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Foreword

The Asia and Pacific region has experienced exceptional economic growth 
over the past two decades, accompanied by a dramatic reduction in extreme 
poverty. However, more moderate forms of poverty remain widespread, 
especially in rural areas and among households that rely on agriculture. 
Given the strong link between agricultural development and poverty 
alleviation, it is crucial that policies for the agriculture sector be evidence-
based, timely, and reliable. However, most countries in the region continue to 
depend on traditional methods for collecting agricultural statistics that are 
susceptible to significant measurement errors due to the subjective nature of 
data collection. Remote sensing technology offers more objective methods 
to enhance availability and quality of agricultural statistics.

In 2010, the United Nations Statistical Commission initiated the 
Global Strategy to Improve Agricultural and Rural Statistics to enhance 
and ensure the sustainability of agricultural and rural statistics. The Asian 
Development Bank (ADB) joined the initiative as an implementing partner 
to develop technical assistance projects that pilot technological innovations 
to enhance the quality, quantity, and timeliness of agricultural statistics. 

This report is a special supplement to the Key Indicators for Asia 
and the Pacific 2018. It presents a summary of the methodological research 
activities undertaken by ADB in collaboration with the national statistics 
offices and ministries of agriculture of three countries: the Lao People’s 
Democratic Republic, Thailand, and Viet Nam. Specifically, the report 
explores the usefulness of remote sensing for land area measurement, yield 
estimation, and the development of a sampling frame. It also sheds light on 
other innovations such as drones, computer-assisted personal interviewing, 
and artificial intelligence, all of which are expected to revolutionize field data 
collection methods, improve the quantity and quality of agricultural data, 
and bolster evidence-based policymaking for agricultural development. 

This report was produced by ADB’s Development Economics 
and Indicators Division, under the overall guidance of Rana Hasan. The 
publication was prepared by Lakshman Nagraj Rao and Jude David Roque, 
with technical support from Anna Christine Durante, Pamela Lapitan, and 
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Dave Pipon. Rea Jean Tabaco and Lea Rotairo provided excellent research 
assistance. Kaushal Joshi reviewed the manuscript and provided valuable 
feedback. Copy editing was performed by Paul Dent, while the publication’s 
cover design, layout, page design, and typesetting was carried out by 
Rhommell Rico. We are extremely grateful to the participating national 
statistics offices and ministries of agriculture for their active involvement 
in every stage of the project. Their contribution in terms of data collection, 
cleaning, and processing, alongside expert inputs, local knowledge, and 
practical advice was vital for the successful completion of the project.  

We hope that this publication will be instrumental in promoting 
the role of technology in producing high-quality, timely, and cost-effective 
agricultural statistics to support policymaking for the agriculture sector.

Yasuyuki Sawada
Chief Economist and Director General

Economic Research and Regional Cooperation Department
Asian Development Bank

Foreword
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Highlights

•	 The importance of agricultural development in achieving poverty 
reduction is undisputed. Accordingly, agriculture has been given special 
attention in the Sustainable Development Goals, with Target 2.3 aiming 
to double the agricultural productivity and incomes of small-scale food 
producers. 

•	 Despite this, limited efforts have been made to improve the accuracy 
and timeliness of agricultural statistics. Most countries across Asia 
and the Pacific still rely on administrative reporting systems or sample 
surveys as data collection methods, which may be prone to significant 
measurement errors. 

•	 Recognizing this challenge, the Asian Development Bank (ADB) 
joined the Global Strategy to Improve Agricultural and Rural 
Statistics (GSARS) as an implementing partner. The ADB supported 
this initiative by developing technical assistance projects that piloted 
innovative technologies to improve the availability and quality of 
agricultural statistics. 

•	 Specifically, the ADB piloted the use of remote sensing technology 
as an alternative to existing methods for generating key paddy 
rice statistics. These methods were explored in collaboration with the 
national statistics offices and ministries of agriculture of three countries: 
the Lao People’s Democratic Republic, Thailand, and Viet Nam. In each 
country, one province was selected for testing these new methods.

•	 As a first step, a systematic comparison of existing objective and 
subjective methods to estimate plot area, rice production, and yield 
was conducted. Farmer self-reports, the predominant way of collecting 
information on plot area and production in the countries, was compared 
with area measurements using global positioning system (GPS) technology 
and production estimates obtained from crop-cutting derived yields and 
GPS-based area estimates. Similarly, paddy rice yield estimated from 
farmer self-reports was compared to crop-cutting derived yield estimates. 
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•	 Significant differences in paddy rice statistics were observed between 
objective and subjective data collection methods. The differences were 
found to be nonlinear across the land size distribution and nonuniform 
in the direction of reporting bias. This confirmed that existing subjective 
methods implemented by the countries may not be sufficient to generate 
accurate paddy rice statistics. 

•	 ADB conducted three methodological studies to explore the viability 
of using satellite data as an alternative to traditional methods for 
estimating paddy rice statistics. More specifically, these studies 
explored the use of remote sensing for land area measurement, rice yield 
estimation, and the development of a sampling frame. The objective was 
to compare the precision and costs associated between the two methods 
to assess the viability of remote sensing.

•	 In the first study, plot boundaries were traced on high-resolution 
Google Earth images to estimate area, which was compared with GPS 
derived plot area estimates. Results show that the plot areas derived 
from Google Earth images are statistically similar to plot area estimates 
from GPS, and are achievable at 38% lower per-unit costs. The lower 
costs are achieved because enumerators do not have to walk around the 
perimeter of the plot, but instead accomplish the task through tracing 
the plot boundaries using high-resolution Google Earth images and 
subsequent digitization using geographic information system (GIS) tools. 

•	 The second study employed a novel data fusion technique in Thai 
Binh province, Viet Nam, to generate a spatially disaggregated rice 
yield map. Data fusion is a technique by which two satellite images 
with different spatial and temporal resolutions can be combined to 
produce a fused product with improved overall resolution. This approach 
significantly penetrated cloud cover and resulted in a strong relationship 
between satellite derived vegetation indices and crop-cutting derived 
yields. 

•	 The utility of land-use maps developed from satellite data while 
constructing a sampling frame was explored in the third study. 
Estimates for paddy rice areas from the resulting sampling frame were 
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compared to estimates from administrative data. Given that satellite-
based estimation methodology is transparent, eliminates under-coverage 
stemming from an outdated population-based frame, and allowed for 
the calculation of confidence intervals, they are likely to be more reliable 
when compared to official estimates.

•	 The results of the three methodological studies provide strong 
evidence in favor of satellite data as a viable alternative to existing 
methods to generate paddy rice statistics. Multilaterals like the ADB can 
leverage across different networks to optimally design technical assistance 
projects for countries interested in exploring and mainstreaming remote 
sensing technology for agricultural statistics.     

•	 Other technological innovations such as drones, computer-assisted 
personal interviewing (CAPI), and artificial intelligence hold much 
promise for the future of agricultural statistics. Drones have made it 
possible to gather information down to the crop level relatively quickly, 
which can further improve crop yield prediction. CAPI will boost 
administrative and survey data quality, availability and costs. Meanwhile, 
the more novel field of artificial intelligence can transform agricultural 
statistics through machine learning algorithms that can provide real-time 
data to facilitate more accurate forecasting. The ultimate vision is for 
these different technologies to work in tandem and foster better quality 
data in support of evidence-based policy making for agriculture. 
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Introduction

About one-third of the labor force in developing Asia relies on agriculture as its 
main source of livelihood, excluding high income countries where less than 5% 
are employed by the sector (ADB 2018). Research has shown that agricultural 
development is critical for reducing poverty in developing countries and that 
gains in agricultural productivity are central to macroeconomic theories of 
structural transformation (ADB 2013, Cervantes-Godoy and Dewbre 2010, 
Christiaensen et al. 2011, Klasen and Reimers 2016). The link between poverty 
reduction and agriculture has also been given a special emphasis in the 
Sustainable Development Goals (SDGs), with Target 2.3 specifically aiming to 
“double the agricultural productivity and incomes of small-scale food producers, 
in particular women, indigenous peoples, family farmers, pastoralists and fishers, 
including through secure and equal access to land, other productive resources 
and inputs, knowledge, financial services, markets and opportunities for value 
addition and non-farm employment.” 

Although small-scale food producers play an important role in shaping 
the agricultural sector with significant positive spillovers to other economic 
sectors, limited efforts have been made to collect accurate data on this group to 
facilitate evidence-based planning, management, and monitoring (Carletto et al. 
2015). The problem is partly systemic, wherein most government- and donor-
supported agricultural projects targeting large-scale agricultural investments 
do not devote adequate resources to ensure that the underlying data used to 
measure outcomes are timely, of high-quality, and reflect the reality on the 
ground. This is exacerbated by other factors such as lack of coordination across 
a variety of data producers, weak methodological processes, limited human and 
capital infrastructure, inadequate capacities to collect and analyze data from a 
policy perspective, and poor-quality metadata and dissemination tools.1 Such 
bottlenecks in agricultural data collection and analysis can hamper policymaking 
and consequently affect the lives of millions of small-scale farmers. 

To improve the quality and quantity of agricultural and rural statistics 
across the world, the Global Strategy to Improve Agricultural and Rural 
Statistics (GSARS) was endorsed by the United Nations Statistical Commission 

1	 FAO. 2010. GSARS. Washington, DC.

https://www.adb.org/publications/asian-development-outlook-2018-how-technology-affects-jobs
https://www.oecd-ilibrary.org/docserver/5kmmv9s20944-en.pdf?expires=1531892630&id=id&accname=guest&checksum=CFC2F0DF01AE8D8E20D77D7017C73B08
https://ideas.repec.org/a/eee/deveco/v96y2011i2p239-254.html
https://www.econstor.eu/bitstream/10419/130592/1/857486284.pdf
http://documents.worldbank.org/curated/en/313131468194048389/From-tragedy-to-renaissance-improving-agricultural-data-for-better-policies
http://documents.worldbank.org/curated/en/313131468194048389/From-tragedy-to-renaissance-improving-agricultural-data-for-better-policies
http://gsars.org/wp-content/uploads/2016/01/2010-3-FOC-Agriculture-E.pdf
http://gsars.org/wp-content/uploads/2016/01/2010-3-FOC-Agriculture-E.pdf
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in February 2010.2 One of the key focus areas of the global strategy is the use 
of technology to improve the timeliness and efficiency of collecting, processing, 
safeguarding, and disseminating agricultural data alongside lowering associated 
costs. This also feeds into closing the gap between Tier I and Tier II or Tier III 
indicators within Goal 2 of the SDGs.3 While national statistics offices (NSOs) 
in the region have made tremendous progress in compiling data relevant to the 
SDGs, they have not been at the forefront of harnessing the power of information 
and communication technology. Agricultural statistics in most developing 
countries continue to be compiled through relatively outdated and often costly 
means. Modern technology is underutilized, and big data methods are virtually 
untouched. 

