. This is called a second-order e¤ect. Following this idea we can
derive a k-th-order e¤ect. The total e¤ect of the adverse unit shock e on the node i can be

written as follows:

e+ A � e+ A2 � e+ A3 � e+ ::: =
1X
j=0

Aje = (I � A)�1e (7)

where I is the identity matrix. If we denote T = (I � A)�1, then the vector T � e shows the
total e¤ect of adverse shock e on all agents in the system. Summing up all the elements of

vector T � e, we can obtain the total e¤ect on the system caused by the shock in one node.

It should be noted that equation (7) only holds under the assumption that all eigenvalues

of adjacency matrix A are within the unit circle. However, the corollary of Gershgorin�s

theorem states that the eigenvalues of an adjacency matrix cannot exceed the maximum

sum of the row elements in absolute terms (for details see Varga, 2000), which in our case is

maximum absolute degree centrality. That is why in application in networks based on the

GGM this assumption does not necessarily hold. Nevertheless, if some eigenvalues are out

of the unit circle, then the series in (7) diverges. In terms of shock propagation, it means

that the system is unstable in the sense that a shock to some nodes can lead to an enormous

e¤ect on the system. Hence, the eigenvalue of an adjacency matrix can also be used as the

characteristic of a network: if there is an eigenvalue larger than one in absolute terms, then

the network can be thought of as unstable.
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It has been shown that Bonacich centrality is linked to the total e¤ect matrix T (Anufriev

and Panchenko, 2015). Indeed, the centrality measure proposed by Bonachich (1987), also

known as beta-centrality, is given as:

CB(�) =

1X
j=1

�j�1Aj � 1n = (I � �A)�1A � 1n (8)

where � is a parameter of transmission, which shows extent to which shocks transmit between

vertices. For � = 1 Bonacich centrality becomes:

CB(1) = A � 1n + A2 � 1n + A3 � 1n + ::: = T � 1n � 1n

which represents the total e¤ect on the system caused by a unit idiosyncratic shock in each

node separately. In other words, the Bonacich centrality of node i is the cumulative total

e¤ect on the system caused by a shock in this node minus the shock itself, that is the sum of

the elements of vector T � e minus 1. Therefore, looking at the value of Bonacich centrality,
we can decide how much a node is systemically important in terms of shock propagation.

The transmission parameter � re�ects the diminishing order e¤ect of a shock in the sense

that only part of the shock transmits to its neighbours. Moreover, the assumption that all

eigenvalues of the adjacency matrix are contained within the unit circle imposed in (7) is

necessary to estimate the total e¤ect of shocks, while Bonacich centrality can be calculated

using � < 1=� su¢ cient for the convergence of the series (Bonacich, 2007).

We are also interested in looking at the characteristics of a network as a whole, such as

the number of edges, sum of weights and average path length of the network. The number

of edges and sum of weights in the network are self-explanatory names of graph measures.

The average path length measures the average shortest path between nodes. It shows the

average number of steps in shock propagation for the network. All three characteristics

show the degree of connectedness in a network: the more connected the network, the less the

average path length, the greater the number of edges and the sum of weights. In Section 7

we examine these characteristics over time to see in which periods our network of the stocks

in MICEX was more or less connected.

Moreover, it is interesting to identify the periods when the system in general was more

vulnerable to shocks. In order to do so we could make use of the network measures discussed

in Section 3. As Bonacich centrality shows the systemic importance of a node, the average

of all Bonacich centralities4 of nodes represents how the market in general refers to systemic

risk. The total number of edges and the number of negative edges increase during days of

crisis because there are new connections made. Similarly, the sum of positive weights and

4The sum of Bonacich centralities across all stocks divided by the number of stocks.
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the sum of the absolute values of weights increase when there is a crisis because the network

becomes more connected with stronger ties. If the maximum absolute value of eigenvalues

approaches one, as happens in a crisis, the network becomes more unstable. Finally, average

path length, that is the average distance between the nodes of the network, and diameter,

that is the longest distance between any two nodes in the network, both decrease when there

is a crisis because the stocks follow each other much more closely. Hence all these network

measures are related to the vulnerability of a system.

We derive the vulnerability index of a market by using the principal components analysis

of the network measures. We call the �rst component obtained from the principal components

analysis the vulnerability index of a market in the sense that it shows us how vulnerable the

system is to idiosyncratic shocks due to its network structure: the greater the vulnerability

index the more vulnerable the market. To distinguish the possibility that larger �rms may

cause larger falls, we also consider the weighted average of the Bonacich centralities with

the capitalization of �rms as the weights and call it the weighted vulnerability index. These

measures help to compare the conditions of a market over time in terms of its sensitivity to

negative shocks.

4 Data on the stocks in MICEX

We use daily stock returns to construct the network of interconnections between companies.

We concentrate our attention on the major companies of the Russian Federation, which

determine the tendency of economic development. These companies are included in the main

indices of the Moscow Exchange such as MICEX, nominated in rubles, and RTS, nominated

in dollars. Both indices consist of the 50 most liquid stocks of the largest Russian issuers

from the main sectors of the economy. We use the stock prices in MICEX, obtained from

the Moscow Stock Exchange. There are several �rms that issued both common stocks and

preferred stocks (e.g. Sberbank has common stocks traded with ticker SBER and preferred

stocks with ticker SBERP); therefore we used only those with common stocks. In addition,

Rosseti (RSTI) owns 80 per cent of the shares in FGC UES (FEES), which gives strong

dependence between them; therefore we only used data from Rosseti for our analysis. From

the selected list of �rms we chose the number of series and data length considering that we

wanted to use as many observations as possible with as many companies as possible. Our

data sample spans the period from 1 December 2011 to 29 January 2016 and includes 35

�rms, which form around 90 per cent of the market capitalization within the MICEX index.

The list of companies with tickers and sectoral classi�cations is provided in Table 2.

While studying the data, we noticed that there are outliers in the stock returns. When

we compared these outliers with the outliers of sectoral indices and the MICEX index,
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we noticed that one common large outlier falls on 3 March 2014, which is the date Russian

markets experienced losses due to the discussions on the annexation of Crimea to the Russian

Federation and the potential consequences.5 The rest of the outliers in the stock returns were

stock speci�c. Therefore, using the Hampel �lter of Hampel et al (1986), we replaced the

stock speci�c outliers with local medians.6 Finally, we put back the return observations

that belonged to 3 March, 2014 and included a dummy variable to the mean and variance

equations in order to account for this outlier.

We also consider the possible existence of common factors. As mentioned by Barigozzi

and Brownlees (2016), common unobservable factors may induce high correlations between

returns. Given that partial correlation calculations may not eliminate these common factors,

we may spuriously end up with a fully connected network. Therefore, we need to �lter out a

possible common factor from the return data before carrying out the network analysis. For

simplicity we assume that all stock returns might be a¤ected by one common unobservable

factor.7 This could be political background, index of a leading stock market, GDP, or some

other factor.

In what follows, we explain our econometric approach to derive the correlation dynamics.

5 Econometric Models

In our paper we use the correlations obtained from the constant conditional correlations

GARCH (CCC-GARCH) model of Bollerslev (1990) and the consistent dynamic conditional

correlations GARCH (cDCC-GARCH) model of Aielli (2008). We denote the number of

return series by n, which is the notation we used for the number of nodes in Section 3. We

construct our equations as follows.

5http://money.cnn.com/2014/03/03/investing/russia-markets-ruble/
6For the Hampel �lter, we chose a one-month window (local median is calculated from this one-month

window) and a threshold value of 5, which makes the probability of observing an outlier very small. Hence,

we only �ltered away very large outliers.
7We could have considered multiple factors. In particular we could have used sector-speci�c factors.

