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ABSTRACT

Peak load demand forecasting is a key exercise undertaken to avoid system failure and power blackouts. In this paper, the next day’s peak load demand 
is forecasted. The challenge is to estimate a model that is capable of preventing underprediction of the peak load demand: In other words, a model 
that is competent in forecasting the upper bound of the peak demand to avoid the risk of power blackouts. First, quantile regression is performed to 
generate forecasts of the daily peak load demand. Then, peak demand forecasts are locally approximated by triangular distribution to generate the 
upper bound of the peak demand. The forecasted upper bounds are compared with the actual electricity demand. The proposed method succeeds in 
avoiding underprediction of the peak load demand and thus the risk of power blackouts.
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1. INTRODUCTION

The peak demand is the highest load observed during a (short) unit 
of time. Forecasting the peak load demand is a fundamental task 
for ensuring the availability of sufficient supply. Peak load demand 
forecasts are critical, since electricity is non-storable; that is, at 
any instant in time, the amount of electricity drawn from the grid 
(demanded) and the amount generated (supplied) should balance. 
Daily peak load forecasts are extremely important in managing 
electricity generation and in planning purchases and sales of 
electricity across utilities (Engle et al., 1992). Moreover, daily 
peak load forecasts are an important tool for dispatching centers 
of a power system to schedule maintenance and for adequacy 
assessment (Amjady, 2001).

From an operational point of view, the key question is whether there 
will be any problems in meeting peak demand, as failure to meet 
peak demand can result in power blackouts. The consequences 
of underpredicting the peak demand go beyond the additional 

costs incurred by having insufficient capacity to the potentially 
serious problems of meeting load demand and blackouts. Power 
blackouts is a critical threat, disturbing the smooth running of the 
economy and weakening business reliability by restricting business 
operations in all sectors. To avoid power blackouts, a model that is 
capable of avoiding the underprediction of the peak load demand, 
that is, competent in forecasting the upper bound of the peak load 
demand, is required.

In this paper quantile regression is utilized to construct estimates 
of the daily peak load demand. Then, the 1.00 quantile (which 
represents the upper bound of the peak load demand) is forecasted 
by assuming triangular distribution of the upper tail of the error 
term. The proposed method is evaluated based on its ability to 
avoid underprediction.

The coming section discusses the methods that are used in the 
electricity forecasting literature. Section 3 explains the method 
proposed and utilized in this study. Section 4, evaluates the 
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forecasting performances of the proposed method, using data 
from Tokyo Electric Power Company Holdings, Inc. (TEPCO). 
Section 5, compares and discusses the implications of the results 
and provides concluding remarks.

2. LITERATURE REVIEW

Over time, different forecasting techniques have been developed 
to model electricity loads, such as multiple linear regression, the 
Box–Jenkins approach, and Artificial Neutral Networks (ANN). 
Most of the previous studies focus on point forecasting Dash et al. 
(1995); Sadownik and Barbosa (1999);  Amjady (2001); Soares 
and Medeiros (2008); Ohtsuka et al. (2010)). An overview of 
common methods used in the literature is provided by Weron 
(2006), and Taylor and McSharry (2007). In addition, Hong 
(2010) provides a comprehensive review of the load demand 
modeling and forecasting literature.

Previous studies on peak load demand forecasting mostly focus on 
forecasting the expected value of the peak load demand (Amjady, 
2001; Engle et al., 1992; Ismail et al., 2009; Rallapalli and Ghosh, 
2012). However, none of them - to our knowledge - attempt to 
forecast the upper bound of the peak load demand. In addition, 
none of them evaluate their proposed models based on their ability 
to avoid underpredicting the peak load demand.