To pilot innovative agricultural data collection methods in line with 
the global strategy, such as remote sensing technology and computer-assisted 
personal interviewing (CAPI), ADB implemented a technical assistance project 
between 2013 and 2017 through strategic partnerships with NSOs and ministries 
of agriculture (MoAs) in provinces of four of its developing member countries; 
Savannakhet in the Lao People’s Democratic Republic (Lao PDR), Nueva Ecija in 
the Philippines, Ang Thong in Thailand, and Thai Binh in Viet Nam.4 The project 
was sponsored by the Japan Fund for Poverty Reduction and implemented in 
partnership with the Japan Aerospace Exploration Agency. 

A significant component of the project dealt with understanding the 
nature of measurement errors that often arise while generating crop area, yield, 
and production using farmer self-reports or administrative data. By piloting new 
and cost-effective technologies to estimate these statistics for paddy rice, and 
comparing them to estimates derived from current best practices and existing 
in-country methods, the project was able to provide proof of concept for future 
scale-up of these novel methods. 

2	 The GSARS is based on three pillars: (i) the establishment of a minimum set of core data that 
countries will provide to meet the current and emerging demands; (ii) the integration of agriculture 
into their National Statistical Systems in order to meet the needs of data policymakers and other data 
users and to ensure data comparability across countries and over time; and (iii) helping countries to 
enhance the sustainability of the National Agricultural Statistical System through governance and 
statistical capacity building. 

3	 Tier 1 indicators of the SDGs are conceptually clear, have internationally established methodologies 
and standards, and are being regularly produced. Tier 2 indicators are conceptually clear, have 
internationally established methodologies and standards, but data are not regularly produced by 
countries. Tier 3 indicators are those with no internationally established methodology or standards.

4	 ADB. Innovative Data Collection methods for Agricultural and Rural Statistics. https://www.adb.
org/projects/46399-001/main.

https://www.adb.org/site/funds/funds/japan-fund-for-poverty-reduction
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This section summarizes the major findings and valuable lessons from the 
pilot activities conducted by ADB, in collaboration with national government 
agencies, in the Lao PDR, Thailand, and Viet Nam.5 

Existing Methods for Collecting Agricultural and Rural 
Statistics in Asia and the Pacific
In most countries across Asia and the Pacific, NSOs are responsible for the 
compilation of agricultural and rural statistics at the national level. The 
arrangements may vary across countries, with some countries such as the 
Philippines designating the task only to the NSO, while others such as Viet Nam 
dividing the responsibility between the NSO and the MoA. In most cases, data 
are collected through administrative reporting systems, household surveys, and 
censuses.

Administrative reporting systems

Administrative reporting systems involve collecting data at the lowest 
administrative levels (e.g., villages or municipalities), followed by a process of 
data aggregation and transmission up the numerous administrative levels, until 
national estimates are produced. The information at the lowest level is typically 
collected by agricultural personnel or heads of villages or municipalities, who 
observe harvests and interview key people in the localities, such as farmers and 
traders.

For example, in the Lao PDR, agricultural statistics are compiled from 
administrative reports collected by the technical departments of the Ministry 
of Agriculture and Forestry (MAF). Data at the lowest administrative level are 
gathered from a collective unit, which consists of 10 to 12 households in a village. 
These data are subsequently compiled by personnel at MAF district offices, 
then forwarded to MAF provincial offices. Different technical sections at MAF 
provincial offices review the data based on specific commodity types, then send 
summary reports to the relevant technical department of MAF headquarters 
in Vientiane. The Statistics Division at MAF compiles and disseminates data 
collected from each of the MAF technical departments in the form of publications 
(ADB 2016).

5	 Results from the Philippines are not presented in this report as not all field activities could be 
completed due to the occurrence of Typhoon Koppu.

https://www.adb.org/publications/results-methodological-studies-agricultural-and-rural-statistics.
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In India, data on irrigated areas are derived from administrative reports 
of state government departments, while other indicators are compiled by the 
Directorate of Economics and Statistics within the Ministry of Agriculture, 
based on village land records. Land-use statistics are also derived from village 
land records maintained by village accountants (known as Patwari’s), wherein 
information on land-use classifications are recorded and aggregated at 
successive administrative levels. The compilation of land-use statistics based on 
administrative records in India is done in addition to a nationwide land mapping 
conducted by the National Remote Sensing Agency.

The process of collecting data using an administrative reporting system 
is usually less expensive than conducting large-scale surveys or censuses. 
However, due to the subjective manner in which administrative data are 
collected and lacking in external validation procedures, information may be 
prone to significant measurement errors. Nevertheless, administrative data 
continues to be the main source of information for policymaking, so the GSARS 
has recommended the development of robust validation systems, coupled with 
the training of staff at all levels in government agencies, to improve the quality 
of such data.6 

Sample surveys

Many countries across Asia and the Pacific regularly conduct sample 
surveys to collect agricultural data. These surveys are either conducted on 
a standalone basis to gather information on specific commodity types (e.g., 
livestock surveys or crop production surveys) or are integrated into larger 
household surveys, with modules devoted to specific agricultural indicators (e.g., 
household consumption, agricultural labor force, and food demand or security). 
Surveys may be conducted on a monthly, quarterly, biannual, or annual basis, 
depending on the production cycle of the crop, the resources available to the 
agency tasked with collecting such data, and the field methods implemented.

6	 GSARS. 2017. Improving the Methodology for Using Administrative Data in an Agricultural Statistics 
System: Final Report. Technical Report No. 24. Global Strategy Technical Report: Rome. 

http://gsars.org/wp-content/uploads/2017/06/TR-07.06.2017-Improving-the-methodology-for-using-administrative-data-in-an-agricultural-statistics-system.pdf
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For example, monthly surveys conducted by the Philippines Statistics 
Authority include the Rice and Corn Stocks Survey, the Commercial and 
Municipal Fishery Survey, and the Farm Prices Survey. Meanwhile, quarterly 
surveys include production surveys on rice and corn, other crops, livestock, 
fisheries, and food consumption. The Philippines also conducts agricultural 
labor surveys biannually. Costs and returns surveys for specific commodities 
have also been conducted, albeit on an ad-hoc basis. In contrast, Bhutan and the 
Lao PDR have integrated agricultural modules into general household surveys, 
with questions on crop, livestock, and fishery production as well as landholding.7 

Since these surveys follow well-defined sampling strategies, they are 
likely to produce better quality estimates than administrative data. However, the 
possibility of under- or over-estimating results may persist. For instance, a farmer 
may be asked about the specific area cultivated for rice by the farming household 
but could instead respond with the household’s total landholding (including 
areas used for purposes other than rice cultivation), thereby overestimating 
results. On the other hand, underestimation of rice-cultivated areas may result 
if respondents leave out areas given to share-croppers, but which are still used 
for rice cultivation. Moreover, sample surveys are usually conducted at the end 
of a harvesting cycle, and there may be a lag of more than a year by the time 
the results are published. This is a critical shortcoming, particularly if decisions 
on imports are urgently needed to address food security issues related to an 
agroclimatic shock. 

Census of agriculture

National agricultural censuses are conducted with the objective of 
collecting data on various agriculture-related topics and cover the entire 
population of a country. An agricultural census typically serves as the basis for 
developing a sampling frame to implement agricultural surveys. Based on the 
recommendations of the FAO, as indicated in the World Programme for the 
Census of Agriculture 2020, countries should consider including the following 
in the supplementary census modules: demographic and social characteristics, 
landholding, irrigation and water management, crops, livestock, agricultural 

7	 Refers to the Bhutan Living Standards Survey and the Lao Expenditure and Consumption Survey, 
which are large-scale and multi-topic household surveys.
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practices, agricultural services, farm labor, household food security, aquaculture, 
forestry, and management of the holding. 8

Due to the intensive resources required to plan and implement them, 
agricultural censuses are usually conducted every 10 years in most countries. 
However, some countries conduct agricultural censuses every 5 years. India is 
one such country, conducting its first agricultural census in 1970–1971, with the 
latest round of data collection conducted in 2015–2016. Likewise, Viet Nam’s 
Rural, Agricultural and Fishery Census has been conducted every 5 years since 
2001. 

Data Collection Activities in Project Areas 

As mentioned earlier, three provinces, namely Savannakhet in the Lao PDR, Ang 
Thong in Thailand, and Thai Binh in Viet Nam, were selected after extensive 
consultations with the counterpart government agencies using the criteria 
of the existence of substantial extent of contiguous paddy rice area. The field 
activities conducted as part of this project focus on the rainy season of 2015 in 
each country. Crop-cutting surveys were implemented during the harvesting 
period associated with the rainy season of 2015, while the farmer recall survey 
was implemented two to three months after the harvesting was completed. 

Detailed questionnaires, manuals, and associated training materials 
were developed and adapted to the local context of each country. The surveys 
were administered on paper by field enumerators and subsequently verified 
by field supervisors. The completed questionnaires were returned to the 
headquarters of each government agency where they were double data entered 
and cleaned. In addition to collecting area, yield, and production-related data, 
ancillary information on the household, plot characteristics, crop variety, etc. 
were also collected. 

	 This study employs a three-stage stratified sampling methodology for 
which the sampling frame used was developed using land-use maps. While the 
details on the selection criteria of the plots is presented in more detail in the 

8	 FAO. 2017. World Programme for the Census of Agriculture 2020 Volume 1: Programme, Concepts 
and Definitions. Rome.
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third methodological study, a total of 256, 135, and 253 plots were sampled in Ang 
Thong, Savannakhet, and Thai Binh respectively. Once adjusted using sampling 
weights, the information from the plots can be scaled up to provide provincial 
level estimates for key paddy rice statistics.

Measurement Error in Land Area, Yield, and 
Production Estimates
Agricultural statisticians often measure crop productivity in terms of harvested 
yield, which is mathematically defined as total production divided by the total 
area planted.9 In a few countries, such as India and Bangladesh, yields are 
directly measured through crop-cutting surveys, whereby a sample of subplots 
are identified and harvested by field enumerators, with sampling weight 
adjustments made to obtain unbiased estimates. However, many countries still 
rely on administrative data collection systems or farmer recall surveys for land 
area and production measures, since these two variables are easily incorporated 
into a questionnaire and require little additional time or money to collect. Both 
methods assume that farmers are willing and capable of providing reasonably 
accurate estimates of land area and production.