However, in the data we use some sectors that have only one or two companies: there is only one company

in the transport sector, two companies in the telecommunication and CD&S sectors. In these cases the

unobserved sector-speci�c factors would be di¢ cult to capture, if at all. Also, with sector-speci�c factors,

interconnection with companies from di¤erent sectors will lose their interpretation. Second, if we include

a lot of common factors, then we end up with a highly sparse network. Finally, the sector-speci�c factors

add many additional parameters to estimate in step 1b of Section 6, which brings about some numerical

optimization issues. We used one factor, which is a combination of external factors that a¤ect all sectors. We

analyze the factor estimate and its relation to external factors in Section 8.4. This parsimonious approach

helps to capture the unobserved factor, but still avoids to some extent the danger of ending up with a highly

sparse network.
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5.1 Conditional Mean

We de�ne rt to be an nx1 vector of return series, and so then the return equation is given

by:

rt = �1 + �2Outt + �rt�1 + cft + "t (9)

ft = �ft�1 + !t 
"t

!t

!
v N

 
0k;

"
Ht 0

0 �

#!

where � is an nxn matrix, �1; �2 and c are nx1 vectors of parameters and � is a scalar

parameter, Outt is a dummy that stands for the outliers and ft is an unobserved factor. "t
and !t are assumed to be orthogonal, hence we have a linear state space form. This is a

VAR(1) model that considers a dummy variable for outliers and also includes an unobserved

latent variable. We assume that there is only one common factor for simplicity.

5.2 Conditional Variance

The conditional variance of the errors "t in the conditional mean equation is given by Ht
such that:

"t = H
1=2
t vt (10)

Ht = DtRtDt

Dt = diag(h
1=2
1t ; h

1=2
2t ; :::; h

1=2
nt )

ht+1 = W1 +W2Outt+1 + A"
(2)
t +Bht

where the conditional varianceHt is decomposed into a diagonal matrix of conditional volatil-

ities ht and correlation matrix Rt. W1 and W2 are nx1 vectors; A and B are diagonal nxn

matrices of parameters. "(2)t is a vector of squared errors from equation (9). Hence for each

series i, the corresponding volatility equation is:

hi;t+1 = w1i + w2iOutt+1 + ai"
(2)
i;t + bihi;t

The conditional variances, hi;t are positive as long as parameters w1i > 0, w2i > 0, ai > 0
and bi > 0 for all i, which is a su¢ ciency condition. On the other hand, hi;t are stationary
when ai + bi < 1.
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5.3 Conditional Correlation

We consider two conditional correlation models, depending on how the conditional correlation

matrix Rt is constructed. The �rst and simplest one is the Constant Conditional Correlation

GARCH model of Bollerslev (1990) where the correlation matrix is constant overtime, i :e

Rt = R. This constant correlation matrix tells us the correlation between the returns over all

the sample periods and hence will help us to have a general look at the network connections

between �rms and sectors.

The second speci�cation we consider is the cDCC-GARCH model of Aielli (2008) which

extends the correlation equation of the CCC-GARCHmodel by de�ning correlation dynamics

as follows:

Rt = PtQtPt (11)

Pt = diag(Qt)
�1=2

Qt+1 = (1� �1 � �2)Q+ �1��t��0t + �2Qt
��t = diag(Qt)

1=2�t:

�t = D
�1
t "t

where Qt is an nxn covariance matrix from which the correlations are derived, Q is replaced

in the estimation by S; the sample covariance of the ��t . This is referred to as the correlation

targeting approach (Engle, 2009) and it signi�cantly reduces the number of parameters to be

estimated. �1 and �2 are non-negative scalar parameters which satisfy �1+�2 < 1. Using the

correlation estimates of the cDCC-GARCH model, we can derive the correlations between

�rms and sectors at each period, and therefore we can view the network connections on a

particular date: for example before and after a shock that a¤ected the MICEX index.

6 Estimation

Given that we consider many series and therefore we have many parameters to estimate, we

estimate our models in three steps: �rst mean equation parameters, then volatility parameters

and then correlation parameters. In this way, we obtain Gaussian three-step estimators,

which are consistent and asymptotically normal (See Engle and Shephard, 2001). The Monte

Carlo simulations in Carnero and Eratalay (2014) show that they behave well in small

samples.

Step 1. We �rst estimate the mean equation parameters 	 = [	1;	2] in two small steps:
Step 1a: we �rst estimate a VAR(1) model ignoring the latent variable and assuming

homoscedasticity. Hence if we de�ne:
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X = [~1; Outt; rt�1]

y = rt

where X is a (T � 1)x3 matrix, and y is a (T � 1)x1 vector, then the matrix of coe¢ cients
	1 = [�1; �2; �] and residuals can be obtained by:

	̂1 = [X 0X]�1X 0y

"̂�t = y �X	̂

This is equivalent to a maximum likelihood estimation under the assumption of ho-

moscedasticity. The fact that the latent variable is in the error term causes serial correlation

in the error, which results in ine¢ ciency but not inconsistency of the estimator.

Step 1b: assuming homoscedastic errors, we then estimate the parameters	2 = [c; p;H;�]

of the mean equation:

"̂�t = cft + "t

ft = �ft�1 + !t 
"t

!t

!
v N

 
0n;

"
H 0

0 �

#!

These equations are in a linear state space form, and the errors "t and !t are orthogonal.

Hence we can apply a Kalman �lter8 to the residuals and construct the prediction error

decomposition form of the loglikelihood:

L(	2j	̂1) = �
T

2
log(2�)� 1

2

TX
t=2

log jFtj �
1

2

TX
t=2

e0tF
�1
t et

where et is the prediction error and Ft is the prediction error variance.

Step 2. We take the prediction errors as the residuals to enter the variance equation.
Hence the volatility equation for each series i is given by:

hi;t+1 = w1i + w2iOutt+1 + aiê
(2)
i;t + bihi;t

Given that there are no volatility spillovers, we can estimate the conditional variance

parameters �i = fw1i;w2i;ai; big for each return series i univariately by maximizing the
8The algorithm of the Kalman �lter we used is given in Appendix I.
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following loglikelihood with respect to �i:

L(�ij	̂) = �
T

2
log(2�)�

TX
t=2

log hi;t �
1

2

TX
t=2

�2i;t

where vi;t = êi;t=
p
hi;t are the standardized errors corresponding to series i:

Step 3. We estimate the correlation dynamics following the composite likelihood method
discussed in Engle, Sheppard and Shephard (2008). This is equivalent to a classical maxi-

mum likelihood method for estimating the correlations of a CCC-GARCH model. However

when estimating the correlation parameters of the DCC and cDCC-GARCH models with a

high number of series, Engle and Sheppard (2001) and later Engle, Sheppard and Shephard

(2008) noted that attenuation biases are observed in the � parameters of equation (11), re-

sulting in smoother correlation estimates. For a very high number of series, the estimated

correlations are close to being constant and equal to the long-run matrix. This might lead re-

searchers to assume that the conditional correlations in the data are constant over time. The

composite likelihood method solves this problem by choosing small subsamples, evaluating

the loglikelihood of these subsamples and taking an average over these loglikelihoods.9

Taking v̂i;t = êi;t=
q
ĥi;t from the �rst two steps, we can estimate the correlation matrix

of a CCC-GARCH model by:

R̂ = corr(v̂t) =

P
v̂i;tv̂j;tqP
v̂2i;t
P
v̂2j;t

(12)

For the estimation of the cDCC-GARCH model, we take 	̂ and �̂ from the �rst two steps

and we choose subsamples from n series. These subsamples can be chosen as all subsequent

series such as {{1,2},{2,3},...{n � 1:n}, or all possible bivariate combinations. It is also
possible to choose trivariate subsamples as well. In our paper, we use all possible bivariate

combinations. Let us denote the correlation parameters with � = f�1; �2g. We allow for
di¤erent dynamics for the correlations: the correlations evolve between �rms of the same

sector using parameter vector �1 and between �rms of di¤erent sectors with �2. Hence, if

the chosen subsample comes from the same sector, the corresponding correlation parameter

vector is �1; if not, then it is �2.

