
Zimmermann, Pavel; Fojtík, Jan; Karel, Tomáš et al.

Article

Comparison of estimation uncertainty in lifelong
annuities for Bayesian single- and multi-population old
age mortality model

Ekonomický časopis

Provided in Cooperation with:
Slovak Academy of Sciences, Bratislava

Reference: Zimmermann, Pavel/Fojtík, Jan et. al. (2018). Comparison of estimation uncertainty
in lifelong annuities for Bayesian single- and multi-population old age mortality model. In:
Ekonomický časopis 66 (7), S. 703 - 718.

This Version is available at:
http://hdl.handle.net/11159/3948

Kontakt/Contact
ZBW – Leibniz-Informationszentrum Wirtschaft/Leibniz Information Centre for Economics
Düsternbrooker Weg 120
24105 Kiel (Germany)
E-Mail: rights[at]zbw.eu
https://www.zbw.eu/
Standard-Nutzungsbedingungen:
Dieses Dokument darf zu eigenen wissenschaftlichen Zwecken und zum
Privatgebrauch gespeichert und kopiert werden. Sie dürfen dieses Dokument
nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich
ausstellen, aufführen, vertreiben oder anderweitig nutzen. Sofern für das
Dokument eine Open-Content-Lizenz verwendet wurde, so gelten abweichend
von diesen Nutzungsbedingungen die in der Lizenz gewährten Nutzungsrechte.
Alle auf diesem Vorblatt angegebenen Informationen einschließlich der
Rechteinformationen (z.B. Nennung einer Creative Commons Lizenz)
wurden automatisch generiert und müssen durch Nutzer:innen vor einer
Nachnutzung sorgfältig überprüft werden. Die Lizenzangaben stammen aus
Publikationsmetadaten und können Fehler oder Ungenauigkeiten enthalten.

Terms of use:
This document may be saved and copied for your personal and scholarly purposes.
You are not to copy it for public or commercial purposes, to exhibit the document
in public, to perform, distribute or otherwise use the document in public. If the
document is made available under a Creative Commons Licence you may exercise
further usage rights as specified in the licence. All information provided on this
publication cover sheet, including copyright details (e.g. indication of a Creative
Commons license), was automatically generated and must be carefully reviewed by
users prior to reuse. The license information is derived from publication metadata
and may contain errors or inaccuracies.

 https://savearchive.zbw.eu/termsofuse

https://savearchive.zbw.eu/
https://www.zbw.eu/
http://hdl.handle.net/11159/3948
mailto:rights@zbw-online.eu
https://www.zbw.eu/
https://savearchive.zbw.eu/termsofuse
https://www.zbw.eu/


Ekonomický časopis, 66, 2018, č. 7, s. 703 – 718 703 

 
Comparison of Estimation Uncertainty in Lifelong  
Annuities for Bayesian Single- and Multi-population  
Old Age Mortality Model1 
 

Pavel  ZIMMERMANN – Jan  FOJTÍK – Martin  MATĚJKA – Tomáš  KAREL*  
 
 

Abstract 
 

 Old age mortality modelling is often associated with lack of reliable data, 
especially for small populations. We focus on an approach to incorporate infor-
mation contained in the data from closed populations and study its impact on 
estimation uncertainty in an old age mortality model. We assume a two-dimen-
sional age cohort extension of the exponential (Gompertz) model. We compare 
uncertainty of the parameter estimates for two models. The first is a single popu-
lation model based on data solely from one country. The second is a multi-
population model for a sample of populations from the central European region. 
Bayesian generalized linear model and a hierarchical Bayesian generalized 
linear model is applied. We quantify the difference in the uncertainty of the esti-
mates of the force of mortality and whole life annuity based on root mean 
squared error of the predictions for different ages, cohorts and populations. 
 

Keywords: old age mortality, Bayesian GLM, Bayesian Hierarchical model, 
multi-population model 
 
JEL Classification: C10, C11, J10, J11  
 
 
 