Land area

As part of the ADB-supported pilot project, data on plot sizes were 
collected using self-reported farmer estimates and global positioning system 
(GPS) devices in the three provinces. To avoid any biases, self-reported 
estimates for plot size were collected prior to conducting the GPS mapping of 
the plots. Since GPS is considered to be the new gold standard for land area 
measurement10, we assumed it to be the objective value and compared it with 
plot sizes estimated by the farmers. Figure 1 provides a snapshot of the bias of 
land area measurement found in the three pilot provinces.

9	 Two other measures of yield often cited in the agronomical literature are biological yield and economic 
yield. Biological yield refers to the maximum attainable yield in the absence of any preharvest losses. 
Economic yield is the value obtained after eliminating any losses incurred in postharvest operations 
such as drying, shelling, etc. 

10	 Previously, the compass-and-rope method was the gold standard by the FAO. However, through 
numerous validation studies conducted across the world, GPS-based area measurement has gained 
traction as the new gold standard (Carletto et al. 2016). 

http://documents.worldbank.org/curated/en/257481469116364362/Cheaper-faster-and-more-than-good-enough-is-GPS-the-new-gold-standard-in-land-area-measurement
https://openknowledge.worldbank.org/handle/10986/24840
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The overall differences between self-reported and GPS-measured plots 
for the full sample are minimal for Thai Binh. Given the socialist structure of 
the country, and its well-documented land recording system, this result is not 
entirely surprising. However, in Savannakhet and Ang Thong, self-reported 
plot sizes diverge significantly from GPS-based measures. The differences are 
nonlinear across the land size distribution and nonuniform in the direction of 
reporting bias. For example, in Savannakhet, the difference is upward biased 
by 1,788.9% and 700.0% in the first two quartiles, respectively. Likewise in Ang 
Thong, farmers in the first two quartiles of the land distribution overreported 
plot sizes by 271.9% and 57.8%, respectively. These descriptive statistics are 
also presented as densities of the land distribution in Figure 2, disaggregated by 
measurement method and country. 

The results presented in Figure 1 are consistent with recent academic 
literature on the topic, mainly focused on pilot studies conducted across Africa. 
Goldstein and Udry (1999), using data from the eastern region of Ghana, found 
a correlation of 0.15 between GPS and self-reported land size, attributing this 
to field measurements in the country being historically based on length and not 
area. Statistically significant differences were also found by Carletto, Savastano, 
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Figure 1: Land Area Measurement Bias, Self-Reported versus Global Positioning System 
(ha)

ha = hectares, Lao PDR = Lao People’s Democratic Republic, Q = quartile based on area measured by 
global positioning system (GPS). 
Note: Relative Bias refers to Self-Reported Area – GPS Area in hectares. Percentage bias is defined as 

Relative Bias*100/GPS Area. 
Source: Asian Development Bank estimates using field survey data from the Lao PDR, Thailand, and 

Viet Nam. 

https://www.researchgate.net/publication/253839564_Agricultural_Innovation_and_Resource_Management_in_Ghana_Final_Report_to_IFPRI_under_MP17
https://www.sciencedirect.com/science/article/pii/S0304387813000345
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and Zezza (2013) in Uganda, wherein the magnitude varied by plot size. The 
differences were larger at the tail ends of the distribution of plot sizes, but were 
smaller for medium-sized plots. Meanwhile, Carletto, Gourlay, and Winters 
(2015) observed systematic overreporting of plot sizes for smaller plots and 
underreporting for larger plots. Similarly, Dillon et al. (2017), found that GPS 
measurements of land area in Nigeria were close to compass-and-rope estimates 
and more reliable than farmer estimates.

The postulated reasons for mismeasurement in plot size using farmer self-
reports include:

(i)	 use of nonstandard local area measurement units which may 
exhibit spatial variation. 

(ii)	 intentional underreporting or overreporting by farmers for 
strategic reasons, such as minimizing property taxes or gaining 
access to government programs. 

(iii)	 natural tendency for farmers to report farm size by rounding off 
numbers and providing approximations.

(iv)	 the terrain on which the plot exists (e.g., slope, shape, etc.).

That  said, GPS devices may be subject to an overall position error ranging 
from 0.5 meters to 4 meters due to satellite position and signal propagation 
(Hofmann-Wellenhof, Lichtenegger, and Wasle 2008). Since these errors are 
most likely random, the resulting estimates will remain unbiased. 

Production

Extensive academic research in agronomy has shown that the edges of 
a plot may be more productive than the interior of a plot (Little and Hills 1978, 
Barchia and Cooper 1996, Ward et al. 2016, Holman and Bednarz 2001). Several 
reasons have been hypothesized for this phenomena, including increased 
sunlight exposure, differences in pests or pollination, greater nutrient flow 
due to reduced competition, and greater water availability (Bevis et al. 2017). 
For this reason, Fermont and Benson (2011) suggest that production estimates 
derived from crop-cutting may be biased if the selection of crop-cutting subplots 
is not random. To avoid any systematic biases in calculating true production, 
a randomized selection of subplots for crop-cutting was implemented in the 
three provinces. The derived estimates were statistically weighted at the plot 

https://www.sciencedirect.com/science/article/pii/S0304387813000345
https://academic.oup.com/jae/article/24/5/593/2357539
https://academic.oup.com/jae/article/24/5/593/2357539
https://www.journals.uchicago.edu/doi/abs/10.1086/698309
https://www.springer.com/gp/book/9783211730126
https://www.abebooks.com/Agricultural-Experimentation-Design-Analysis-Little-Hills/9011374904/bd
http://www.publish.csiro.au/an/EA9960459
https://ageconsearch.umn.edu/bitstream/236661/2/440-Ward.pdf
https://www.tandfonline.com/doi/abs/10.1081/CSS-100102997
http://pubdocs.worldbank.org/en/392711496254862815/pdf/D1-Bevis-Barrett-May-2017-Close-to-the-Edge.pdf
http://www.ifpri.org/publication/estimating-yield-food-crops-grown-smallholder-farmers
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Source: Adapted from A. Dillon and L.N. Rao. 2018. Land Measurement Bias: Comparisons from 

Global Positioning System, Self-Reports, and Satellite Data. Asian Development Bank, 
Economics Working Paper Series. No. 540.
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level, using well-defined sampling techniques, and multiplied to GPS derived 
area estimates to obtain more objectively measured production estimates at the 
plot level which in subsequent discussions we refer to as ‘objectively measured’ 
production estimates as compared with production estimates based on farmer’s 
recall or ‘self-reported’ production.11

Figure 3 depicts the descriptive differences between average ‘self-
reported’ production and ‘objectively measured’ production.12 The differences in 
production estimates are observed to be more drastic than area estimates, with 
the largest difference seen in Savannakhet, especially in the lower quartiles. 
Though these differences are nonlinear across the land size distribution, they 
are not uniform in the direction of the reporting bias. In Ang Thong, average 
self-reported production diverges significantly from objectively measured 
production, especially for the two lowest quartiles. The differences are the 
lowest in Thai Binh, but the direction of bias switches between Quartile 2 and 
Quartile 3.

11	 A systematic comparison of yields derived from randomized subplot harvesting and full plot 
harvesting by Gourlay et al. (2017) has shown no significant differences, strengthening our case for 
true production estimation using crop-cutting.

12	 Objectively measured production is calculated using yields from crop-cutting and area from GPS.
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Figure 3: Production Measurement Bias, Self-Reported versus Objectively Measured
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Lao PDR = Lao People’s Democratic Republic, Q = quartile based on area measured by GPS. 
Note: Relative Bias refers to Self-Reported Production – Objectively Measured Production in tons. 

Percentage bias is defined as Relative Bias*100/Objectively Measured Production. Tons refers 
to production in metric tons. 

Source: Asian Development Bank estimates using field survey data from the Lao PDR, Thailand, and 
Viet Nam.

https://openknowledge.worldbank.org/handle/10986/28369
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The results of this study are consistent with the findings from the 
academic literature. Gourlay et al. (2017) show that farmer-reported production 
estimates exhibit an upward bias in the lower half of the plot area distribution 
relative to actual estimates. Similarly, Desiere and Jolliffe (2018) note that 
the degree of error between farmer estimates and crop-cutting measures is 
systematic in nature, with production more significantly overestimated by 
farmers on smaller plots in Ethiopia. 

While measurement error in land area has been widely studied across 
different contexts, measurement error in production has only started to receive 
attention recently (Gourlay et al. 2017, Desiere and Jolliffe 2018). Gourlay et al. 
(2017) provide a conceptual basis for potential errors:

(i)	 recall bias, wherein farmers may find it difficult to aggregate 
production from a previously completed agricultural season;

(ii)	 rounding-off error, wherein farmers may tend to report 
production values as whole numbers or as a function of the 
number of bags that were used to store the crop, when in reality 
these were not whole numbers (e.g., half a bag);

(iii)	 intentional bias, which can work both upward and downward 
(e.g., if a farmer expects to receive an incentive, such as a tax 
break, or a disincentive, such as higher taxes, for reporting 
specific values);

(iv)	 the use of nonstandard units to measure production varying 
across space and time; and

(v)	 crop condition and state (e.g., shelled versus unshelled, dried, 
threshed, etc.).

Yield

Self-reported area and production information can be combined to 
generate self-reported yields, which can then be compared with yield estimates 
based on crop-cutting. The results of such a comparison are presented in  
Figure 4. The crop-cutting derived yields are based on weighted estimates of 
produce found in a randomly selected 2.5 meter (m) by 2.5 m subplot of each 
sample plot. These were statistically adjusted to represent values in metric tons 
per hectare.

The overall trend was an upward bias for yield, albeit with variations 
by quartiles of plot size across countries.  In the Savannakhet, farmers tended to 

https://openknowledge.worldbank.org/bitstream/handle/10986/28369/WPS8192.pdf?sequence=1&isAllowed=y
https://www.sciencedirect.com/science/article/pii/S0304387817300810
https://www.sciencedirect.com/science/article/pii/S0304387817300810
https://openknowledge.worldbank.org/bitstream/handle/10986/28369/WPS8192.pdf?sequence=1&isAllowed=y
https://openknowledge.worldbank.org/bitstream/handle/10986/28369/WPS8192.pdf?sequence=1&isAllowed=y
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overestimate yields systematically, with the degree of overestimation decreasing 
across plot area quartiles. In Ang Thong, the degree of overestimation increased 
across plot area quartiles, while in Thai Binh, an upward bias was observed in 
the smallest and largest quartiles. The overall difference between self-reported 
and crop-cutting derived estimates was about 10% in both Ang Thong and Thai 
Binh.