Finally, for each of the subsamples we choose, we construct the loglikelihood:

ls = �
1

2

TX
t=2

�
log jRtj+ b� 0tR�1t b�t� (13)

9Hafner and Reznikova (2010) suggest, as another approach, the use of shrinkage methods to solve this

problem.
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and we maximize the following loglikelihood with respect to � = [�1;�2]:

L(�j	̂; �̂) = 1

N

X
ls

where N is the number of subsamples.

After obtaining �̂, a forward recursion based on equation (11) using all series would

provide the conditional correlation estimates, R̂t.

Although this three step procedure is not e¢ cient, it still provides consistent and as-

ymptotically normal estimators. (See Engle and Shepard, 2001, Engle, Sheppard, Shephard,

2008).

7 Empirical Part

In this section we apply the network theory approach we described in Section 3 to study the

connectedness between major �rms in Russia. First, we assume that the connections did not

change over time, and we analyze the overall interconnectedness in the static system. Later,

we let these connections evolve so that we can comment on the changes in the characteristics

of the network over time.

7.1 Constant correlations

The constant correlation matrix R̂ is estimated as correlations between standardized residuals

in the CCC-GARCH model with the help of equation (12). Using equation (2) we obtain an

estimation of the constant partial correlation matrix. Figure 2 displays histogram of ordinary

correlations and partial correlation coe¢ cients. It can be seen that although there are no

negative correlations, some partial correlations can be negative. However the majority of

the partial correlations are positive.

In order to map a sparse network of interconnectedness we use the Fisher�s Z transfor-

mation of partial correlations and its 10% �signi�cance level�as a threshold value. However

we do not interpret it as a test for the statistical signi�cance of partial correlations due to

a possible multiple testing problem. Instead, a 10% signi�cance level is employed as one of

the possible threshold values to achieve sparsity. The qualitative results are robust to the

other threshold values.

The network based on the GGM is depicted in Figure 3. Positive relationships between

�rms are indicated by solid lines while negative relationships are denoted by red dashed lines.

Thicker lines represent stronger relationships between nodes. Nodes are coloured according
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to the sectors they belong to. Moreover we depict state-owned and regulated �rms10 using

square nodes and private ones using circle nodes.

The graph in Figure 3 is crowded with links, so it is complicated to make any conclusions

visually based on it. However we can increase the threshold value to obtain sparser network.

For example, Figure 4 shows the graph constructed with a cuto¤ point of 0.09, where we can

see strong connectedness within some sectors such as Oil&Gas and Power sectors. More-

over, one can see clusters of some �rms from the Oil&Gas sector and Metal&Mining sector,

although there are also some negative links between these two sectors.

Interestingly that the negative connections in Figures 3 and 4 are not between �rms

from one sector, where companies typically compete with each other, but, in contrast,

they are formed between �rms from di¤erent sectors. In particular, the strongest nega-

tive connections, as can be seen in Figure 4, are mainly between �rms from the Oil&Gas and

Metal&Mining sectors. In other words, the returns of some pair of �rms from the Oil&Gas

and Metal&Mining sectors counter-move with each other.

In Table 3 we summarize some network characteristics aggregated by sectors. As one

can see, among the 35 largest companies in Russia, 8 �rms belong to the Oil&Gas sector

and 7 - to the Metal&Mining sector. Moreover, the Oil&Gas sector takes more than half of

the capitalization among the considered �rms, while Metal&Mining has around 12 per cent,

which is outperformed by the Financial sector. Also more than half of the considered �rms

from the Oil&Gas, Power and Financial sectors are state-owned or regulated �rms.

To compare the strength of intra sector connectedness, we calculate the number of edges

and the sum of weights within each sector and normalize them on the basis of the number

potential connectedness. The results suggest that there is strong connectedness within the

Power and Financial sectors although they consist of only 3 �rms. In terms of both the

presence of the links and their strength the Oil&Gas sector outperforms Metal&Mining and

Consumer Goods and Services (CGS) sectors (the second and the third largest sectors con-

sidered here respectively). In general, one can anticipate the strong connectedness within

sectors for the estimated network of partial correlations. Firms from one sector are often

in�uenced by sector-speci�c external shocks, hence their returns co-move in the stock ex-

change. For example, connectedness within the Oil&Gas sector can be explained by the

dependence of all �rms in this sector on the price of oil.

It is of interest to identify central players both in terms of their connection with other

�rms and shock propagation in the case of a constant correlation model. We use the cen-

10By state-owned and regulated �rms we denote those that belong to the composite Moscow Exchange

(MOEX) State-Owned Companies Index (SCI) and the MOEX Regulated Companies Index (RCI), i.e.

those �rms with the state in the shareholder structure and �rms that are additionally regulated by Russian

Ministries. In our dataset there are 12 state-owned and regulated �rms.
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trality measures discussed in Section 3. In Table 4 centrality measures are provided for

the top twelve companies ordered according to Bonacich centrality (CB), which represents

the top systemic contributors. There k is the number of direct neighbours of a company;

DCnet; DCabs; DC+ are the degree centralities from equation (4). We also calculate eigen-

vector centrality, EC; to show how central �rms are in terms of their neighbours�centralities.

In order to compare di¤erent measures of connectedness we also use the degree centrality

(DCtune) measure suggested by Opsahl, Agneessens, Skvoretz (2010) with a tuning parame-

ter � = 0:511 and eigenvector centrality based on the adjacency matrix of absolute weights

between nodes, ECabs: We normalize both eigenvector centralities setting the largest com-

ponent of each to 1 and sort the whole table in descending order of Bonacich centrality. The

ranking order according to each measure is provided in parentheses on the right side of each

value.

First of all, one can see that among the selected top twelve systemic contributors, there

are 6 companies from the Oil&Gas sector (out of 8), 3 �rms from the Metal&Mining sector

(out of 7) and 2 (out of 3) �rms from the Financial sector. This suggests that these sectors

play a crucial role in systemic risk propagation. The importance of the �rst two sectors is not

surprising for such resource dependent economy as Russia. While Oil&Gas companies might

show a central position given their large capitalizations, �rms from the Metal&Mining sector

play a similar role as systemic risk contributors even though they have less capitalization.

Moreover, the central position of �rms from the Financial sector can be explained by their

role as capital redistributors in the economy. The importance of the banking sector was also

indicated for the Australian market in Anufriev and Panchenko (2015).

Moreover, Table 4 shows that the most central �rms in the Russian Stock Market in terms

of connection with others are Lukoil (LKOH), Sberbank (SBER) and Gazprom (GAZP).

In terms of systemic importance Sberbank gave its place in the top 3 to NLMK Group

(NLMK). Not suprisingly that the top �rms in terms of connectedness are ones of the largest

companies in the Russian stock market. However, among the top central �rms in terms of

systemic contribution, NLMK Group is only medium size company according to its market

capitalization.

Another interesting fact is that the top 5 central �rms according to eigenvector centrality

are �rms from the Oil&Gas sector. This emphasizes again that this sector is highly intercon-

nected, and therefore these �rms show a more central position also because of their central

neighbours.

It is well known that state �rms play one of the crucial roles in the Russian Stock Market.

There are 12 such state-owned and regulated �rms among the 35 considered here with a

11We could also use di¤erent values of �, but in order to show the di¤erence between other centrality

measures we use � = 0:5 setting equal weights on the importance of edges and the sum of weights.
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trading volume of more than 50 percent in the whole Moscow Stock Exchange. Therefore, it

is not surprising to see Gazprom and Sberbank, which are state-owned �rms and the largest

in their industries (O&G and Financial sector respectively), among the top 3 interconnected

�rms. Interestingly, Lukoil, the largest private oil company, outperforms the second largest

state-owned oil �rm, Rosneft (ROSN) in terms of systemic importance. In general, among

the top twelve systemic contributors there are 5 state-owned or regulated �rms with a total

capitalization of 46 per cent among the considered �rms.

7.2 Dynamic correlations

The CCC-GARCH model gives us a constant network of connections in the Russian Stock

Market. It is well known that Russia faced a number of problems during 2014, such as the

devaluation of the ruble and trade sanctions imposed by the European Union and the Russian

Federation. It can be said that 2014 was a year of �nancial and economic distress for Russia.