Quantile regression has not received much attention from the 
load forecasting community over the past 30 years (Hong 
and Fan, 2016). In addition, it has rarely been applied in the 
area of probabilistic energy forecasting (Juban et al., 2016)1 
From the few studies that applied quantile regression in load 
forecasting, Gibbons and Faruqui (2014), they develop optimal 
forecast quantile regression method (OFQR) to forecast 
annual peak load demand. OFQR establishes a loss function 
framework that uses only annual peak days to estimate the 
optimal quantile for the model, whereas all days are used to 
estimate the coefficients of the regression itself. Hong et al. 
(2014) propose a methodology for computing interval forecasts 
of electricity demand by applying a quantile regression 
averaging technique (QRA) to a set of independent expert 
point forecasts. QRA is a forecast combination approach used 
to compute prediction intervals. It involves applying quantile 
regression to the point forecasts of a small number of individual 
forecasting models or experts. It assigns weights to individual 
forecasting methods and combines them to yield forecasts of 
chosen quantiles. Liu et al. (2015) generate probabilistic load 
forecasts by performing QRA on a set of sister point forecasts. 
Sister forecasts are predictions generated from the same family 
of models.

In the current study, quantile regression is employed to construct 
forecasts of the daily peak demand; then, daily peak demand 
forecasts are approximated by triangular distribution to generate 
the upper bound of the daily peak demand.

1 Probabilistic load forecasting provides additional information on the 
variability and uncertainty of future load values and can be in the form of 
quantiles, intervals, or density functions (Hong and Fan, 2016).

3. METHOD AND MODELS

Koenker and Bassett (1978) introduce quantile regression model 
(hereafter QRM) that models conditional quantiles as functions 
of predictors. Linear regression model specifies the change in 
the conditional mean of the dependent variable associated with a 
change in the covariates, whereas the QRM specifies changes in 
the conditional quantile of the dependent variable associated with 
a change in the covariates (Hao and Naiman, 2007).

One of the main advantages of quantile regression is that the 
shape of the distribution does not have to be specified and that 
any information about these distributions can easily be included in 
the models (Bremnes, 2004). In other words, quantile regression 
relaxes linear regression assumptions, and thus it produces flexible, 
nonsensitive estimates properties that are not found in the linear 
regression models.

Although it is possible to generate equivalent forecasts of a specific 
quantile point (which is generated using quantile regression) by 
constructing linear regression prediction intervals, constructing 
forecasts using quantile regression is computationally simpler than 
constructing linear regression prediction intervals. This is because 
quantile regression is simply a point prediction made using the 
estimated coefficients and the values of the explanatory variables, 
without the need for calculating standard errors of the prediction.

Following Koenker and Bassett (1978), the QRM can be expressed 
as:

(P) (p) (p)
i i0 1 iy x= β +β + ε ,

Where p is the estimated pth quantile, and 0 < p < 1 indicates the 
proportion of the population having scores below the quantile 
p. The QRM minimizes a sum that gives asymmetric penalties, 

ˆ(1 ) | |i ip y y− −  for overprediction and ˆ| |i ip y y−  for under 
prediction. The pth quantile regression estimates (p)

0β  and (p)
1β  
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Where dp is the average weighted distance between yi and ˆiy  
As a result, for example if p = 0.95, there is a higher penalty for 
underprediction (0.95|yi − ˆiy |), and a much lower penalty (0.05|yi 
− ˆiy |) for overprediction. Therefore, the QRM will minimize the 
positive residuals that are caused by underprediction; accordingly 
- if applied to peak load demand data - it will minimize the 
possibility of power blackouts that results from underpredicting 
the peak load demand.

The QRM can estimate 0.99 or higher quantiles when the sample 
size is relatively large. However, this method cannot estimate the 
1.00 quantile because of the property of its objective function (see 
Equation 1). In this study the 1.00 quantile point is assumed to be 
an estimate of the upper bound of the electricity peak demand.
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This study introduces the assumption that the distribution of the 
upper tail of the error term can be approximated by triangular 
distribution.2 As Figure 1 indicates, the 1.00 quantile can be 
estimated from a pair of two quantile points by applying area of 
triangle rule (for example from 0.99 to 0.98 quantile points or 
0.99 and 0.97 quantile points). In the remainder of the paper, the 
estimated quantile P is referred to by ( )Py .