Abay et al. (2018) provide a theoretical framework for measurement 
error in yield and its econometric implications, while estimating a production 
function and testing it on data from Ethiopia. They show that the direction of 
bias in production and area can be different and the combination of the two 
biases could lead to biases in yield estimation. Additional research using field 
data across different contexts is needed to empirically test this hypothesis. 

In summary, this report found significant deviations for paddy rice 
area, production, and yield. Such stark differences are not trivial from a policy 
perspective. Improvements in such data and estimates may provide some 
answers to the long-standing debate on the relationship between plot size and 
productivity, which is discussed in Box 1.
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http://www.ifpri.org/publication/correlated-non-classical-measurement-errors-‘second-best’-policy-inference-and-inverse
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Box 1: The Century Old Mystery of the Relationship Between Plot Size and 
Productivity for Small-Scale Farmers

For over 100 years, there has been debate amongst academics about who is more productive, 
the farmer with a larger plot or the farmer with a smaller plot. From an empirical perspective, the 
academic literature since the 1920s has found results in favor of farmers with smaller plot sizes, 
starting with Chayanov in Russia, followed by Sen in India, and a host of other studies across 
Asia, Africa, and Latin America (Dillon and Rao 2018).  

This finding is at odds with economic theory, which predicts that, if such a phenomenon were 
observed in a freely functioning market, larger agricultural plots would be subdivided into 
smaller plots to achieve gains in efficiency until equilibrium is achieved. It is also at odds with 
the prevalence of large tracts of land found in developed economies. However, the argument for 
smaller plot sizes has often been used as the rationale for land distribution in many countries. 

Several explanations have been postulated for the existence of the inverse relationship, such as 
differences in labor endowments between larger and smaller landowners (Eswaran and Kotwal 
1985); missing markets for land, labor, and credit (Assunação and Ghatak 2003, Barrett 1996, 
Carter and Wiebe 1990); and omitted variable bias (Barrett, Bellemare, and Hou 2010; Bhalla 
and Roy 1988; Chen, Huffman, and Rozelle 2011). None of these theories has been empirically 
corroborated across different contexts. 

A fourth explanation, which has recently gained traction, is that this inverse relationship is a 
statistical anomaly stemming from measurement error in land area and production reported 
by farmers (Gourlay et al. 2017, Abay et al. 2018, Desiere and Jolliffe 2018). However, there is 
limited empirical evidence on the matter across different settings.

Using data from ADB-supported pilot project, the authors of this report were able to statistically 
test how correcting either for land area measurement bias or both land area and production 
measurement biases affected the relationship between plot size and productivity. They 
found that using the accurate global positioning system (GPS) measure for the independent 
variable, i.e., land area, without correcting for biases in yield resulted in a strong and statistically 
significant negative relationship, as often found in the literature. However, correcting for yield 
values using objective crop-cutting derived measures, along with land areas measured by GPS, 
made the relationship not statistically significant and very close to zero, indicating no impact of 
plot size on productivity.

These results provide preliminary evidence that smaller plots might not be more efficient than 
larger plots, at least in these three countries. This does not mean that development policies 
supporting land redistribution from larger plots to smaller plots should be discouraged. Instead, 
they must rely on justifications such as social and economic equity, rather than empirical 
findings on the plot size-productivity relationship.

Source:	 Asian Development Bank estimates using field survey data from the Lao People’s Democratic 
Republic, Thailand, and Viet Nam.

Savannakhet, Lao People’s 
Democratic Republic Ang Thong, Thailand Thai Binh, Viet Nam
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Technology for Agricultural Statistics: A Potential 
Game-Changer

The findings presented in the previous section provide evidence of significant 
differences between estimates obtained from objective measurement techniques 
and those obtained from subjective measurement techniques in the three 
provinces. Since the objective measurement methods discussed above are more 
labor-intensive, more time-consuming, and costlier than subjective methods, 
alternative methods that provide reliable estimates with less effort and at lower 
costs need to be explored. Remote sensing and satellite-based technologies 
present a window of opportunity and may be game-changers for existing field 
measurement methods. 

While some countries across Asia and the Pacific, such as the 
People’s Republic of China and India, are already at the forefront of applying 
such technologies for agricultural statistics, others are still in the process of 
exploring their merits and limitations. Strategic partnerships with international 
organizations such as ADB and South-South cooperation among countries can 
build capacities within NSOs and will lead to long-term dividends in terms of 
better quality and more timely data.

Apart from their applications in crop area and production estimation, 
remote sensing and satellite-based technologies can also be tapped to monitor 
plot conditions and crop growth. Agrometeorological information, crop damage 
assessments during times of calamity, and forecasting are other interesting 
applications of remote sensing. For example, after Typhoon Haiyan devastated 
the northeastern part of Leyte Province in the Philippines in 2013, satellite 
images were released by the International Rice Research Institute (IRRI) in 
collaboration with sarmap and the Department of Agriculture-Philippine Rice 
Research Institute. These satellite images were used to construct pre- and post-
typhoon rice area maps, which revealed that nearly 1,800 ha of standing rice 
crops in the province had been damaged by flooding (IRRI 2013).

Carletto et al. (2016), on the use of remote sensing for household surveys 
state that, “[l]ittle research is available on the implementation of using remote 
sensing imagery for area measurement in household surveys. As technology 
advances and image resolution improves along with affordability, the use of this 
method becomes more feasible, and is likely to hold promise particularly for the 
measurement of large plots”. 

http://www.sarmap.ch/wp/
http://books.irri.org/9789712203008_content.pdf
https://siteresources.worldbank.org/INTLSMS/Resources/3358986-1423600559701/LandGuide_web_final_b.pdf
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As part of this project, ADB spearheaded three research initiatives to 
explore: 

(i)	 the use of remote sensing for land area measurement,  
(ii)	 estimating rice yields from space, and 
(iii)	 the use of remote sensing for developing a sampling frame.

The results of these three research initiatives are presented below. 

Remote sensing for land area measurement   

While GPS-based plot area measurements are more accurate than self-
reports by famers, there are time, cost, and effort implications. For an enumerator, 
GPS-based plot measurement involves traversing the plot boundary on foot, 
which may not be feasible for larger plots or those with standing crops. Given 
that enumerator wages tend to be one of the largest cost items in conducting 
surveys, any opportunity for savings while maintaining data quality would be 
preferable. 

The ADB-supported project piloted a third method of plot area 
measurement, which involved the use of high-resolution Google Earth maps. 
Under this methodology, plot boundaries were traced onto printed Google Earth 
maps in consultation with village heads and farmers.13 These hand-drawn plot 
boundaries were subsequently digitized using a geographic information system 
(GIS) software. From a field implementation perspective, the advantage of using 
the Google Earth method was that enumerators did not have to walk around the 
plot boundary, as is the case with the GPS method. Figure 5 provides a pictorial 
representation of this method.

The plot area estimates derived from Google Earth were subsequently 
compared with GPS-based and farmer-reported plot area estimates  
(Figure 6). The average difference between GPS-based plot area estimates and 
those derived from Google Earth was small and not statistically significant, 

13	 Tracing the plot boundaries onto a handheld device itself would have been ideal, but at the time, 
the team was not aware of any freely available software options that had such a feature. That said, 
handheld devices were still useful in identifying point locations at all times, enabling enumerators 
to match farmer-identified corners of the plot with their corresponding location on the handheld 
device, which could be easily translated to a printed Google Earth map.

https://www.adb.org/sites/default/files/publication/409421/ewp-540-land-measurement-bias.pdf
https://www.adb.org/publications/measuring-rice-yield-space-viet-nam
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except in the case of Thai Binh, where the average plot size is significantly smaller 
than those in the other two countries. The differences at the plot level can be 
attributed to various reasons including the improper tracking of plot perimeters 
by enumerators, misdirection and misinformation from farmers regarding plot 
information, machine measurement errors related to the calibration of GPS 

Figure 5: Mapping Plot Boundaries Using Google Earth Images

Source: Asian Development Bank depiction using Google Earth. http://www.earth.google.com 
(accessed 13 October 2016).
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devices, or the quality of satellite coverage.14 This shows that the estimates 
derived from Google Earth are statistically equivalent to GPS-measured plots.

However, improvements in data quality must always be compared with 
implementation costs when deciding whether to implement any new survey 
method. A back-of-the-envelope calculation shows that the average cost per plot 
of using the Google Earth method was nearly 38% lower than the GPS-based 
method. These results have had important implications for field methods, and 
propelled the usage of CAPI platforms, such as Survey Solutions, in developing 
plot area measurements using digital tracing methods (Box 2). 

Estimating rice yields from space

As described earlier, rice yields have been traditionally estimated using 
either administrative records or sample surveys, which can be time-consuming. 
This has led to lags in the results reaching policymakers for effective planning in 
the agriculture sector. Remote sensing may be a viable alternative for estimating 
rice yields efficiently, although global research efforts are still in the early stages 
(Guan et al. 2018). For the purposes of this discussion, the focus will be on optical 
images, which can be thought of as a regular photograph taken from space but 
at varying spatial and temporal resolutions (Box 3), akin to how the human eye 
would see the world.15 

One of the challenges with using optical satellite data is that there may 
be few clear images in areas with significant cloud coverage, thereby limiting 
the number of usable images for constructing indices that provide a proxy 
for crop yield. In addition, very high-resolution satellite data (sub-5 meter) 
are prohibitively expensive for large areas and require significant computing 
resources to analyze.

14	 More details provided in https://www.adb.org/sites/default/files/publication/409421/ewp-
540-land-measurement-bias.pdf. 

15	 Cloud-free satellite images, also known as radar data, can penetrate through clouds because they 
rely on microwave sensors. However, the longer wavelength of microwaves may lead to the signals 
penetrating the surface of the plant and reflecting the bands corresponding the ground underneath. 
Also, radar data are not as frequently available and are significantly more expensive than optical data.

https://www.adb.org/publications/measuring-rice-yield-space-viet-nam
https://www.adb.org/sites/default/files/publication/409421/ewp-540-land-measurement-bias.pdf
https://www.adb.org/sites/default/files/publication/409421/ewp-540-land-measurement-bias.pdf
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Box 2: Land Area Measurement Using Survey Solutions

Acquiring high-quality and timely data on agricultural land area at the plot level is daunting. Most 
surveys collect such data through farmer-recall methods, which may be prone to significant 
measurement error for several reasons. Currently, the best-quality land measurement data 
can be obtained either from the compass-and-rope method or by using global positioning 
system (GPS) devices. Both methods require traversing the perimeter of a plot, which is time-
consuming, costly, and operationally challenging. 