During this period some of the �rms su¤ered more than others due to, for example, stronger

sensitivity to �uctuations in exchange rate and oil prices. Therefore, it would be a strong

assumption to suggest that correlations between stock returns remained the same throughout

the period. Hence, we are interested in examining how the connectedness between stocks

changed over time, especially during the crisis. To do that we use the cDCC-GARCH model

to obtain dynamic correlation matrix R̂t; which we use to calculate partial correlation matrix

at each time t.

The methodology remains the same as in the constant correlation case except that we can

now look at changes in the characteristics of the networks. In Figure 5 we present changes

in the number of edges and the average path length, and in Figure 6 the sum of positive

weights and their absolute values that we discussed in Section 3. All three characteristics

vary over time and the number of edges and the sum of their weights increases in 2014, while

the average path length declines in that year. Moreover, in Figure 6 one can see that the

sum of absolute weights increases more than the sum of positive weights. These results are in

line with the stylized fact that during the crisis the connectedness in the market strengthens

and becomes polarized. Similar results were emphasized by Diebold and Yilmaz (2014) for

the U.S. stock market in the period of the �nancial crisis 2007-2008.

In order to properly calculate the Bonacich centrality measure for each �rm, we �rst

have to look at the eigenvalues of adjacency matrices. In Figure 7 we present the maximum

absolute eigenvalues of adjacency matrices over time. As we can see the assumption that

all eigenvalues lie inside the unit circle is not satis�ed throughout the period, and so we

use � = 0:9 in equation (8) to calculate the Bonacich centrality measure such that the

condition � < 1=� is satis�ed. On top of that, one can think of the eigenvalue as one of the
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possible qualitative characteristics of a network. Indeed, under the assumption of a perfect

propagation mechanism (shocks necessarily propagate through the obtained links), the cases

where eigenvalues are larger than 1 correspond to an unstable system, that is convergence of

the series in equation (8) fails, meaning that a negative shock experienced by a �rm can lead

to the whole system falling. Therefore, the crossing of the unit border can be interpreted as

a qualitative change in the system. In fact, such a qualitative change of the obtained system

can be seen at the end of 2014 in Figure 7 after the time when the exchange rate regime of

the ruble was changed.

The dynamic characteristics of the network based on Bonacich centrality can be obtained

by averaging this measure of each �rm or weighting it by �rm�s capitalization. These mea-

sures, depicted in Figure 8, represent how the market in general refers to systemic risk, i.e.

how sensitive it is to negative shocks. As one can see the largest value is reached in December

of 2014 indicating that the Russian Stock Market was considerably sensitive to the external

shocks at that time. Although both measures show similar dynamics, the weighted average

characteristic is more volatile, in other words it is more sensitive to negative shocks, than

the average of Bonacich centralities.

In addition, it is of interest to look at the central �rms before, during and after the crisis.

To do so, we choose three dates at the end of 2013, 2014 and 2015 for each of these periods

respectively. Figures 9 �11 represent the network on each of these days and Tables 5 �7

provide centrality measures on those dates before, during and after the crisis the for top

twelve systemic contributors in terms of Bonacich centrality.

First of all, it should be noted that the values of all centrality measures (except eigenvector

centrality as it gives only a ranking rather than absolute values) increased at the time of

the crisis. This shows again that during the period of distress, links strengthen and the

network becomes more connected. Moreover, the system became more fragile during the

crisis because systemic risk contribution of each �rm in terms of Bonacich centrality also

increased.

Speci�cally in terms of system risk contribution one can see that during and after the

crisis the main contributors are the �rms from the Oil&Gas sector (according to the ranking

of the Bonacich centrality), while before the crisis they were Sberbank and two �rms from

the Metal&Mining sector (Surgutneftegas, SNGS, and NLMK Group, NLMK). Interestingly,

Rosneft, the second largest state-owned oil company, was not in the top twelve list before

the crisis, but then increased its systemic contribution during and after the crisis. In terms

of connection with other companies, Sberbank and Lukoil are among the most central �rms

in all time slices.
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8 Further discussion

8.1 Deriving the vulnerability index

Using the measures of the network discussed in Section 3 and listed in Table 8, we conduct

a principal components analysis. Afterwards, we look at the �rst principal component. We

rescale the �rst principal component to the range 0-100 in order to obtain vulnerability in-

dices.12 The �rst vulnerability index we consider uses the average of Bonacich centralities

and other network measures while the second uses the weighted average of Bonacich central-

ities using the market valuations of the stocks as weights. The former is depicted in Figure

12 and shows a similar dynamic to the latter given in Figure 14.

Table 8 provides the coe¢ cients of the analysis corresponding to the �rst principal com-

ponent for each index. For both vulnerability indices, only the �rst eigenvalue was larger

than one; therefore only one principal component was retained. While the vulnerability

indices are mainly in�uenced by the number of edges, the sum of positive weights, the sum

of absolute values of weights and the average path length, the in�uence of Bonacich cen-

tralities can not be ignored. In the case of the weighted vulnerability index, the e¤ect of

Bonacich centralities is slightly higher. It is not surprising that the average path length and

diameter measures have negative coe¢ cients, as they are expected to decrease during crisis

periods. We can see that the �rst principal component explains 78-79% of total variance,

which means that the vulnerability indices we consider summarize the information contained

in these network measures by almost 80%. Indeed, as one can see from Figures 12 and 14,

the vulnerability indices emphasize the crisis period: they start to increase in the second

part of 2014 and reach a peak at the beginning of 2015 showing that the Russian market

was more vulnerable during that period.

8.2 In relation to major credit rating agencies

In order to justify our vulnerability measures empirically, we look at the government debt

credit ratings scores given by major credit rating agencies, namely, Standard & Poor�s,

Moody�s and Fitch assessing the credibility of the Russian economy in our data period from 1

December 2011 to 29 January 2016.13 In Table 9, we present the time series data of the credit

ratings and outlooks and the rating scales we create to which they correspond. Moreover,

we give the vulnerability and weighted vulnerability indices calculated from the principal

12The formula for rescaling is: indexnew = 100x
(indexold�min(indexold))

(max(indexold)�min(indexold)) . There was the need for rescal-

ing because some of the predicted values of the �rst principal component were negative and this would make

it di¢ cult to interpret.
13The data source is: http://www.tradingeconomics.com/russia/rating
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components analysis. The rating scale is calculated setting the worst possible credit score as

0 points and best as 24 points and allowing for increments of 1 point for each category. The

rating scale is then adjusted for outlook; i.e. negative or positive, for which we gave half

points, and if there is also "watch" assigned to the outlook (such as a negative watch) we

gave a quarter points. Hence if the credit score is BBB, it corresponds to a rating scale of

16, if the score is BBB with an outlook that is negative then the rating scale with outlook

is 15.50. If the score is BBB with an outlook that is a negative watch, then the rating scale

with outlook becomes 15.25.

The correlation of the rating scale with outlook and the vulnerability index is -0.695,

and with the weighted vulnerability index it is -0.703, which are both statistically signi�cant

at 1%. In Figure 13, we can see the comovement of the rating scale with outlook and the

vulnerability indices. It is interesting to note that at least in two cases, the credit rating

institutions are responding late when decreasing the ratings. From 21.03.2014 to 28.03.2014,

the rating scale with outlook increases while the vulnerability indices increase. However

from 28.03.2014 to 25.04.2014 the rating scale with outlook decreases while the vulnerability

indices also decrease. A similar case can be observed between the dates 25.04.2014 and

17.10.2014.

8.3 In relation to ACRA FSI and RTSVX

We can also compare our vulnerability indices with other indices that indicate the stability of

the Russian market. One of these indices is the Russian Volatility Index (RTSVX). Similar

to VIX it measures stock market expectations of volatility. The volatility index rises during

a time of distress re�ecting the investors�fear about the market, and therefore RTSVX can

be used as a "fear gauge" about the Russian market.