Introduction 
 

 Mortality modelling is a major concern for public policy, social security, and 
private insurance. Sufficient amount and quality of mortality data is absolutely 
critical for successful model development, its application, and evaluation. Old 
age mortality modelling is, however, very often associated with lack of data, 
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incorrect or even missing values. This shortcoming often results in wide confi-
dence intervals of predictions or even misleading predictions. The presented 
article suggests a method for incorporation of additional data to an old age mor-
tality model and quantifies the impact of this additional data on estimation un-
certainty measured by the root mean squared error. 
 In general, mortality is modelled separately for adult and old ages. A low 
number of observations for old ages prevents using models with age specific 
parameters, e.g. Lee and Carter (1992) or its modifications, which are generally 
popular for adult ages. Therefore, old age models are often formulated as one-     
-dimensional models, so called ‘mortality laws’, with only a few parameters. 
Gompertz (1825) assumed exponential growth of mortality with increasing age. 
Makeham (1860) subsequently extended this model with a constant parameter 
which represented mortality caused by age independent external causes. Later 
on, with increasing amount of empirical observations in older ages, the exponential 
growth was challenged by some authors and a slower increase was suggested. 
Koschin (1999) extended Gompertz-Makeham model with an additional parame-
ter in order to slow exponential growth of mortality. Some authors proposed 
logistic curve as an alternative. Historically, the first mortality model based on 
logistic curve assumption was introduced by Perks (1932). In the recent past, the 
logistic curve was applied by Thatcher (1999) or Heligman and Pollard (1980). 
A comprehensive summary of old age mortality models is provided by Pitacco, 
Denuit and Haberman (2009) or Burcin, Tesárková and Šídlo (2010). Several 
publications focus on dynamics of mortality at old age. A comparative study 
of mortality trajectories at extremely old ages was published in Gavrilov and 
Gavrilova (2014). Age specific shifts of the logistic model were investigated by 
Tesárková Hulíková (2012). Long-term mortality trends with respect to high age 
mortality were studied for example by Gavrilov and Gavrilova (2011).  
 We assume a two-dimensional extension of the exponential model and model 
the cohort-age specific force of mortality at old ages simultaneously in the age 
and cohort dimension. Our main aim is to compare uncertainty of the force of 
mortality estimates for two models. The first model is a single population model 
of the old age mortality fitted based on data solely from one population. The 
second model is a multi-population model for a sample of populations from the 
Central European region. We quantify the difference in the uncertainty of the 
estimates from the two models for five countries from the central European region, 
measured by mean squared error for both the force of mortality and whole life 
annuity. The main question is: “To what extent data from surrounding populations 
reduce the estimation uncertainty.” Ahcan et al. (2013) proposed incorporating 
information from surrounding countries using numerical optimization method to 
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obtain a linear combination of death rates from surrounding countries which opti-
mally explains the target population. The ‘mixing’ of base population and the line-
ar combination is then based on credibility approach taking into account different 
exposures of each country. Resulting ‘credibility data’ are then used to apply 
standard single population models. We use Bayesian methods. Namely Bayesian 
generalized linear model (BGLM) and hierarchical Bayesian generalized linear 
model (HBGLM). Czado, Delwarde and Denuit (2005) investigated Bayesian 
Poisson log-bilinear mortality predictions for adult ages in contrast to traditionally 
used Lee-Carter model (Lee and Carter, 1992). Antonio, Bardoutsos and Ouburg 
(2015) extended the model of Czado to include multiple populations. Forecasts 
of male period life expectancy at birth for all countries of the world until the year 
2100 were also performed using a Bayesian hierarchical model proposed by 
Raftery et al. (2013). The application of Bayesian random-effects approach for 
improving mortality predictions of a small population was investigated by Jonker, 
van Lenthe and Congdon (2012), who concluded that Bayesian Monte Carlo simu-
lations outperform traditionally calculated life expectancies in bias, root mean 
square error and credible intervals coverage. Our main contribution is the con-
struction of a multi population old age HBGLM model and its application on 
central European region in order to quantify the reduction of uncertainty in pa-
rameter estimates in comparison to a single population model.  
 The structure of the article is as follows. Section 1 presents underlying data 
and corresponding notation used. Single-population model together with the 
likelihood specification, prior and posterior distributions are introduced in Sec-
tion 2. Section 3 extends the single model to a multi-population hierarchical 
model and describes corresponding prior distributions of model parameters. Sec-
tion 4 describes simulation procedures used for sampling from posterior distribu-
tions of the hierarchical model. Empirical results are presented in Section 5. 
Conclusions based on presented results are in last section. 
 
 
1.  Data and Notation 
 

 Our scripts for statistical software R, together with sample dataset for Czech 
Republic are placed at a link specified.2 Source of all data used in this paper is 
The Human Mortality Database (Wilmoth, Shkolnikov and Barbieri, 2012), ab-
breviated as HMD in further text. The input data are the ‘Death rates’ and ‘Ex-
posure-to-risk’ data in cohorts data section in one year age and one year calendar 
intervals. Number of deaths is calculated as the multiple of death rate and the 