The use of satellite images for digital tracing has the potential to improve data quality, time, 
and cost when it comes to land area measurement. The World Bank has taken the concept 
of digital tracing to the next level in its free computer-assisted personal interviewing (CAPI) 
platform called Survey Solutions, by introducing a new “Geography” feature. This feature 
allows embedding offline base maps for both GPS recording and area tracing. 

The feature is available in four options: single point, multiple points, path, and area. Unlike 
other CAPI platforms that only permit recording a GPS coordinate on the go and require 
connecting to a satellite on the field, Survey Solutions provides enumerators with the flexibility 
to pin the location (i.e., record the coordinates of 
the observation) on a pre-downloaded satellite 
image of the study area in an offline mode. The 
same can be accomplished for multiple points. 
For paths, Survey Solutions allows the recording 
of coordinates at the beginning, end, and vertex 
points of a line and computes distance on the 
fly.  Finally, the area function allows enumerators 
to draw and save a polygon on the base map 
(satellite image) using a finger or a digital pen. 
It also computes the area of the polygon when 
needed. These features are accessible offline 
as long as the base images of the study area are 
pre-downloaded. 

The new feature holds promise in generating plot 
area boundaries in places where it is hard to link 
with a satellite to obtain location coordinates. It is 
also potentially useful in conducting agricultural 
censuses, wherein enumerators may identify 
plot areas owned by households remotely using 
the feature’s tracing method without having to 
traverse the plot manually. The identified plots 
may then be linked to the survey questionnaire, 
facilitating the creation of a spatial database of 
all agricultural parcels in a given area. This can 
be a starting point for the use of digital frames, 
and will reduce survey duration, costs, and 
enumerator effort on the field.

Geography Feature of Survey Solutions

Source:	 Asian Development Bank estimates 
using the Survey Solutions platform.
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Box 3: Explaining Spatial and Temporal Resolution from a Remote Sensing 
Perspective

Spatial Resolution
Spatial resolution is defined as the size of the smallest image element (also known as a 
pixel) in a scene. Clearer and sharper image details can be seen in high-resolution satellite 
images compared to low-resolution images. A series of images provided in the figure below 
help illustrate the differences in spatial resolutions of the different sensors and how spatial 
resolution affects the sharpness of the image. At lower spatial resolutions—higher pixel sizes 
of 1000 meter (m), 500 m, and 250 m—the images are blurry and the area covered by the 
image is difficult to identify. However, at higher spatial resolutions (particularly in the smaller 
pixel sizes of 30 m and 10 m), vegetation, roads, and other objects on the image are clearly 
identifiable.

Temporal Resolution
Temporal resolution refers to how often a given sensor can capture an image over a given area. 
Different sensors have different return times—the period it takes for a satellite to return to 
the same position over the Earth or to collect an image over the same area. The table below 
presents the return times of some selected sensors. Here, spatial and temporal resolution seem 
to conflict with each other for freely available satellite data. For example, Moderate Resolution 
Imaging Spectroradiometer (MODIS) data are more frequently available but have a lower 
spatial resolution.

Characteristics of Selected Sensors

Satellite Source Spatial Resolution Temporal Resolution Cost Sensor Type
MODIS NASA 1km/500m/250m 1–2 days Free Optical
ALOS-2 JAXA 100m 14 days Costly Radar
Landsat USGS/NASA 30m 16 days Free Optical

ALOS = Advanced Land Observational Satellite, JAXA = Japan Aerospace Exploration Agency, 
km = kilometer, m = meter, MODIS = Moderate Resolution Imaging Spectroradiometer,
NASA = National Aeronautics and Space Administration, USGS = United States Geological Survey
Source:	 Adapted from Asian Development Bank’s online training course on the use of remote sensing for 

paddy rice estimation (http://www.adbx.online/courses/course-v1:ADBx+RS202+2018_01/
about).

Spatial Resolution for Different Sensors

ETM = Enhanced Thematic Mapper, m = meter, MODIS = Moderate Resolution Imaging 
Spectroradiometer, OLI = Operational Land Imager
Source:	 Adapted from Asian Development Bank’s online training course on the use of 

remote sensing for paddy rice estimation (http://www.adbx.online/courses/course-	
v1:ADBx+RS202+2018_01/about).

http://www.adbx.online/courses/course-v1:ADBx+RS202+2018_01/about
http://www.adbx.online/courses/course-v1:ADBx+RS202+2018_01/about
http://www.adbx.online/courses/course-  v1:ADBx+RS202+2018_01/about
http://www.adbx.online/courses/course-  v1:ADBx+RS202+2018_01/about
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To address the issue of cloud cover, improve spatial and temporal 
resolution of freely existing optical images, and promote the use of remote 
sensing technology for estimating paddy rice yield in developing countries, ADB 
piloted a novel data fusion technique in Thai Binh province, Viet Nam. Data 
fusion is a method that combines two freely available sources of satellite data, 
one with better spatial resolution and another with better temporal resolution. 
This approach significantly penetrated cloud coverage, improved the overall 
resolution of fused satellite image, and allowed the researchers to prepare a 
spatially explicit map of rice yield for Thai Binh.

The pilot study used Landsat and Moderate Resolution Imaging 
Spectroradiometer (MODIS) data. Landsat images have a 30 m spatial resolution, 
but a temporal resolution of 16 days. MODIS on the other hand, passes through 
the study area almost every day (high temporal resolution) but is available only 
at 250 m spatial resolution. Merging these two sources of data through a process 
referred to as data fusion16 enhances the spatial resolution of the final data to 
30 m while improving the temporal availability to 1–2 days. This is observable 
in Figure 7 where the fused data is seen to have a greater number of clear 
observations than the original Landsat data.

Land cover classification

To identify paddy rice areas from other types of land cover, ADB 
researchers classified the fused satellite data covering Thai Binh into 
six categories using the International Geosphere-Biosphere Programme 
classification scheme (Friedl et al. 2002) and a random forest classifier algorithm 
(Breiman 2001). The principle behind this kind of classification can be explained 
as a three-step process:

16	 A mature Landsat–MODIS fusion algorithm, the Spatial and Temporal Adaptive Reflectance Fusion 
Model (STARFM) was employed to create a fused data product. The STARFM model blends 
Landsat and MODIS data to generate synthetic daily surface reflectance products at Landsat spatial 
resolution based on a deterministic weighting function computed by spectral similarity, temporal 
difference, and spatial distance (Gao et al. 2006). The algorithm requires Landsat and MODIS pair 
images for the same date with clear day quality.

https://www.researchgate.net/publication/261707258_Global_land_cover_mapping_from_MODIS_Algorithms_and_early_results
https://link.springer.com/article/10.1023/A:1010933404324
https://ieeexplore.ieee.org/document/1661809/
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Step 1: Sample pixels from the fused satellite images were selected as 
evenly as possible across the spatial extent of Thai Binh. The land cover 
of these pixels were validated through ground observations and visual 
interpretation of high-resolution images such as those derived from 
Google Earth. 

Step 2: Once a sufficient number of training pixels were obtained for 
each of the six categories, the threshold values for each of the land cover 
categories were established and applied to the whole study area using a 
machine learning algorithm. This generated a first prototype for a land-
cover classification map.

Figure 7: Normalized Di�erence Vegetation Index Time Series

DOY = date of year, MODIS = Moderate Resolution Imaging Spectroradiometer.
Note: The series shows a 30 meter (m) by 30 m pixel that combines the original Landsat data (in 

green points) and the Landsat–MODIS fused data (in purple points). The top and bottom rows 
show the image data (3,000 m by 3,000 m) that correspond to di�erent time stamps, and the 
corresponding DOY and Normalized Di�erence Vegetation Index values at the central of the 
image. The second rice-growing cycle starts around DOY 200. 

Source: Adapted from K. Guan et al. 2018. Measuring Rice Yield from Space: The Case of Thai Binh 
Province, Viet Nam. Asian Development Bank Economics Working Paper Series. No. 541.
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Step 3: A random number of pixels were again selected across the six 
categories (different from the training pixels) and again verified through 
ground observations or high-resolution satellite data to construct 
various classification accuracy statistics. This study exhibited close to 
91% accuracy for paddy rice areas. 

The classification map created for Thai Binh province is shown in 
Figure 8.

Yield estimation

Rice yields can be estimated using the land cover classification map. 
However, before getting into the statistical methodology of predicting rice yields 
and preparing spatially explicit rice maps, it is important to understand how the 
growth cycle of paddy rice relates to remote sensing technology. 

Figure 8: Classified Land Cover Map for Thai Binh Province, Viet Nam

km = kilometer
Source: Adapted from K. Guan et al. 2018. Measuring Rice Yield from Space: The Case of Thai Binh 

Province, Viet Nam. Asian Development Bank Economics Working Paper Series. No. 541.
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The growth cycle of paddy rice is depicted in Figure 9, based on the 
classification of the IRRI (IRRI 2013). The 150-day cycle is broken into two 
broad stages, vegetative and reproductive. Both stages are further broken down 
into several substages and, while each substage is important, the flowering stage, 
which starts 1 day after the heading stage and takes about 7 days, is of particular 
relevance to this research. Given that each flower results in only one grain of 
rice, the flowering period largely determines the potential grain yield. Once the 
plant reaches its ripening stage, the number of grains is fixed, but the size of the 
grain can increase. Therefore, the final yield is a simple product of the number of 
grains and the average grain size per unit area. 

Figure 9: Growth Cycle of Paddy Rice: A Conceptual Framework to Model Crop Yield

LAI = Leaf Area Index
Source: Adapted from: http://www.knowledgebank.irri.org/images/stories/crop-calen-

dar-growth-dsr.jpg.

http://books.irri.org/9789712203008_content.pdf
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As the resolution of the fused satellite product (30 m) does not permit 
observing rice grains directly, vegetation indices, which are simple graphical 
indicators derived from satellite data that serve as a proxy for crop growth, 
were used. One such vegetation index, the Normalized Difference Vegetation 
Index (NDVI), exhibits an interesting pattern for rice, reaching peak values 
around harvest time. This can be seen in Figure 10, whereby the peak values of 
the NDVI are associated with the two major harvesting seasons for paddy rice 
in Thai Binh—April to May and September to October. Focusing on the second 
growing season of rice, the study estimated that the average peak value attained 
for each sample plot on which crop-cutting was implemented, which is observed 
in Figure 10.