Since it is possible to model any predetermined position of the 
distribution, any pair of quantile points can be used to generate the 
1.00 quantile point. However, quantile points that are consistent 
with the needs and aims of this study are chosen. Those are: 0.99, 
0.98, 0.97, 0.95 and 0.90 quantile points3. For example, using the 
deviation between the 0.99 and 0.98 quantile points and assuming 
the triangular distribution, we can calculate the 1.00 quantile point 
as follows:

( )  ( )  ( )41.00 (0.99) (0.99) (0.98)
99&98y y 1 2 * y y= + + −

.4

This relation is easy to obtain by applying the rule for determining 
the area of the right triangle. When we utilize the deviation 
between the 0.99 and 0.97 quantile points, the 1.00 quantile point 
is given by:

  ( )
 ( )(0.99) (0.97)

(1.00) (0.99)
99&97

y y
y y 1 3 * .2

−
= + +

and when the deviation between the 0.99 and 0.95 quantile points 
is used, the 1.00 quantile point is given by:

  ( )
 ( )(0.99) (0.95)

(1.00) (0.99)
99&95

y y
y y 1 5 * 4.

−
= + +

From the deviation between the 0.95 and the 0.90 quantile points, 
the 1.00 quantile point is given by:

  ( )  ( )(1.00) (95) (0.95) (0.90)
95&95y y 1 2 * y y .= + + −

We consider that the 1.00 quantile point is an estimate of the upper 
limit of the electricity peak demand.

4. EMPIRICAL COMPARISON

To check the performance of the proposed method, it is applied 
to actual electricity demand data. Realized electricity supply 

2 There might be several candidates to approximate the upper tail distribution 
that has upper limit, e.g., uniform or Beta distribution. In this paper, we 
adopt triangular distribution because we can calculate the upper limit (1.00 
quantile point) easily and its density is gradually decreases to zero.

3 The aim of this study is to generate a method that prevents the 
underprediction of peak load demand, thus quantile points that give a high 
penalty for underprediction are chosen.

4 Details in calculation are described in Appendix.

data at every hour from January 1, 2008 to December 31, 2015 
is obtained from TEPCO website5. The highest electricity supply 
10,000 kilowatts between 0:00 and 23:00 h is utilized as the daily 
peak demand. The reason why we use only the data from January 
1, 2012 is used in the analysis is as follows: On March 11, 2011, 
because of the East Japan Great Earthquake and Tsunami, some 
nuclear power plants (including the Fukushima first and second 
power plants) were shutdown. In addition, to save electricity, 
planned blackouts took place in some areas. Moreover, TEPCO 
requested its customers to conserve their electricity consumption. 
The earthquake and its consequences affected the electricity 
demand pattern and magnitude. Thus it is claimed that the period 
which is affected by the Fukushima disaster is not suitable for 
constructing a forecasting model; therefore only data set from 
January 1, 2012 is utilized.

Models are estimated using daily peak demand data from 2012 
through 2014, and evaluated the performances of 1.00 quantile 
points for the in-sample period (2012–2014) and an out-of-sample 
period (2015).

Figure 2 plots the daily peak demand from 2012 to 2015. It shows 
strong seasonal fluctuations, with daily peak demand being higher 
in summer than in winter. The highest yearly peak is observed 
during August, whereas the lowest peak appears during May. In 
addition, weekends show a lower peak demand than weekdays.

As an explanatory variable, we adopt the previous day’s maximum 
and minimum temperatures (TempMax and TempMin) and their 
squared variable (TempMaxSQ and TempMinSQ) at Tokyo 
because the peak load demand increases when the temperature 
is low or high6. Of course, TEPCO supplies the electricity across 
the Kanto area, which includes Tokyo metropolitan area. It is 
hard to calculate the average temperature over Kanto area, so we 
adopt the temperatures at Tokyo as a representative temperatures. 
National holidays have a load pattern that differs from working 
days. In Japan, some of the public holidays’ dates change every 

5 Tokyo Electric Power Company, load demand data. Retrieved on June 10, 
2015 from http://www.tepco.co.jp/forecast/html/download-j.html.

6 Daily maximum and minimum temperatures in Tokyo from Japan 
Meteorological Agency. Retrieved on June 10, 2015 from http://www.data.
jma.go.jp/gmd/risk/obsdl/index.php.