                                                 
 2 Scripts produced for this research are placed at:  
<https://drive.google.com/file/d/1OqdQfMAVrtvKsU4s1CavyiWugaqhIwqU/view?usp=sharing>. 
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exposure to risk. Five countries are included in our analysis: Austria, Hungary, 
former East Germany, Czech Republic and Slovakia. These countries were chosen 
with respect to geographical, historical and social similarities to the Czech Repub-
lic. Poland would also be a suitable candidate, unfortunately, reliable data are not 
available. The model was fitted for the age range 85 – 99. The inclusion of obser-
vations from younger ages would reduce the influence of the old age data which 
are the main focus of the research. Observations above 99 years of age are either 
not available at all or its quality is dramatically low. For the age category 85 – 99 
and the selected set of countries, cohorts from 1879 to 1913 are available.  
 Population exposed to risk of death of the cohort c at the age x is denoted Ex,c, 
the number of deaths is Dx,c. The force of mortality is denoted ��,�. Countries are 
distinguished by upper right index i. The total number of countries involved is 
denoted q. In age-cohort format, HMD publishes only deaths rates mx,c and expo-
sure to risk Ex,c. Therefore cohort number of deaths Dx,c is calculated as 
 

, , ,x c x c x cD m E=           (1) 
 
 Probability that a person at age x of the cohort c will survive to an age x + 1 is 
denoted px,c and calculated as follows 
 

1

, ,

0

expx c x s c sp dsµ + +=                (2) 

 
 The analysis will take into account not only age-cohort specific death rates 
but also age-cohort specific whole life annuities. Therefore a whole life annuity 
for an age x and a cohort c is calculated as 
 

,
t

x c t x
t x

p vä
ω

=

=         (3) 

where  
 v – denotes discounting factor. 
 
 
2.  Single-population Model and Prior Distributions Specification 
 
 As stated above, several curves have been proposed for the dependence of old 
age mortality on age. In order to keep the number of parameters reasonable, only 
two-parametric specifications were considered. Exponential and logistic curves 
are the most popular specifications. As a significant difference between these 
two curves appears mainly in extrapolations to extreme age above 105 years, 
which is not the main focus of this article, we limit our analysis to the exponen-
tial curve (Gompertz model).  
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2.1.  Likelihood of the Number of Deaths 
 
 Consistently with recent research (Brouhns, Denuit and Vermunt, 2002; 
Antonio, Bardoutsos and Ouburg, 2015; or Czado, Delwarde and Denuit, 2005) 
we assume that number of deaths in each age x for each cohort c follows a Poisson 
distribution with expected value proportional to the population exposed to risk 
of death 
 

, , ,(  )x c x c x cD Po Eµ=             (4) 
 
 The following 4 parametric linear predictor, i.e. the linear function of age and 
cohort, is assumed for the dependence of the force of mortality on age, cohort, 
and interaction of age and cohort: 
 

, 1 2 3 4ln( )x c x c xcµ β β β β= + + +        (5) 
 
 This means the single population model is specified as a Bayesian generali-
zed linear model with a Poisson distribution of the response variable x cD ,  and 

logarithmic link function with the offset equal to the logarithm of the exposure 

x cE , . 

 
2.2.  Prior Distributions 
 
 Prior distribution represents the information available prior to data collection. 
Multivariate normal prior distribution is assumed for the vector of regression 
parameters 1 2 3 4( , , , )Tβ β β β β= : 
 

( )4 0 0~ ,ΣNβ β  
 
where 0β  and 0Σ are so called hyperparameters determining the shape of the prior 

distribution. Following (Hoff, 2009), we take an approach based on unit infor-
mation, in which the prior distributions for the parameters are weakly centered 
around estimates derived from the observed data. A frequentist GLM model with 
the following schematic specification is constructed in order to set the prior ex-
pectation of 0β : 
 

D ~ AGE + COHORT + COHORT : AGE 
 
where symbol ‘+’ separates the regression terms and ‘:’ denotes the interactions. 
Offset ,ln x cE  was used. For the prior covariance 0Σ , a large constant (1000) is 

selected for the variances on the diagonal, and independence is assumed, i.e. off-  
-diagonal elements are set to 0. High prior variance reflects our uncertainty asso-
ciated with the choice of prior information. 
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2.3.  Posterior Distribution 
 
 Posterior distribution is the distribution that combines the information from 
both the prior distribution as well as the sample. Inference about parameter esti-
mates is based on posterior density given the mortality data: 
 

( | ) ( | ) ( )p D p D pβ β β∝                 (6) 
 