Ground data on rice yields obtained through the implementation of 
crop-cutting at randomized locations across the province are also available. 
By spatially linking the peak NDVI values for pixels in the same location as the 
random crop-cutting sites, estimating a quantitative relationship between the 

Figure 10: Plotting Time Series of Normalized Di�erence Vegetation Index Values

DOY = date of year, ETM = Enhanced Thematic Mapper, MODIS = Moderate Resolution Imaging 
Spectroradiometer, NDVI = Normalized Di�erence Vegetation Index.
Source: Asian Development Bank estimates.
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NDVI and crop-cutting yields is possible. The same concept is applied to other 
vegetation indices such as the Enhanced Vegetation Index (EVI) and Green 
Chlorophyll Vegetation Index (GCVI) and the results are presented in Figure 11. 
The NDVI was found to the have strongest relationship with crop-cutting yields. 

This estimated relationship between the NDVI and crop-cutting yield 
can now be used to produce a spatially explicit map of crop yield for Thai Binh 
(Figure 12). The mean value obtained from this exercise of 5.0 t/ha was found to 
be very close to the crop-cutting yield of 4.94 t/ha. 

Figure 11: Linear Regression Model between the Peak of Vegetation Indices and Crop Yield

EVI = Enhanced Vegetation Index, GCVI = Green Chlorophyll Vegetation Index, ha = hectare,
NDVI = Normalized Di�erence Vegetation Index.
Note: The vegetation indexes are NDVI, EVI, and GCVI. Crop yield for all the crop varieties are 

represented by the black line and BC15 by the purple line. Colors of the dots refer to di�erent 
crop varieties. 

Source: Adapted from K. Guan et al. 2018. Measuring Rice Yield from Space: The Case of Thai Binh 
Province, Viet Nam. Asian Development Bank Economics Working Paper Series. No. 541.

https://blogs.adb.org/sites/blogs/files/file-attachments/NDVI%20map.pdf
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The results hold promise for adoption by NSOs and MoAs for multiple 
reasons. Firstly, all the data used in this study are freely available. Next, 
the innovative data fusion technique resulted in improving the spatial and 
temporal resolution and minimizing the cloud cover issue. While the methods 
implemented in this study are not straightforward, strategic capacity building 
programs, as was done in the pilot project, can help staff from NSOs and MoAs 
to learn and apply the techniques.  

A few things need to be borne in mind should other countries plan on 
implementing similar activities. Firstly, this study only made use of crop-cutting 
data for one season for one province. Data for different provinces over time will 
be needed to fine-tune the methodology. Secondly, at the time of study, other 
satellite images with higher spatial and temporal resolution were not available. 
Recently, the European Space Agency launched the Sentinel 1 and Sentinel 2 
satellites which have the capacity to generate data at significantly higher spatial 
(10 m) and temporal (every 5 days) resolutions. Testing the algorithms above 

Figure 12: Spatially Explicit Yield Map Based on Normalized Di�erence Vegetation Index

ha = hectare, km = kilometer
Source: Adapted from K. Guan et al. 2018. Measuring Rice Yield from Space: The Case of Thai Binh 

Province, Viet Nam. Asian Development Bank Economics Working Paper Series. No. 541.

https://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Sentinel-1
https://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Sentinel-2
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with higher-resolution data is likely to yield stronger results. Finally, as satellite- 
based algorithms of yield estimation mature through artificial intelligence 
techniques, periodic and strategic field data will be necessary for validation 
purposes. That said, the infrastructure is already available for future scale-up 
in Viet Nam, and significant benefits are foreseen for other countries looking to 
adopt such methods.

Remote sensing for developing a sampling frame 

The starting point for most agricultural surveys is a census-based 
sampling frame, which is basically a list of all agricultural households within 
the total population of a country. A sampling frame is used to draw a sample that 
is ultimately surveyed to obtain key agricultural estimates. However, in some 
countries, a complete frame may not be available if the reference is a census with 
low coverage, or the existing lists of sampling units change rapidly, rendering 
the list frame out of date (Griffin 2014). Field-listing activities may not reflect 
the reality on the ground if households systematically overreport or underreport 
agricultural holdings. Semi-nomadic households engaged in agriculture, or fully 
nomadic households without fixed dwellings, may not be properly represented 
under this approach, leading to substantial biases in agricultural statistics 
(Himelein et al. 2014).

To circumvent the problems with census-based sampling frames, the 
ADB project piloted the use of remotely sensed data and GIS techniques to 
construct an alternative frame based on land-use. This method is likely to produce 
more reliable estimates than a census-based sampling frame because it relies on 
complete coverage of land area instead of outdated population data (Cotter and 
Nealon 1987). While this does not eliminate the need to collect information on 
land area through subsequent enumeration, the full population is theoretically 
covered given that the basis for selection is land area and not households.  

Several steps are involved in constructing a frame using remote sensing 
technology and GIS techniques. First, the geographic scope of the three provinces 
was identified and divided into nonoverlapping 200 m x 200 m square meshes 
(Figure 13). These meshes were stratified into four categories—high probability, 

https://doi.org/10.2478/jos-2014-0012.
https://content.sciendo.com/view/journals/jos/30/2/article-p191.xml
https://www.nass.usda.gov/Education_and_Outreach/Reports,_Presentations_and_Conferences/GIS_Reports/Area%20Frame%20Design%20for%20Agricultural%20Surveys.pdf
https://www.nass.usda.gov/Education_and_Outreach/Reports,_Presentations_and_Conferences/GIS_Reports/Area%20Frame%20Design%20for%20Agricultural%20Surveys.pdf
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medium probability, low probability, and very low probability —based on the 
expected likelihood of finding paddy rice area in each square mesh.17 

Since it was not possible to visit all areas, a sample of 120 meshes was 
selected for each province, such that the number of selected meshes was greater 
in the stratum where the expected likelihood of finding rice-growing plots 
was highest, and lower in areas with low or very low likelihood of finding rice-
growing plots.18 The distribution of the total number of meshes in the frame by 
stratum and sample replacement meshes selected for Savannakhet, Ang Thong, 
and Thai Binh is shown in Table 1.  

17	 Two sources of rice maps were utilized to implement the stratification process: (i) rice extent maps 
using 2015 MODIS data produced by the IRRI and (ii) land-use maps from 2009 produced by the 
European Space Agency  under its GLOBCOVER initiative. These sources allowed for identification 
of land most recently used for growing rice and the compilation of information on areas where rice 
cultivation has been the standard land-use for several years.

18	 The total number of meshes was based on the expected number of rice plots to be found and 
interviewed in each stratum using data from pretests and the available budget for the pilot project.

Figure 13: Sample Mesh
(200m x 200m)

m = meter
Source: Asian Development Bank depiction using Google Earth. http://www.earth.google.com 

(accessed 13 October 2016). 

200m

200m
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Within each of the 120 sample meshes, a listing of all rice plots was 
conducted. Plot boundaries were defined based on the definition adopted by the 
Living Standards Measurement Study Group of the World Bank, where a plot 
is “a continuous piece of land on which a unique crop or a mixture of crops is 
grown, under a uniform, consistent crop management system, not split by a path 
of more than one meter in width, and with boundaries defined in accordance 
with the crops grown and the operator” (Kilic et al. 2017). Systematic random 
sampling was then used to select a sample of four plots per mesh from the list of 
plots that met the selection criterion.

	 Finally, a random point was selected within each sample plot to 
identify a 2.5 m x 2.5 m crop-cutting subplot.19  The rice found in this subplot 
was harvested, threshed, dried, and weighed to obtain objective yield estimates 
(Figure 14). This was compared with official estimates for rice-planted areas 
obtained from administrative records in each country.

Significant differences were observed when comparing the study’s 
estimates with official area estimates (Figures 15, 16, and 17). For Savannakhet, the 
difference was nearly 25%, while for Ang Thong and Thai Binh, the differences 
were about 39% and 40%, respectively, albeit in the opposite direction to the 
Lao PDR. Although it is difficult to pinpoint the underlying reasons behind these 
deviations as the microdata from the administrative records were not made 
available, literature suggests likely reasons as being the presence of nonsampling 
errors, subjective intervention, and political leadership at the local government 
levels involving subsequent revisions in the administrative data collection 
methods (ADB 2016).  

19	 In this study, the selection criterion was whether rice was planted on a plot with the intention of 
harvesting in the rainy season of 2015, since the objective was to obtain estimates for only one 
season using crop-cutting techniques.  

Table 1: Distribution of Meshes in the Sampling Frame

Stratum
Sample Meshes 

Selected
Replacement 

Meshes Selected
Number of Meshes in Frame

Savannakhet Ang Thong Thai Binh
IRRI+GlobCover 80 5 80,839 22,105 36,376
IRRI 20 10 4,650 280 589
GlobCover 15 10 154,227 2,777 4,846
Others 5 5 322,391 34 1,815
Total 120 30 562,107 25,196 43,626

IRRI = International Rice Research Institute
Source:	 Asian Development Bank estimates using field survey data from Savannakhet (Lao People’s Democratic 

Republic), Ang Thong (Thailand), and Thai Binh (Viet Nam).

http://documents.worldbank.org/curated/en/668211499349698549/Mission-impossible-exploring-the-promise-of-multiple-imputation-for-predicting-missing-GPS-based-land-area-measures-in-household-surveys
https://www.adb.org/publications/results-methodological-studies-agricultural-and-rural-statistics.
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In principle, meshes in the high-probability stratum are expected to 
have the highest concentration of rice. Yet, even with the best-resolution freely 
available satellite data used for stratification at the time of this project, some 
meshes in the high-probability stratum in the three provinces were found 
to have no rice planted. There are two possible explanations for this: (i) the 
power of discrimination in the satellite imagery and stratification might not be 
sufficient; or (ii) field teams might not have accurately reported the status of all 
meshes, thereby systematically excluding some rice-growing meshes from the 
survey. For this reason, it will be necessary to improve the land-use stratification 
of the frame by using higher-resolution satellite images and a greater power of 
discrimination in the models used for defining the strata. Sentinel 1 and Sentinel 
2, which have better resolution than existing freely available satellite images, are 
likely candidates for future research.