Figure 1: Quantile points and approximation with triangular 
distribution

http://www.tepco.co.jp/forecast/html/download-j.html
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year, based on the Happy Monday System, which refers to a set 
of modifications to Japanese laws in 1998 and 2001 to move a 
number of public holidays to Mondays, creating 3-day weekends 
for those with 5-day work weeks. Table 1 presents the national 
holidays of Japan.

In this section, models are estimated using daily peak electricity 
demand from January 1, 2012 to December 31, 2014 (the in-sample 
period). Static forecasts are constructed by substituting realized values 
of the previous period’s peak demand into the explanatory variable 
in the estimated regression, and are then generated for the period 
January 1, 2015 to December 31, 2015 (the out-of-sample period).

In regard to the dependent variable, logarithms of the series are 
modeled in order to reduce the effect of heteroskedasticity that may 
be present because of the characteristics of the data set. First, daily 
peak demand is expressed as a function of the previous day’s peak 
demand (Log (Peakt–1)), and sets of fixed effects for weekends are 
estimated using the linear regression model utilizing ordinary least 
squares (OLS). Secondly, we add the previous day’s maximum 
and minimum temperatures (TempMax and TempMin) and their 
squared variable (TempMaxSQ and TempMinSQ) because the 
peak load demand increases when the temperature is low or 
high. Thirdly, we add some dummy variables to account for the 
month-of-year effect: Dummy variables for the day of the week 
for Saturday (Sat), Sunday (Sun), Monday (Mon) and dummy 
variables related with Happy Mondays (HMonday) and Tuesdays 
after Happy Mondays (HTuesday), and national holiday dummy 
variables (Holiday). The following models are estimated by OLS.

In Table 2, the OLS estimation results are reported. In Model 1, the 
estimated coefficient for HMonday is not statistically significant, 
so we remove it from the equation (Model 2). In the results for the 
0.99 quantile of the QRM in Table 2, the estimated coefficients 
for HMonday, TempMin and TempMinSQ and Holiday are not 
statistically significant. Then we remove these variables from the 
equation step by step (Model 3, Model 4 and Model 5) and select 
Model 5 as the forecasting model. Therefore, in the rest of the 
paper, we estimate the following model using the QRM:

Log(Peakt)=β0+β1log(Peakt-1)+β2TempMax+β3TempMaxSQ+β6S 
at+β7Sun+β8Mon+β10HTuesday. 

In Table 3, the estimation results for the 0.98, 0.97, 0.95, and 0.90 
quantile models are reported. Before proceeding to the evaluation 
of the proposed method, we need to check the performance of 

the simple forecasting by the QRM. In Table 4, we count the 
underestimated cases, in which the each quantile points fail to 
estimate the upper bound and calculate their percentages.

Because the forecasts by the QRM are simply quantile points 
below one, underestimated cases occurred around the quantiles 
rates. In other words, we cannot avoid shutdowns owing to 
shortages in meeting demand. To avoid shutdowns, we must 
construct the 1.00 quantile point.

In Table 5, we report the numbers and percentages for the 
underestimated cases for construction of the 1.00 quantile point, 
approximated by triangular distribution for the in-sample and 
out-of-sample periods.

Except for the forecasting for the year 2014 and the 1.00 
quantiles constructed from the 0.95 to 0.90 pairs, underestimated 
cases are <0.1% for the in-sample period and are zero for the 
out-of-sample period in all approximations. From these results, 
we conclude that we have successfully estimated the upper 
limits of the daily peak demand. However, if this method is 
applied for actual peak demand forecasting, we should check 
the efficiencies of the proposed method. In Table 6, we calculate 
the average rates of overestimation for the in-sample and out-
of-sample periods.