At the end of 2016 the Analytical Credit Rating Agency introduced a new index of the

�nancial stress of the Russian Federation, called the ACRA Financial Stress Index (ACRA

FSI).14 This index evaluates the likelihood of �nancial crisis in Russia based on the concepts

of systemic risk also using principal components analysis. However, contrary to our approach,

the ACRA index does not consider the structure of the relationship between institutions.

Instead, it measures the systemic vulnerability based on 12 external factors such as di¤erent

market prices, interest rates, and currency exchange rates (for details of the methodology

see ACRA, 2016).

In Figure 14 we provide both indices and the weighted vulnerability index and in Table 10

we report the correlations between the ACRA index, RTSVX index and di¤erent variables

14Analytical Credit Rating Agency (2016). Principles of Calculating the Financial Stress Index for the

Russian Federation. https://www.acra-ratings.com/documents/129.
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obtained in our work. The correlation of the sum of the absolute values of weights with

the ACRA and RTSVX are the highest at 0.8225 and 0.5684, respectively. In the case of

the ACRA index, the lowest correlation is with the average of Bonacich centralities and in

the case of the RTSVX index, the lowest correlation is with the diameter measure. The

vulnerability indices are correlated with the ACRA index by about 0.76 and with RTSVX

by about 0.51. All the correlations in the table are statistically signi�cant at 1%.

The result that the ACRA and RTSVX indices correlate more with the connectedness

measures but not so much with the centrality measures is related to the fact that ACRA

and RTSVX do not consider the structure of the interconnections between agents, although

this can play a crucial role in systemic risk propagation. By taking into account di¤erent

external factors, these indices measure how the economy in general (as one representative

agent) reacts to changes in them. However, di¤erent institutions can react in di¤erent ways

to the same news, and hence, it can lead to changes in the structure of the interconnections.

Therefore, ACRA FSI, RTSVX and also the number of edges or average path length can be

indicators of stress periods measuring the changes in the connectedness of the system. On

the other hand, if one is interested in the sensitivity of the economy to systemic risk, it is

worth looking at the structure of interrelations which is the approach using the vulnerability

indices we propose.

8.4 About the unobservable factor

In this section we also look back to our model assumption that there is an unobservable

factor a¤ecting all the returns. We obtained the vector of the factor by applying the Kalman

smoother based on the estimated model.15

In our model, we assumed that this factor is unobservable. Therefore, it could be any

index or return of any market or perhaps a mixture of several of them. Keeping this in

mind, we perform a canonical correlation analysis, where the �rst set of variables is only

the factor estimate, while the second set of variables consists of returns and squared returns

(in rubles) of various markets and the VIX index and their lags. The series we consider are

the SP500 for the US and its implied volatility VIX, Brent oil for oil prices, USD/RUB for

exchange rate market, the MICEX index for the Russian Stock Market, the HSI for Chinese

Stock Market and Morgan Stanley Composite indices for emerging markets (MSCIEM) and

for the world markets (MSCIW). Our reason for applying a canonical correlation analysis

is to �nd the linear combination of the variables in the second set of variables that is most

correlated with the factor estimate.
15Appendix I provides the equations adopted from Durbin and Koopman (2002) to obtain the Kalman

smoothed estimate of the factor.
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In Table 11, we provide the results of the canonical correlation analysis. The canoni-

cal correlation is given as 0.2883, which is statistically signi�cant, although not very high.

The coe¢ cients of the variables that construct the canonical variable (the linear combina-

tion of the variables that is the most correlated with the smoothed factor estimate) are

large and signi�cant (with signi�cance at 1%, 5% or 10% levels) for contemporary (no lags)

MSCIEM returns, VIX, SP500 squared returns, USD/RUB squared returns and MSCIW

squared returns. Moreover, the coe¢ cients are signi�cant for the �rst lags of USD/RUB re-

turns, MICEX returns and MSCIEM squared returns and for the second lags of USD/RUB

returns, VIX, SP500 squared returns and MSCIW squared returns. The correlations of the

variables of the second set and the smoothed factor estimate are also given and in general

they are in line with the coe¢ cients.

As we can see, the smoothed factor estimate is related to external variables and their

lags and the canonical correlation we obtain is only 0.2883. our large list of external factors

are able to explain only some part of the unobserved factor. In practice this means that

the unobserved factor we used is a combination of even more number of external factors. It

could even be that some of these external factors are not easily measurable in numbers. For

example political developments could be such an external factor. Therefore, the inclusion of

an unobserved factor in the econometric model in Section 5 is justi�ed.

8.5 Alternative simpli�ed speci�cations

The idea of the GGM approach we use here is to derive a network of stocks using correlations

of stock returns. One could simply take the correlation matrix of the returns for the analysis

with constant correlations or use a rolling window estimation for dynamic correlations, but

these approaches would be ignoring several points our model in Section 5 captures.

The data we use for analysis includes a very volatile period. If we would use equation 2 to

extract correlations, we would be assuming that the conditional variances and covariances are

constant over time. This would make sense if the data presented similar volatility behavior

over the whole time period. However this is not the case. Constant conditional correlations

GARCH accounts for the time varying volatilities and hence is more trustable than regular

correlations in this analysis. Moreover, our approach takes into account any return spillovers

(in the �rst lag) between stocks and an unobserved common factor. Capturing such dynamics

in return and volatility equations could eliminate spurious relations which otherwise would

seem like correlations between returns. Moreover our approach includes a dummy variable

for the outlier that occurred on 3 March 2014. It is well known that the correlations between

returns could be badly a¤ected if that outlier is ignored.

To compare with the constant correlation case in Section 7.1, we looked at the simpli�ed
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version of estimating the correlation matrix of stock returns. Qualitatively, the results did

not change drastically in terms of the centrality measures of the estimated networks. The

most central �rms stayed the same while the order changed slightly for the less central �rms.

Similarly to compare with the dynamic correlations case in Section 7.2, we used a rolling

window estimation with a regular covariance matrix. We should note that this approach

has several drawbacks. First of all, it is not trivial which window length should be used. A

short window might lead to very volatile and possibly uninformative correlation estimates

because of the small number of observations in each window. On the other hand, a large

window length may result in overly smooth correlation dynamics and would also lead to a

loss of information in the beginning and at the end of the sample. Second, for a usual choice

of window length (even if it is 90 days) the e¤ect of the outlier will be large when it is in

the window span. Finally, given the small number of observations in each window, the e¤ect

of ignoring return and volatility dynamics would be larger. As expected, the results with

the rolling window estimation method di¤ered drastically and were less realistic compared

to Section 7.2.

To save space, we did not include any tables or �gures in this section. However, they are

available upon request.

9 Conclusion

In this paper, we mapped the most liquid major �rms in the Russian Stock Market bring-

ing together the ideas from �nancial econometrics, Gaussian Graphical Model and network

analysis. More speci�cally, we derived partial correlations from the correlation estimates of

the constant conditional correlation (CCC) and the consistent dynamic conditional correla-

tion (cDCC) GARCH models. Further using the Gaussian Graphical Model approach, we

derived the undirected weighted network of connections between stocks for the cases of con-

stant and dynamic correlation assumptions. Using di¤erent centrality measures we identi�ed

the most central �rms in the Russian Stock Market in terms of their connection with others

and systemic risk contributions. We found that the most connected �rms are the private

oil company Lukoil and the largest state-owned �rms Gazprom and Sberbank. In terms of

systemic risk contribution Sberbank gave up its place to NLMK Group. In addition, we

examined the dynamics of some key network measures such as the number of edges in the

graph, the sum of their weights and average path length. All considered measures capture

the distress period of 2014-2015 in Russian economy.

On the other hand, using the characteristic measures of the estimated networks related to

centrality and connectedness, we conducted a principal components analysis to come up with

two measures of vulnerability in the system with the di¤erence that the �rst uses the average
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of Bonacich centralities, and the second uses the weighted average of Bonacich centralities.

For the weights, we considered the market capitalization of the stocks on each day. It turns

out that the vulnerability indices discussed in our article represent comovement and high

correlation with the government debt credit ratings reported by major credit rating agencies,

namely Standard & Poor�s, Moody�s and Fitch and also with the Russian Volatility Index

RTSVX and �nancial stress index ACRA FSI.