Figure 14: Crop-Cutting on a Subplot
(2.5 m x 2.5 m)

m = meter
Source: Asian Development Bank depiction using Google Earth. http://www.earth.google.com 

(accessed 13 October 2016). 
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Figure 15: Area Estimate Comparison from Remote Sensing and O�cial Statistics for 
Savannakhet, Lao People’s Democratic Republic 

(ha)

ha = hectare 
Source: Asian Development Bank estimates using field survey data from Savannakhet, Lao PDR. 
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Figure 16: Area Estimate Comparison from Remote Sensing and O�cial Statistics
for Ang Thong, Thailand

(ha)

ha = hectare 
Source: Asian Development Bank estimates using field survey data from Ang Thong, Thailand. 
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Other Technological Innovations for Agricultural and 
Rural Statistics

The ADB studies have provided a glimpse of the benefits of utilizing satellite-based 
technology for collecting quality agricultural data. However, such data are not a 
panacea and have their own limitations. For example, satellite data may not be 
useful for predicting crop health as very high-resolution images of the crops are 
needed. Yet, addressing crop health is important from a policy perspective as 
land is a finite resource and addressing pre-harvest crop damage is likely to lead 
to gains in crop yield. This does not discount the contribution of satellite-based 
technologies in improving the quality of data, but rather highlights opportunities 
for complementary innovations to fill in the gaps and, in turn, create a more 
holistic picture of agriculture. 

Considering how fast the pace of technological progress has been, there 
exist a plethora of innovations with the potential to improve data quality and, 
consequently, influence agricultural policy. We live in an age where gigabytes 
of information and data can be stored in a thumb-sized drive. Further, the ease 
with which information can be disseminated and downloaded, to and from any 

Figure 17: Area Estimate Comparison from Remote Sensing and O�cial Statistics 
for Thai Binh, Viet Nam

(ha)

ha = hectare
Source: Asian Development Bank estimates using field survey data from Thai Binh, Viet Nam.
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part of the world, has spawned unprecedented progress in data science, big data, 
machine learning, and artificial intelligence. Such unprecedented technological 
advancement can only help propel innovation in agricultural statistics. 

Drones

A noteworthy innovation that has been making waves in agriculture is 
drone technology. Similar to satellite-based technologies, drones, also referred to 
as unmanned aerial vehicles, are capable of extensively and rapidly collecting a 
vast amount of information over large plots of land, especially in remote or hard-
to-reach areas. Drones can provide aerial maps that give more vivid snapshots of 
plots, providing a more concrete gauge of land-use and circumventing issues of 
cloud cover evident with optical satellite data. What also sets drone technology 
apart is its ability to assess crop health, a feature that satellite-based technologies 
currently do not permit. Using relevant camera accessories, drones can monitor 
the health of crops based on variables such as temperature, chlorophyll levels, 
and contaminants (Reinecke and Prinsloo 2017).

In Sri Lanka, the International Water Management Institute has been 
using drones to monitor rice crops in Anuradhapura district (Siddiqui 2016). 
The institute’s study points towards the usefulness of drones to undertake field 
mapping in hard-to-reach areas in a short timespan. It also indicates that drone 
technology can help farmers detect when rice fields are under stress and identify 
areas prone to flooding. 

In 2015, a pilot test was conducted in Poland by the Central Statistics 
Office and the Institute of Geodesy and Cartography, to assess the production 
of grasslands on 21 plots covering about 460 ha (Milewski 2016). Evaluating 
the drone’s impact, they lauded its advantage in capturing pictures from lower 
heights to obtain images of higher spatial resolution, recognizing its value in 
providing additional significant material for estimating grassland production.

 A research project20 in Ghana, using aerial imagery provided by drones, 
confronted the challenge of understanding crop productivity over space and 

20	 The research project is called Yieldgap and involves researchers from the University of Lund and the 
Swedish University of Agricultural Sciences. 

https://ieeexplore.ieee.org/document/8016168/?part=1
https://publications.cta.int/media/publications/downloads/ICT082E_PDF.pdf.
https://www.istat.it/storage/icas2016/f30-milewski.pdf
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time. A major consideration in doing so was that the lower spatial resolution of 
typical remote sensing technology, coupled with the vegetation index, was not 
fit for complex agrarian landscapes and systems such as those in sub-Saharan 
Africa. Given that traditional vegetation indices based on satellite data have 
been devised for structured agricultural practices such as larger and fixed plots 
with monocropping, they may not capture the different agricultural practices 
that characterize developing countries, where crop rotation and intercropping 
is prevalent and plots are significantly smaller and uneven. Moreover, the study 
areas in question were rarely revisited by satellites and often covered by cloud, 
rendering access to satellite imagery for time-series measurement very difficult. 

To address the limitations of traditional remotely sensed data, drones 
were used in the Ghana project to capture higher-resolution aerial images and 
data. The resulting drone images were said to exhibit spatial resolution of 3 to 
4 centimeters, which is significantly higher than satellite-generated images. 
The final images were also crisp enough to show crop details in smaller fields. 
Ultimately, the methodology proved appropriate and useful for delineating 
and classifying maize crops and calculating the vegetation fraction, which is 
important in estimating yields (Hall et al. 2018). 

Apart from generating high-resolution images for aerial mapping and 
potentially providing a faster and more accurate way of measuring land and 
estimating crop yields, drones equipped with multispectral sensors can get 
detailed images of plants that is useful for crop health analysis. Consequently, 
a series of pilot projects were conducted in Uganda to assess the potential for 
drone technology to add value to agricultural development in the country.21 The 
benefit of drone technology was seen in its ability to assess the health of live 
vegetation, which provided warning signals or early information on plant or crop 
health issues. This information allowed for early identification of appropriate 
treatment or solutions, and proved to be helpful in accurately estimating the 
amount of fertilizer, pesticide, or other inputs required to optimize yields.

21	 Technoserve is an international nonprofit that promotes business solutions to reduce poverty in 
developing countries. Its Innovations in Outcome Measurement arm initiated the series of drone 
pilot projects in Uganda. http://www.technoserve.org/files/downloads/case-study_eyes-in-the-
sky-for-african-agriculture-water-resources-and-urban-planning.pdf.

http://mdpi.com/2504-446X/2/3/22
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While the benefits of drones are plentiful, the technology has its own 
set of limitations. First, drones can be expensive if different types of sensors are 
needed to collect detailed information across a multitude of topics. Next, a study 
into the perceptions of agricultural stakeholders on the application of drone 
technology to agriculture found that, apart from the high costs, the complexity 
of the technology is a potential barrier to adoption (Soesilo and Rambaldi 2018). 
Individuals need to configure the drones for operation and possess knowledge 
on converting the images into practical or useful information. This entails 
significant learning costs and human capital investment (Kipkemoi 2018). Third, 
drones are vulnerable to weather conditions, and it might not be possible to 
fly them when there are very strong winds or rains. Finally, flying drones may 
require clearances from the relevant aerospace or aviation authorities in each 
country, which may be difficult to obtain.22

Like any innovation or technology, drones are a work in progress. With 
the influx of drone manufacturers, costs are likely to go down, and massive 
improvements will address the technology’s current limitations and improve its 

22	 As suggested by the following online resource, which compiles and links to many of the world’s drone 
laws and regulations: https://uavcoach.com/drone-laws/.

Figure 18: Drone Image of Small-Scale Farms in Ghana

Note: The blue areas depict bare soil or soil covered by debris. 
Source: Yield Gap Project Group. https://publications.cta.int/media/publications/down-

loads/ICT082E_PDF.pdf.

https://publications.cta.int/media/publications/downloads/2026_PDF.pdf
http://www.droneguru.net/the-pros-and-cons-of-drones-in-agriculture/
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user-friendliness. That said, there is an opportunity for the conduct of systematic 
research studies comparing the costs and benefits of using satellite images versus 
drone derived images within the context of agricultural statistics. 

Computer-assisted personal interviewing 

Another innovation that aims to revolutionize agricultural statistics 
is computer-assisted personal interviewing (CAPI). This process allows the 
reporting and recording of responses on handheld devices, instead of paper, 
and builds in checks and balances to improve the flow of questionnaires and 
minimize data errors. CAPI also facilitates easy data transfer through cloud 
or internet-based methods, thereby reducing the time and costs of conducting 
surveys and managing data. 

Literature has established some of the advantages that CAPI has over 
traditional paper-based methods (Caeyers et al. 2012, Rahija et al. 2016, Zhang 
et al. 2012, King et al. 2013). First, CAPI is seen to eliminate variable costs such 
as the printing, storage, and transportation of paper questionnaires. There are, 

Figure 19:  Drone Image of Small-Scale Farms in Uganda Indicating Crop Health

Source: Technoserve’s Innovation in Outcome Measurement. 
http://www.technoserve.org/files/downloads/case-study_eyes-in-the-sky-for-african-
agriculture-water-resources-and-urban-planning.pdf.

https://www.sciencedirect.com/science/article/pii/S0304387811001167
https://www.istat.it/storage/icas2016/f39-rahija.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3510690/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3510690/
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0074570
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however, higher startup costs with the switch to CAPI, such as the investment 
in equipment such as tablets and cloud-based computer servers. Second, with a 
cloud-based server and faster internet, CAPI would allow collected data to be 
immediately transmitted to the headquarters of an NSO, significantly reducing 
the time from data collection to analysis. Finally, CAPI reinforces higher quality 
data, as questionnaires are typically programmed with skip, validation, and 
consistency conditions that check for errors as data are being entered by the 
enumerator. 

Recently, CAPI platforms have started allowing innovative questions 
to be embedded. For example, questions that ask for a geo-reference tag or 
location (e.g. GPS), an image (as might be the case for price surveys), a voice 
recording (for consent from survey respondents), or even a scan of a barcode 
are now incorporated into CAPI. Other advantages of CAPI include closer field 
monitoring, collection of time stamps for every question, and a simplified process 
of remotely executing changes or corrections to the questionnaire (without 
having to send paper questionnaires to and from the field).

There have been numerous efforts across Asia and the Pacific to 
incorporate CAPI into agricultural surveys. For example, the Badan Pusat 
Statistik in Indonesia piloted CAPI with Survey Solutions23 in 2015. The aim 
was to speed up results from their crop-cutting survey, improve the quality 
of data collected, and foster efficient communication between enumerators, 
supervisors, and headquarters.24 ADB has also been working with NSOs in three 
Asian countries25 to introduce CAPI technology to nationally representative 
surveys26. Most notably, CAPI is being implemented for an agricultural survey 
in Sri Lanka, covering a nationally representative sample of 25,000 households 
over two rounds of data collection corresponding to the harvesting seasons in 
the country. Further, a randomized experiment to provide rigorous evidence 
on the benefits of transitioning from paper-based surveys to CAPI has been 
incorporated. 

23	  A noteworthy example of a CAPI product is Survey Solutions, which integrates management tools, 
and unlike the other products developed, has no associated programming costs and requires little to 
no programming knowledge.