As for the overestimation rates of the forecasting, the 1.00 
quantiles constructed from the 0.95 to 0.90 pairs result in a 
15.40% overestimation compared with the actual demand, but 
their performance in terms of underestimation cases is relatively 
poor. (Table 6) The 1.00 quantiles constructed from the 0.99 to 
0.98, 0.99 and 0.97, and 0.99 and 0.95 pairs perform similarly, 
but the 1.00 quantile estimated from the 0.99 to 0.97 pair results 
in an overestimate of 16.94% compared with the actual demand, 
and its rate is smallest compared to other pairs. At this stage, we 
can conclude that constructing the 1.00 quantile from the 0.99 to 
0.97 quantiles is sufficient to estimate the upper limit for the daily 
peak demand. Of course, this 16.94% overestimation should be 
considered from other points of view, including its economic and 
financial consequences. In addition, we should consider another 
candidate for the independent variables to improve the forecasting 
models. Furthermore, performances of the 1.00 quantiles from 
the 0.99 to 0.98 quantiles and from the 0.99 to 0.95 are similar to 
those from the 0.99 to 0.97 quantiles, so we should compare their 
performances in other empirical examples.

Figure 2: Daily peak demand from 2012 to 2015 (in 10,000 kilowatts) Table 1: Japan’s national holidays
Holiday dates
January 1 Third Monday of July
Second Monday of January August 111)

February 11 Third Monday of September
March 20 or 21 September 22 or 23
April 29 Second Monday of October
May 3 November 3
May 4 November 23
May 5 December 23
1) This holiday commenced in 2016
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5. CONCLUSION

Assuming that, in practice, the most crucial issue is to prevent 
system failure and to eliminate power blackouts, this article aimed 
to generate a model that is capable of precluding underprediction. 
1.00 quantiles constructed by the quantiles estimated by the QRM 
were compared with the actual demand to investigate the proposed 
method based on its ability to avoid power blackouts (i.e., to avoid 
underprediction of demand). From the empirical comparison, we 
can conclude that we successfully constructed the upper limits of 
the daily peak demand. From the performance in relation to the 
overestimation rates, at this stage, we can state that constructing 
the 1.00 quantile from the 0.99 to 0.97 quantiles is sufficient to 
estimate the upper limit for the daily peak demand.

Three problems remain to be solved: First, whether the proposed 
method is useful from an economic or financial perspective; 
second, which combination of estimated quantiles is best to 
construct the 1.00 quantile third whether we should consider 
further candidates for the independent variables to improve the 
forecasting models. To solve these problems, we need to compare 
their performances with other empirical data.

Appendix: Calculation of 100% quantile.
From Figure 1, we set a and b as follows:



(0.99) (0.98)y ya = −  and  (1.00) (0.99)y yb = − .

Formula for triangular area is:

( )1Area base*  height .
2

=

and tan θ and height are defined as:

tan θ=height/base  and height=tan θ * base.

Then we can rewrite the formula to:

Table 4: Underestimated forecasts with 0.95, 0.97, 0.98, 
and 0.99 quantile regressions
Quantiles In-sample Out-of-sample

# % # %
0.99 15 1.370 2 0.547
0.98 18 1.644 6 1.644
0.97 28 2.557 9 2.466
0.95 52 4.749 24 6.575
In each year, data from April 1 to March 31 are used for estimation or forecasting. The 
total number of observations for the in-sample period is 1,095

Table 2: Estimation results for the model selection
OLS Quantile regression (0.99 quantile)

Model 1 Model 2 Model 3 Model 4 Model 5
Coefficients t-value Coefficients t-value Co4efficients t-value Coefficients t-value Coefficients t-value

Constant 0.930077 4.02 0.9424558 4.08 1.973814 2.21 1.44588 2.10 1.480988 2.04
Log (Peakt−1) 0.8842679 33.33 0.882844 33.33 0.7938743 7.75 0.84723 10.87 0.8500994 10.19
TempMax 0.0064862 3.17 0.0064085 3.13 −0.0159091 −1.13 −0.0151612 −2.40 −0.01497 −2.25
TempMaxSQ −0.0001544 −3.15 −0.0001592 −3.12 0.0004106 1.51 0.0003685 2.42 0.0003658 2.31
TempMin −0.0069036 −4.77 −0.0068996 −4.76 −0.0040892 −0.39 - - - -
TempMinSQ 0.000245 −4.72 0.000245 −4.72 0.000109 0.42 - - - -
Sat −0.0750605 −17.96 −0.0749538 −17.94 −0.0617837 −2.57 −0.0603984 −3.37 −0.0605366 −3.14
Sun −0.0384332 −7.96 −0.038709 −8.03 −0.0692341 −3.13 –0.0512656 −2.75 −0.0503069 −2.49
Mon 0.0977679 18.01 0.0963706 18.45 0.093484 4.27 0.1043942 5.49 0.1038784 7.25
HMonday −0.0133816 −0.94 - –
HTuesday 0.057075 5.91 0.057092 5.91 0.04420907 1.73 0.0493612 2.16 0.0489285 2.10
Holiday −0.0310015 −2.98 −0.0378654 −5.08 −0.0158107 −0.49 −0.0066421 −0.18 - -
R2 0.8708 0.8708 0.5098 0.5094 0.5087
S.E. of 
regression