Our article can be extended in various ways. First of all, one could include more stocks of

�nancial companies and banks in the data series. Then one can discuss the �nancial stability

of the system. On the other hand, one could run vector autoregressions with vulnerability

series and some external factors such as oil prices and exchange rates, to derive the impulse

response functions. In this way, one could see how system vulnerability would react to shocks

introduced to these series.
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10 Appendix I

In this section we give the Kalman �lter algorithm to construct the prediction error decom-

position form of the loglikelihood function in Step 1b of the estimation in Section 6. The

linear state space form equations are given as:

"̂�t = cft + "t

ft = �ft�1 + !t 
"t

!t

!
v N

 
0n;

"
H 0

0 �

#!

where the errors "t and !t are orthogonal. The Kalman �lter algorithm is adopted from

Durbin and Koopman (2002) as follows:

et = "̂�t � cft
Ft = c0Ptc+H

Kt = �PtcF
�1
t

Lt = ��Ktc
0

ft+1 = �ft +Kte
0
t

Pt+1 = �PtLt + �

where f1 = 0 and P1 = (1 � �)�1� are the initial values for the state vector ft and its

variance. et is the prediction error and Ft is the prediction error variance used in Step 1b of

the estimation in Section 6 to construct the loglikelihood.

The Kalman smoother algorithm to obtain the smoothed estimates of the unobserved

factor ft is also adopted from Durbin and Koopman (2002). We �rst obtain the smoothed

disturbance vector for !t on the basis of backwards recursion:

rT = 0

rt�1 = cF�1t e0t + Ltr
0
t
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and then smooth the unobserved factor ft using a forward recursion:

f1 = �r0

ft = �ft�1 + �rt�1

which gives us the estimated unobserved factor used in Table 11 and Figure 14.
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Figure 1: An example. The weight of the edge between node 1 and node 2 is equal to 7

while the weight of the other edges is equal to 1.

Figure 2: The histograms of ordinary correlations (left) and partial correlations (right)

estimated using the CCC-GARCH model.
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Figure 3: The constant correlation network of major Russian �rms listed in MOEX. Nodes

are colored according to the sectors and shaped according to the type of ownership. Solid

lines between nodes denote positive conditional dependences between corresponding pairs

while red dashed lines denote negative relations. The thicker the line the stronger the

connection.
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Figure 4: The constant correlation network with a threshold value equal to 0.09

Figure 5: Dynamic of the normalized number of edges (left) and average path length (right)

of the network
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Figure 6: Dynamic of the sum of positive weights of the network (dashed line) and of the

sum of absolute weights of the network (solid line)
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Figure 7: Dynamics of the maximum absolute eigenvalues of adjacency matrices.
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Figure 9: Dynamic correlation network, 30.12.2013

Figure 10: Dynamic correlation network, 30.12.2014

37



Figure 11: Dynamic correlation network, 30.12.2015

Figure 12: Vulnerability index
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Figure 13: Rating scales with outlook (based on the credit ratings of major agencies on

Russian economy) vs. the vulnerability indices (calculated based on principal components

anaylsis of network measures). Correlation of rating scale with vulnerability index is -0.695

and with weighted vulnerability index is -0.703, both correlations signi�cant at 1%.

Figure 14: Weighted vulnerability, ACRA FSI and RTSVX indices
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Table 1: Example

Node k DC DCtune

1 1 7 2.65

2 2 8 4

3 5 5 5

DCtunei with � = 0:5

Table 2: Stocks listed in MICEX with corresponding sector information
Ticker Name Ticker Name

Chemicals sector (CHM) Metal and mining sector (M&M)

AKRN Acron ALRS AC "Alrosa"

NKNC PJSC "Nizhnekamskneftekhim" CHMF Severstal

TRMK TMK GMKN OJSC MMC "Norilsk Nickel"

URKA Uralkali MAGN OJSC "MMK"

Construction and development sector (C&D) MTLR Mechel OAO

LSRG OJSC LSR Group NLMK NLMK Group

PIKK PIK Group VSMO VSMPO-AVISMA Corporation

Consumer goods and services sector (CGS) Oil and gas sector (O&G)

DIXY DIXY Group BANE OAO ANK "Bashneft"

GCHE PJSC "Cherkizovo Group" GAZP Gazprom

MGNT OJSC "Magnit" LKOH OAO "Lukoil"

MVID OJSC "M.video" NVTK JSC "Novatek"

PHST JSC "Pharmstandard" ROSN Rosneft

Electricity and utilities sector (PWR) SNGS Surgutneftegas

EONR OAO "E.ON Rossiya" TATN Tatneft

HYDR JSC "RusHydro" TRNFP Transneft Pref.

RSTI PJSC "Rosseti" Telecommunications sector (TLC)

Financial sector (FNL) MTSS MTS OJSC

AFKS AFK Sistema RTKM Rostelecom

SBER Sberbank Transport sector (TRN)

VTBR JSC "VTB Bank" AFLT JSC "Aero�ot"

40



Table 3: Within sector calculation

Sector �rms state �rms cap edges weights neg.edges edges* weights*

O&G 8 5 0.567 15 1.798 0 0.536 0.064

M&M 7 1 0.126 8 1.050 1 0.381 0.050

CGS 5 0 0.047 3 0.290 0 0.300 0.029

CHM 4 0 0.039 1 0.073 0 0.167 0.012

PWR 3 2 0.025 2 0.337 0 0.667 0.112

FNL 3 2 0.145 2 0.274 0 0.667 0.091

C&D 2 0 0.007 1 0.087 0 1.000 0.087

TLC 2 1 0.042 0 0.000 0 0.000 0.000

TRN 1 1 0.003 0 0.000 0 - -

Columns indicate from left to right for each sector: tickers, number of �rms, number of state-owned or

regulated �rms, percentage of capitalization among considered �rms, number of edges, net sum of weights,

number of negative edges, normalized number of edges, and normalized sum of weights within each sector.

Table 4: Centrality measures for constant correlation model
name sector SCI Cap k DC DCabs DC+ DCtune EC ECabs CB

GAZP O&G 1 0.18 (1) 10 1.10 (1) 1.10 (3) 1.10 (2) 3.31 (3) 1.00 (1) 0.99 (2) 2.91 (1)
LKOH O&G 0 0.09 (4) 11 0.99 (4) 1.19 (1) 1.09 (3) 3.61 (2) 0.97 (2) 0.98 (4) 2.59 (2)
NLMK M&M 0 0.02 (14) 8 1.00 (3) 1.00 (5) 1.00 (4) 2.83 (5) 0.58 (7) 0.88 (6) 2.48 (3)
CHMF M&M 0 0.02 (13) 7 0.81 (6) 0.99 (6) 0.90 (5) 2.64 (8) 0.61 (6) 1.00 (1) 2.28 (4)
SBER FNL 1 0.10 (3) 12 1.04 (2) 1.18 (2) 1.11 (1) 3.76 (1) 0.50 (9) 0.62 (9) 2.21 (5)
SNGS O&G 0 0.05 (7) 9 0.84 (5) 0.84 (8) 0.84 (7) 2.75 (7) 0.77 (5) 0.78 (8) 2.13 (6)
TATN O&G 1 0.03 (12) 9 0.65 (8) 1.01 (4) 0.83 (8) 3.02 (4) 0.84 (3) 0.98 (3) 2.00 (7)
ROSN O&G 1 0.13 (2) 6 0.61 (9) 0.79 (9) 0.70 (9) 2.18 (10) 0.79 (4) 0.90 (5) 1.90 (8)
MAGN M&M 0 0.01 (22) 8 0.76 (7) 0.95 (7) 0.85 (6) 2.76 (6) 0.38 (11) 0.85 (7) 1.85 (9)
NVTK O&G 0 0.07 (5) 7 0.58 (10) 0.58 (11) 0.58 (11) 2.02 (11) 0.51 (8) 0.48 (11) 1.51 (10)
VTBR FNL 1 0.03 (9) 7 0.53 (12) 0.68 (10) 0.61 (10) 2.19 (9) 0.41 (10) 0.53 (10) 1.47 (11)
MGNT CGS 0 0.04 (8) 7 0.56 (11) 0.56 (12) 0.56 (12) 1.97 (12) 0.36 (12) 0.41 (12) 1.36 (12)

This table shows di¤erent centrality measures for the top twelve companies according to Bonacich centrality

in the case of the constant correlation model. Columns indicate from left to right for each �rm: ticker, sector,

indicator of state-owned or regulated �rm (SCI), percentage of capitalization among considered �rms (Cap),

number of edges (k), net degree centrality (DC), degree centrality of adjacency matrix with absolute values

(DCabs), positive degree centrality (DC+), tuned degree centrality with � = 0:5 (DCtune), eigenvector

centrality for adjacency matrix (EC) and adjacency matrix with absolute values (ECabs) and Bonacich

centrality with � = 0:9 (CB).
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Table 5: Centrality measures for dynamic correlation model.