24	  GSARS. 2016. Adopting CAPI Technology for Agricultural Surveys in Indonesia. http://gsars.org/
en/adopting-capi-technology-for-agricultural-surveys-in-indonesia/

25	  The Lao PDR, Sri Lanka, and Viet Nam. 
26	 ADB. Implementing Information and Communication Technology Tools to Improve Data Collection 

and Management of National Surveys in Support of the Sustainable Development Goals. https://
www.adb.org/projects/49342-001/main. 

https://www.adb.org/projects/49342-001/main
https://www.adb.org/projects/49342-001/main
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Artificial intelligence

Artificial intelligence is another area that can potentially contribute to 
the improvement of agricultural statistics. Artificial intelligence refers to the 
creation of machines that can simulate activities and processes that are typically 
performed by humans, such as learning (acquiring information along with the 
rules associated with such information), reasoning, and problem-solving (using 
a set of rules and boundaries to come up with conclusions). The major fields or 
parts of artificial intelligence include knowledge engineering, machine learning, 
machine perception, and robotics. Knowledge engineering involves introducing 

Figure 20: Computer-Assisted Personal Interviewing as Part of Project Activities

Source: Asian Development Bank.

Image (1) shows data collection using CAPI during crop-cutting exercises. Image (2) shows a farmer in 
Thai Binh, Viet Nam being interviewed by an enumerator using CAPI. Image (3) shows plot navigation and area 
estimation using CAPI. 
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abundant information relating to the world to machines so that they can act and 
react like humans. Machine learning, on the other hand, involves introducing 
learning algorithms (from numerical regressions and logic) into machines so that 
they can, without supervision, learn and identify patterns from a permutation of 
inputs or information. Machine perception has to do with honing a machine’s 
ability to interact with, and infer, different aspects of the world, similar to the way 
humans use senses to relate to the world. Finally, robotics involves developing 
machines that can mimic human behavior and perform tasks typically performed 
by humans. Robotics is typically tapped for jobs that are considered hazardous to 
humans, such as defusing bombs and exploring hard-to-reach places. 

Why is artificial intelligence important? First, it can automate a high 
volume of tasks reliably and without the human limitations. Second, it constantly 
adapts and learns with built-in learning algorithms. Artificial intelligence sifts 
through the patterns and structures in data so that the algorithm acquires skill. 
In other words, algorithms can teach themselves and can further adapt when fed 
with new data. Because of this artificial intelligence analyzes deeper data, gets 
the most of data, and attains more accuracy as you feed more data.

A potential application of artificial intelligence for agricultural statistics 
is the estimation of potential yields during the crop-growing stages using 
machine learning algorithms (Figure 21). Different types of information collected 
from the field—such as soil moisture from ground-based sensors, area maps from 
satellites or drones, weather-related information from meteorological stations, 
crop characteristics and crop health data from geocoded photographs, and 
historical data from field surveys—could be fed into a machine learning algorithm 
programmed to estimate potential yields. This is valuable information that could 
give a sense of post-harvest losses, as it would provide information on both 
potential and actual yield. Artificial intelligence can therefore be leveraged to 
predict conditions to advise sowing, pest control, commodity pricing, and trade. 
This can also raise incomes of small-scale farmers and lower risks in agriculture. 
CropIn, for instance, uses multiple data sources and a complex algorithm to help 
predict yields for different types of crops in many Asian countries27. Tellus Labs 
has similar experience in the United States, wherein their artificial intelligence 
predictions of corn yields were within only 1% of actual corn yields based on 
figures from the United States Department of Agriculture (Potter 2017).

27	 CropIn is an Indian agritech startup known to employ data-mining and artificial intelligence to 
improve crop yield and make farming profitable. http://www.cropin.com/about/

https://www.agweb.com/article/corn-could-be-on-track-for-1662-bu-naa-ben-potter/
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Several other applications of artificial intelligence to agriculture have 
been explored. For example, a team of researchers developed an artificial 
intelligence that can assess and detect diseases in cassava plants, using the 
Google open source library to access more than 2,000 images of cassava leaves 
from Tanzania (Simon 2017). The information from the library was fed into 
an artificial intelligence architecture, training the computer to identify and 
diagnose crop diseases and pest damage. The technology was able to identify 
diseases with close to 100% accuracy. 

However, artificial intelligence also has its own set of challenges. First, 
considering the complexity of the algorithms of artificial intelligence, it can 
quickly become expensive to program, build, and improve upon. Next, because 

Figure 21: Artificial Intelligence for Compiling Potential and Actual Crop Yield

Source: Asian Development Bank.
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these technologies learn from existing data, the resulting intelligence and 
machine learning will be only as effective and as reliable as the data that feeds 
into the algorithm creation. 

Artificial intelligence is the future of agricultural statistics and, more 
broadly, the agriculture sector. While artificial intelligence might be difficult 
for countries to take on given its complexity, novelty, and unpredictability, 
strategic partnerships between the private sector and governments, facilitated 
by international development organizations such as ADB, will allow such 
technology to improve and flourish for agricultural statistics.

Conclusion

Agricultural development is essential to poverty reduction and its relevance 
has been strongly emphasized in the SDGs. Evidence-based policymaking for 
the agriculture sector has the potential to affect the lives of millions around the 
world. However, good policies rely on the availability of high-quality, timely, 
and disaggregated agricultural data, which are sparse in countries with weak 
statistical systems. 

To improve the quality and quantity of agricultural and rural statistics 
across the world, the Global Strategy to Improve Agricultural and Rural Statistics 
(GSARS) was endorsed by the United Nations Statistical Commission in February 
2010. ADB joined this global initiative as an implementing partner of the Steering 
Group for Agricultural Statistics for Asia and the Pacific. Through a carefully 
designed technical assistance project, ADB piloted innovative data collection 
methods, such as remote sensing and CAPI, to address measurement challenges 
associated with collecting paddy rice area, yield, and production statistics. The 
technical assistance was implemented through strategic partnerships with 
NSOs and MoAs in four countries: the Lao PDR, the Philippines, Thailand, and  
Viet Nam.28

By comparing farmer self-reports for paddy rice area, yield, and 
production to existing objective methods such as GPS-based area mapping and 

28	 Results from the Philippines are not presented in this report as not all field activities could be 
completed due to the occurrence of Typhoon Koppu.

http://gsars.org/wp-content/uploads/2016/01/2010-3-FOC-Agriculture-E.pdf
http://gsars.org/wp-content/uploads/2016/01/2010-3-FOC-Agriculture-E.pdf
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crop-cutting-based yield and production estimation, this report found evidence 
of significant measurement errors for all three variables. ADB researchers also 
noted that these differences are nonlinear across the land size distribution and 
nonuniform in the direction of the reporting bias. These biases are likely to have 
significant implications for estimating agricultural production functions, which 
are the basis for numerous policies such as land redistribution, subsidies for 
agricultural inputs, commodity pricing, and trade.

Given that the existing objective methods of collecting and compiling 
data on area measurement, production, and yields are expensive and time-
consuming, the project explored the use of remote sensing and GIS techniques 
as an alternative through three methodological studies. In the first study, 
researchers compared plot area estimates derived by tracing plot boundaries on 
high-resolution Google Earth maps to the current gold standard of traversing 
plot boundaries on foot using GPS instruments. The study results show that 
the two methods provide statistically equivalent results, but the Google Earth 
method reduced observation costs by nearly 38%.  The second study explored 
the use of a data fusion technique that combines two different freely available 
satellite images to improve the overall spatial and temporal resolution of the 
fused data product. This helps in estimating a stronger relationship between 
crop-cutting derived yield and the vegetation index derived by remote sensing. 
This relationship is used to prepare a spatially explicit crop yield map. The 
third study presented a methodology to construct a sampling frame using land-
use maps and GIS techniques and compared rice area estimates derived from 
the implementation of this sampling frame to official estimates provided by 
the governments of the relevant countries. Given that this method eliminates 
potential under-coverage from an outdated population-based frame, and allows 
for the estimation of measures of precision, the study makes the case that area 
estimates from this method are more reliable than official estimates.

This report also concludes that there are some limitations in using 
satellite-based technology, and other technological innovations in agricultural 
statistics, which are in nascent stages of development, are likely to bring dividends 
in the long run. For example, drones have made it possible to gather data on plots 
down to the crop level at a moment’s notice, which can potentially contribute to 
more effective policymaking and provide information to help farmers achieve 
higher yields. CAPI is expected to bolster administrative and survey data 



Key Indicators for Asia and the Pacific 2018 Special Supplement44

collection efforts. Finally, more complex and cutting-edge artificial intelligence 
has the potential to revolutionize agriculture with intelligent machinery that can 
provide optimal information, advisories, and solutions. The ultimate vision is for 
these innovative data and information sources to come together in support of 
better-quality and real-time data that facilitate evidence-based policymaking for 
the agriculture sector. 

Although modern technology has its benefits in terms of improved data 
quality, greater efficiency, and cost-savings, it is important to highlight some of the 
challenges associated with the adoption of such tools by government agencies. 
Firstly, there is a need to strengthen the statistical system in terms of human 
capital. Well-designed learning programs are crucial for imparting new skills and 
bringing people with different areas of expertise together such as data producers, 
users, policymakers, international experts, and technicians to share technical 
knowledge. These could be facilitated through a combination of in-class and 
e-learning courses and on the practical training. Next, the use of remote sensing 
technology requires strategic investments and upkeep of physical infrastructure 
including modern computers with fast processors, access to secure database and 
servers, reliable internet network, and necessary software to process satellite 
data into statistical results. Third, adequate financial resources are needed to 
implement such tools, which requires institutional support and political buy-in. 
Legal and/or planning documents such as the Statistics Law, and the National 
Strategy for Development of Statistics (NSDS) should emphasize the need to 
invest in such technologies. 

Multilateral organizations like the ADB can be the starting point for 
countries interested in exploring new technologies for agricultural statistics. 
Through carefully planned and well implemented technical assistance projects, 
multilaterals can leverage across various networks to identify appropriate 
technologies, and optimally design capacity building activities to produce 
high-quality, cost-effective, and timely data. This would serve as an impetus 
for piloting these novel tools to provide proof of concept in terms of costs 
and benefits to facilitate subsequent scale-up. South-South and triangular 
cooperation mechanisms may also serve useful in promoting information 
sharing related to implementation experiences across countries. That said, the 
value added of multilateral organizations hinges on a critical requirement of the 
willingness of countries to mainstreaming such tools into their statistical systems 
by committing adequate resources in the long run to ensure sustainability. 
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