0.04641 0.0464 - - -

The R2 for the OLS is the adjusted R2, whereas for the quantile regressions, it is a pseudo R2. OLS: Ordinary least squares

Table 3: Results of other quantile regressions
0.98 quantile 0.97 quantile 0.95 quantile 0.90 quantile

Coefficients t-value Coefficients t-value Coefficients t-value Coefficients t-value
Constant 1.316022 2.54 1.606325 2.83 1.150462 1.77 0.849201 1.65
Log (Peakt−1) 0.865027 14.47 0.830166 12.85 0.882712 12.03 0.912254 16.71
TempMax −0.01231 −2.53 −0.01272 −2.30 −0.01196 −2.06 −0.00831 −1.47
TempMaxSQ 0.000312 2.69 0.0003 2.29 0.000277 2.01 0.000199 1.51
Sat −0.05658 −2.69 −0.06199 −3.65 −0.05824 −3.76 −0.06801 −7.01
Sun −0.05271 −3.38 −0.04971 −4.14 −0.04034 −3.57 −0.03796 −4.22
Mon 0.114612 5.49 0.119097 5.70 0.104304 6.59 0.10494 8.79
HTuesday 0.059603 2.29 0.076297 2.81 0.07442 2.42 0.060164 2.18
R2 0.5353 0.5553 0.5851 0.6257
In each year, data from April 1 to March 31 are used for estimations or forecasting. The R2 for the quantile regressions is a pseudo R2
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Area =
1

2

2
* tanbase θ

.

Figure 1 means:

1

2

2
*b tan =1%θ  and 21 *( )  tan   

2
2%,a b + =

Then the following equality is obtained:
2

2( )  tan tan ,
2

+
=

a b b


and remove tan θ from both sides:

2 21 ( )
2

a b b=+
.

Solution of quadratic function is given as:

2 22 4 4b ,
2

a a a± +
=

We should take positive solution, so

b (1 2)a= +

Then we can calculate 1.00 quantile point as

( )  ( )  ( )1.00 (0.99) (0.99) (0.98)
99&98y y 1 2 * y y .= + + −
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Table 5: Underestimation by forecasting with triangular approximation
Year In or out of sample 0.99 and 0.98 0.99 and 0.97 0.99 and 0.95 0.95 and 0.90

# % # % # % # %
2012 In-sample 0 0.00 0 0.00 0 0.00 0 0.00
2013 In-sample 1 0.09 0 0.00 0 0.00 5 1.37
2014 In-sample 3 0.82 2 0.54 1 0.09 5 1.37
From 2013 to 2014 4 0.36 2 0.18 1 0.09 10 0.91
2015 Out-of-sample 0 0.00 0 0.00 0 0.00 1 0.27
#and % indicate the number and percentage of underestimations, respectively. Bold faced numbers are best performed in each year forecasts

Table 6: Ratios of overestimation to actual electricity demand
Year In or out of sample 0.99 and 0.98% 0.99 and 0.97% 0.99 and 0.95% 0.95 and 0.90%
2012 In-sample 15.72 16.15 16.27 14.08
2013 In-sample 15.78 16.23 16.52 14.15
2014 In-sample 16.21 16.37 16.86 14.54
From 2013 to 2014 18.41 15.90 16.25 16.55
2015 Out-of-sample 17.09 16.94 17.76 15.40
The symbol % indicates the percentage of overestimations compared with actual electricity demand