Pre-crisis period, 30.12.2013
name sector SCI Cap k DC DCabs DC+ DCtune EC ECabs CB

NLMK M&M 0 0.02 (15) 7 1.02 (2) 1.19 (7) 1.10 (5) 2.88 (12) 1.00 (1) 0.89 (2) 3.61 (1)
CHMF M&M 0 0.01 (16) 11 0.98 (3) 1.45 (1) 1.22 (1) 3.99 (1) 0.97 (2) 1.00 (1) 3.58 (2)
SBER FNL 1 0.11 (3) 11 0.95 (6) 1.28 (3) 1.11 (4) 3.75 (4) 0.89 (3) 0.74 (5) 3.51 (3)
GAZP O&G 1 0.17 (1) 11 0.86 (8) 1.20 (6) 1.03 (7) 3.63 (5) 0.85 (4) 0.77 (4) 3.23 (4)
LKOH O&G 0 0.09 (4) 9 1.05 (1) 1.21 (5) 1.13 (2) 3.31 (9) 0.71 (7) 0.70 (9) 3.19 (5)
VTBR FNL 1 0.03 (10) 11 0.82 (10) 1.13 (11) 0.97 (10) 3.52 (7) 0.73 (6) 0.71 (7) 2.96 (6)
MAGN M&M 0 0.00 (26) 10 0.83 (9) 1.17 (9) 1.00 (8) 3.42 (8) 0.79 (5) 0.84 (3) 2.95 (7)
SNGS O&G 0 0.05 (6) 12 0.91 (7) 1.25 (4) 1.08 (6) 3.88 (3) 0.63 (9) 0.71 (8) 2.94 (8)
HYDR PWR 1 0.01 (18) 12 0.97 (4) 1.28 (2) 1.13 (3) 3.92 (2) 0.62 (10) 0.73 (6) 2.77 (9)
MTLR M&M 0 0.00 (34) 11 0.80 (11) 1.18 (8) 0.99 (9) 3.61 (6) 0.64 (8) 0.69 (10) 2.71 (10)
AFKS FNL 0 0.02 (13) 9 0.96 (5) 0.96 (12) 0.96 (11) 2.95 (11) 0.44 (12) 0.43 (12) 2.54 (11)
RSTI PWR 1 0.01 (22) 9 0.68 (12) 1.14 (10) 0.91 (12) 3.20 (10) 0.58 (11) 0.65 (11) 2.46 (12)

Table 6: Centrality measures for dynamic correlation model.

Crisis period, 30.12.2014
name sector SCI Cap k DC DCabs DC+ DCtune EC ECabs CB

GAZP O&G 1 0.17 (1) 15 1.47 (2) 1.83 (5) 1.65 (3) 5.24 (4) 0.97 (2) 0.64 (5) 6.87 (1)
LKOH O&G 0 0.11 (3) 20 1.33 (3) 2.38 (2) 1.86 (2) 6.90 (2) 1.00 (1) 0.79 (3) 6.55 (2)
SNGS O&G 0 0.05 (9) 9 1.20 (4) 1.20 (11) 1.20 (10) 3.28 (12) 0.78 (5) 0.43 (10) 5.64 (3)
TATN O&G 1 0.03 (10) 15 0.87 (9) 1.80 (7) 1.34 (6) 5.19 (6) 0.80 (3) 0.64 (4) 5.23 (4)
SBER FNL 1 0.07 (6) 21 1.51 (1) 2.94 (1) 2.23 (1) 7.86 (1) 0.40 (12) 1.00 (1) 5.06 (5)
ROSN O&G 1 0.12 (2) 15 0.68 (12) 1.83 (6) 1.26 (9) 5.24 (5) 0.80 (4) 0.63 (6) 4.94 (6)
NVTK O&G 0 0.07 (4) 15 1.09 (5) 1.63 (9) 1.36 (5) 4.94 (8) 0.67 (6) 0.51 (9) 4.66 (7)
RTKM TLC 1 0.01 (16) 12 0.93 (7) 1.16 (12) 1.04 (12) 3.73 (10) 0.59 (7) 0.38 (12) 4.18 (8)
RSTI PWR 1 0.00 (26) 10 0.99 (6) 1.34 (10) 1.16 (11) 3.65 (11) 0.47 (9) 0.39 (11) 4.15 (9)
CHMF M&M 0 0.02 (12) 14 0.92 (8) 1.75 (8) 1.33 (8) 4.94 (7) 0.51 (8) 0.56 (8) 3.87 (10)
NLMK M&M 0 0.02 (13) 13 0.83 (10) 1.84 (4) 1.33 (7) 4.89 (9) 0.47 (10) 0.61 (7) 3.75 (11)
MTSS TLC 0 0.02 (15) 20 0.74 (11) 2.37 (3) 1.56 (4) 6.89 (3) 0.45 (11) 0.82 (2) 3.43 (12)

Table 7: Centrality measures for dynamic correlation model.

Post-crisis period, 30.12.2015
name sector SCI Cap k DC DCabs DC+ DCtune EC ECabs CB

GAZP O&G 1 0.14 (1) 11 1.36 (1) 1.51 (5) 1.44 (1) 4.08 (5) 1.00 (1) 0.90 (4) 4.51 (1)
LKOH O&G 0 0.09 (4) 12 1.14 (2) 1.69 (2) 1.41 (2) 4.50 (3) 0.90 (2) 0.86 (5) 3.93 (2)
ROSN O&G 1 0.12 (2) 8 0.85 (5) 1.04 (12) 0.94 (9) 2.89 (12) 0.78 (3) 0.69 (7) 3.31 (3)
SNGS O&G 0 0.05 (7) 11 0.95 (4) 1.24 (8) 1.10 (7) 3.70 (8) 0.61 (4) 0.74 (6) 3.08 (4)
NVTK O&G 0 0.08 (5) 12 1.13 (3) 1.28 (6) 1.20 (3) 3.91 (6) 0.51 (6) 0.66 (10) 3.06 (5)
TATN O&G 1 0.03 (10) 9 0.72 (10) 1.15 (9) 0.94 (10) 3.22 (11) 0.57 (5) 0.67 (8) 2.69 (6)
VTBR FNL 1 0.05 (9) 13 0.79 (6) 1.57 (4) 1.18 (6) 4.52 (2) 0.43 (9) 0.93 (3) 2.27 (7)
AFKS FNL 0 0.01 (22) 10 0.73 (9) 1.09 (10) 0.91 (11) 3.30 (9) 0.42 (10) 0.57 (11) 2.21 (8)
SBER FNL 1 0.10 (3) 15 0.66 (12) 1.69 (1) 1.18 (5) 5.04 (1) 0.43 (8) 0.99 (2) 2.21 (9)
HYDR PWR 1 0.01 (18) 11 0.77 (8) 1.27 (7) 1.02 (8) 3.74 (7) 0.44 (7) 0.66 (9) 2.18 (10)
CHMF M&M 0 0.02 (12) 12 0.78 (7) 1.62 (3) 1.20 (4) 4.41 (4) 0.32 (12) 1.00 (1) 2.18 (11)
MGNT CGS 0 0.05 (8) 10 0.70 (11) 1.05 (11) 0.87 (12) 3.24 (10) 0.38 (11) 0.54 (12) 2.12 (12)
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Table 8: Coe¢ cients obtained from principal components analysis using network measures

Coe¢ cients of PCA Non-weighted Weighted

Average of Bonacich centralities 0:2530 �
Weighted average of Bonacich centralities � 0:2817

Number of edges 0:3939 0:3911

Number of negative edges 0:3699 0:3681

Sum of positive weights 0:3966 0:3930

Sum of absolute values of weights 0:3917 0:3889

Absolute values of eigenvalues 0:3383 0:3359

Average path length �0:3847 �0:3803
Diameter �0:2662 �0:2629
Explained variance by the �rst component 78% 79%

The table shows the coe¢ cients for the �rst component obtained from the principal components analysis

using the network measures. The only eigenvalue that was greater than 1 was that of the �rst component.