 As for generalized linear models, an analytical formula for the posterior dis-
tribution (6) does not exist in general. We use simulations to create samples from 
this distribution and perform an empirical analysis. The Metropolis algorithm is 
applied to generate a dependent sequence of parameter values whose distribution 
converges to target posterior distribution (6). The Metropolis algorithm is a two-
step algorithm in which a new value is first proposed from so called proposal 
distribution and then either accepted or rejected with an acceptance probability. 
 A convenient choice for the proposal distribution is some symmetric distribu-
tion concentrated around current value of the generated sequence. Often the multi-
variate normal distribution is used. The basic steps of the Metropolis algorithm are:  
 For each simulation (‘scan’) s 

1. Generate (‘propose’) a random value *β  from proposal distribution 
 

( )* ( )
4 ~  ,s TN uX Xβ β  

 
where  
 X  – design matrix of the regression function (5), 
 u  – scaling factor set by ‘trial and error‘ in order to keep the acceptance ratio of the 

parameters in a reasonable range.  
 
 This range is generally suggested to be between 20 – 50% (Hoff, 2009). Fol-
lowing (Czado, Delwarde and Denuit, 2005), the scaling factor is updated every 
100 simulations in order to keep the acceptance ratio in the required range. 
 

2. Set ( 1)sβ +  equal to *β  or equal to current value ( )sβ  with acceptance pro-

bability r defined as  
 

* *
0

( ) ( )
0

( | ) ( )
 

( | ) ( )s s

p D p
r

p D p

β β
β β

=     (7) 

 
where  
 0p  – prior distribution of the vector of parameters β,  

 p   – Poisson likelihood. 
 
 Further details on Metropolitan algorithm and alternatives can be found e.g. in 
Gelman, Carlin and Stern (2014). 
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3.  Multi-population Hierarchical Model 
 
 In order to use the information from several, to some extent similar popula-
tions, a multi-population model is set up. In order to capture the variability be-
tween several populations on one hand, and take the advantage of using multiple 
data sources in order to reduce the uncertainty in estimates, caused by lack 
of single population observations, on the other hand, a hierarchical structure is 
assumed. The model is specified as a Bayesian hierarchical generalized linear 
model. 
 For multi-population model, we use analogous specifications as for the single 
population model. Namely, we also assume the exponential increase of the force 
of mortality with age and the Poisson distribution for a number of deaths. Simi-
lar regression function as in (5) is assumed.  
 In order to keep the complexity of notation reasonable, we use the same nota-
tion as for the single population model. As the following two sections are not 
referencing to Section 2, no confusion should appear. 
 
3.1.  Likelihood of the Number of Deaths and Distribution of Parameters β 
 
 Analogously to the single population model, we assume that the number of 
deaths for each age x, cohort c and each population i follows Poisson distribution 
with expected value proportional to the population exposed to risk of death 
 

( ) ( ) ( )
, , ,( )i i i

x c x c x cD Po Eµ=           (8) 
 
 Again, we assume the four parametric regression model for the expected 
force of mortality. This time, however, with population specific parameters: 
 

( ) ( ) ( ) ( ) ( )
, 1 2 3 4ln( )i i i i i

x c x c xcµ β β β β= + + +          (9) 
 
 It is assumed that vector of parameters ( ) ( ) ( )

1 4( , , )i i i Tβ β β= …   is a country spe-

cific realization of a random variable with multivariate normal distribution 
 

�~��	
, Σ� 
 
where θ  can be interpreted as a ‘global’ mean of the parameters from which 

country specific parameters ( )iβ  deviate to the extent driven by the covariance 

matrix Σ . The model specification is, in fact, a specification of a hierarchical 
generalized linear model with Poisson distribution and the logarithmic link func-
tion, i.e. the transformation that links the expected value to the linear predictor. 
Prior distributions of θ  and Σ  are specified in accordance with (Gelman, Carlin 
and Stern, 2014). 
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3.2.  Prior Distribution of the Global Parameters θ  and Σ  
 
 We assume semi-conjugate multivariate normal prior distribution for the pa-
rameter θ  with hyperparameters 0θ  and 0Λ .  

 In order to set reasonable values of the hyperparameters 0θ  and 0Λ , a fre-

quentist GLM model with the following schematic specification: 
 
D ~ COUNTRY : AGE + COHORT : COUNTRY + COUNTRY : COHORT : AGE 
 
assuming Poisson distribution with logarithmic link function and ( )

,ln i
x cE  as an 

offset, was fitted. The interactions with the factor variable COUNTRY provide 
country specific estimates of the regression parameters. The hyperparameter 0θ  

is then set as the simple average of the country specific parameters and 0Λ  is the 

empirical covariance matrix of the country specific estimates of these regression 
parameters multiplied by a large constant (1 000). 
 