Under the assumption of multivariate normality, all coe¢ cients in the table are signi�cant at 1%. However, we

note that the null hypothesis that the network measures follow a multivariate normal distribution is rejected

at 1%. The �rst principal components, which yield 78% and 79% explained sample variance respectively,

are used to create the vulnerability and weighted vulnerability indices.
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Table 9: Credit ratings history and vulnerability and weighted vulnerability indices

Agencies Credit rating Outlook Dates R.S. R.S., out Vulnerability index Weighted Vuln. Index

Fitch BBB stable 16.01.2012 16.00 16.00 41:6864 41:4458

S&P BBB negative 20.03.2014 16.00 15.50 44:9985 43:7273

Fitch BBB negative 21.03.2014 16.00 15.50 43:2866 41:8201

Moody�s Baa1 neg. watch 28.03.2014 17.00 16.25 52:3645 51:6415

S&P BBB- negative 25.04.2014 15.00 14.50 40:9283 41:1452

Moody�s Baa1 negative 27.06.2014 17.00 16.50 48:4352 48:2168

Moody�s Baa2 negative 17.10.2014 16.00 15.50 70:0115 70:1437

S&P BBB- neg. watch 23.12.2014 15.00 14.25 95:0310 94:3106

Fitch BBB- negative 09.01.2015 15.00 14.50 93:0601 92:2926

Moody�s Baa3 neg. watch 16.01.2015 15.00 14.25 94:7709 94:8840

S&P BB+ negative 26.01.2015 14.00 13.50 85:1122 85:3533

Moody�s Ba1 negative 20.02.2015 14.00 13.50 83:3296 84:4610

Moody�s Ba1 stable 03.12.2015 14.00 14.00 66:5019 66:2527

The table shows the credit ratings history for the Russian economy issued on various dates by Fitch, Standard

and Poor�s and Moody�s credit ratings institutions. All possible ratings are put to a numbered scale from

0 to 24 to create the R.S: rating scale variable. For a "negative" outlook a 0.5 point is taken away from

the rating scale. For a "watch" a 0.25 point is taken away from the rating scale. Hence a "negative watch"

implies a 0.75-point reduction. This way we created the R.S. out variable. Vulnerability and weighted

vulnerability indices are calculated from a principal components analysis of the network measures, see Table

9. Correlation between R.S. out and the vulnerability index is -0.695 and with the weighted vulnerability

index is -0.703, both statistically signi�cant at 1%.
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Table 10: Correlations between ACRA Financial Stress Index and Russian Volatility Index

RTSVX using di¤erent measures of network connectedness

Correlations of . with . ACRA FSI RTSVX

Average of Bonacich centralities 0:3369 0:2726

Weighted average of Bonacich centralities 0:4507 0:3820

Number of edges 0:7802 0:5145

Number of negative edges 0:7844 0:5036

Sum of positive weights 0:7951 0:5552

Sum of absolute values of weights 0:8225 0:5684

Absolute values of eigenvalues 0:6764 0:5060

Average path length �0:6570 �0:3907
Diameter �0:3868 �0:2093
Vulnerability index 0:7639 0:5125

Weighted vulnerability index 0:7685 0:5199

The table shows correlations between the ACRA and RTSV indices and the network measures as well as the

vulnerability indices. A vulnerability index is calculated as the �rst principal component of all the network

variables listed in this table. Afterwards this principal component is rescaled to [0,100]. Weights are the

market capitalizations of the stocks. Missing values for the Russian Volatility Index RTSVX are linearly

interpolated. All correlations in this table are signi�cant at 1%.
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KOKKUVÕTE 

Aktsiate kaardistamine MICEX’il: kes on Moskva aktsiaturu keskmes? 

Käesolevas uurimuses teeme kindlaks enim omavahel seotud firmad Venemaa aktsiate turul perioodil 
01.12.2011 kuni 29.01.2016 kasutades nii staatilisi kui dünaamilisi mudeleid. Esmalt toetume VAR 
mudelile ning Kalmani filtrile, et elimineerida mittevaadeldav ühine faktor. Seejärel arvutame 
osakorrelatsioonid tingimuslikest korrelatsioonihinnangutest, mis on omakorda leitud Bollerslevi (1990) 
konstantse tingimusliku korrelatsiooni GARCH mudelist (cCC-GARCH) ning Aielli (2008) mõjusa 
dünaamilise tingimusliku korrelatsiooni GARCH mudelist (cDCC-GARCH). Arvestades, et leitud 
osakorrelatsioone kasutame hiljem Gaussi graafilises mudelis (GGM), on cCC-GARCH mudeli abil 
võimalik hinnata, kuidas on ettevõtted omavahel seotud vaatlusaluse perioodi jooksul, ning cDCC-
GARCH aitab leida ühendusi mingil konkreetsel ajahetkel. Töös analüüsime ka mõningate 
võrgustikuteooria põhinäitajate (servade arv graafikul, nende kaalude summa ning keskmine 
marsruudipikkus) dünaamikat. Lisaks arvutame süsteemi haavatavuse kahte liiki indeksid läbi 
peakomponentide analüüsi, mis kaasab võrgustikku iseloomustavad põhinäitajad. Üks neist kasutab 
Bonacich´i tsentraalsuste keskmist ning teine Bonacich´i tsentraalsuste kaalutud keskmist. Kaaludena 
võtame aluseks igapäevase turukapitalisatsiooninäitaja. Saadud indeksite suurusjärk annab mõõte kogu 
majanduse üldisele süsteemsele riskile, kuna see näitab, kui tundlik on süsteem üldistele negatiivsetele 
šokkidele. Selleks, et luua seoste võrgustikku, kasutame Gaussi graafilist mudelit. Nimetatud meetod 
võimaldab hõlmata lineaarset kahesuunalist sõltuvust kahe muutuja vahel, mida mõõdab 
osakorrelatsioon süsteemis. Kahe firma vaheline lineaarne sõltuvus näitab, kuivõrd need firmad lliguvad 
samas suunas turutingimuste ning välitegurite muutudes.  

 

Analüüsi tulemused näitavad, et enim seotud ettevõtted on eranaftafirma Lukoil ning suurimad 
riigiettevõtted Gazprom ja Sberbank. Need firmad on ka turul suurimad süsteemse riski panustajad, 
erandina Sberbank, kelle asemel on NLMK Grupp. Kõik vaatluse all olevad võrgustiku põhinäitajad 
peegeldavad edukalt 2014-2015.a aset leidnud majandussurutist ning ebastabiilsust Venemaa 
majanduses. Ilmneb, et artiklis vaatluse all olevad haavatavuse indeksid peegeldavad samasuunalisi 
liikumisi ning on tugevalt korreleerunud valitsuse võla krediidireitinguga, mis on noteeritud 
Standard&Poor´s, Moody ja Fitch poolt, ning ka Venemaa volatiilsusindeksiga RTSVX ja 
finantsstressiindeksiga ACRA FSI.  