3.3.  Prior Distribution of the Global Parameter Σ   
 
 A common choice for the prior distribution of a covariance matrix is the in-
verse-Wishart distribution with two hyperparameters 0S  and 0η . In accordance 

with (Hoff, 2009), we set 0 0S = Λ  and in order to set the prior relatively diffuse, 

we set 0 4 2η = + . 
 
3.4.  Summary of the Model 
 
 Figure 1 summarizes the structure of the model. The model is built from bot-
tom up to the top of the pyramid. The lowest level consists of parameters deter-
mining the distribution of hyperparameters which can be seen in the line above. 
The middle line represents 4 parameters of the regression model for the expected 
force of mortality. 
 
F i g u r e  1  

Model Construction 

 
Source: Own work. 
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4.  Multi-population Model Posterior Distributions  
 
 Inference about the parameter estimates is based on joint posterior density 
given the mortality data: 
 

( , ,Σ | ) ( | , ,Σ) ( , ,Σ)p D p D pβ θ β θ β θ∝              (10) 
 
We use Markov Chain Monte Carlo simulations to generate samples from this 
distribution and perform an empirical analysis. Full conditional density of a given 
parameter is defined as a density of the given parameter conditional on all other 
parameters involved. For parameters for which analytical form of full conditional 
density is known, we use Gibbs algorithm. If the full conditional density does 
not exist in an analytical form, the Metropolis algorithm is applied. The combi-
nation of these two algorithms results in the following Metropolis-Gibbs algo-
rithm. Details for each step are in Sections 4.1. – 4.3.  
 Given current values at scan s of the Markov chain, generate new values at 
san s + 1 as follows:  

1. Sample ( 1)sθ +  from its full conditional distribution. 
2. Sample ( 1)

Σ
s+  from its full conditional distribution. 

3. For each country i. 
 Propose a random value *β  from a proposal distribution specified in Section 4.3. 

Set ( , 1)i sβ +  equal to *β  or equal to current value ( , )i sβ  with an acceptance proba-

bility specified in Section 4.3. 
 
4.1.  Gibbs Sampling for θ  
 
 In linear as well as in generalized linear models, full conditional distribution 

( | ,Σ, ) p Dθ β   of the mean of the regression parameters does not depend on the 
distribution assumed for the mortality ( | , ,Σ)p D β θ . Assuming that β have 

a multivariate normal distribution and that the prior distribution for θ  is also 
a normal distribution, the full conditional distribution ( | ,Σ, ) p Dθ β  is the multi-

variate normal distribution ( ),Λp m mN θ , where 
 

( ) 11 1
0Λ Λ Σm q

−− −= +             (11) 
 
and 
 

( )1 1
0 0Λ Λ Σm mθ θ β− −= +     (12) 

 
where (1) (2) ( ) qβ β β β= + +…+  is the vector sum of the vector parameters ( )iβ  

over all countries involved. 
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4.2.  Gibbs Sampling for Σ  
 
 Assuming that β have a multivariate normal distribution and that prior for Σ  
is the inverse-Wishart distribution, the full conditional distribution (Σ| , , )p Dβ θ  

is also the inverse-Wishart distribution ( )0 ,S Sp oIW q θη + + , where 
 

( )( )( ) ( )

1

S
q

Ti i

i
θ β θ β θ

=

= − −    (13) 

 
4.3.  Metropolis Sampling for β 
 
 A new value is in a given scan s first proposed for each country i and then 
either accepted or rejected. The index of the country i is now dropped for sim-
plicity. Standard proposal probability for the vector of parameters β at a current 
scan s is a multivariate normal distribution with mean equal to the current value 

( )sβ  and covariance equal to Σv : 
 

( )* ( ) ~ , Σ sN uβ β       (14) 
 
where u is again a scaling factor analogous to the scaling factor introduced in 
Section 2.3 for the single population model. It is again set by “trial and error” 
and updated every 100 simulations in order to keep the acceptance ratio between 
20 – 50%. The probability that the proposed value *β  is accepted is at the step s 

calculated as 
 

* * ( ) ( )

( ) ( ) ( ) ( )

( | ) ( | ,Σ )

( | ) ( | ,Σ )

s s

s s s s

p D p
r

p D p

β β θ
β β θ

=       (15) 

 
 A random indicator with alternative distribution with mean equal to r is gene-
rated in each scan. If a success is generated, then the proposed value is accepted, 
i.e. ( 1) *sβ β+ = . Otherwise, ( 1)sβ +  is set equal to ( )sβ . 
 
 
5.  Empirical Results 
 
 The estimates of parameters for single and multi-population models are de-
rived from 100 thousand scans. Every 200th scan was saved to reduce the auto-
correlation of consecutive scans resulting in 500 simulations. The estimates are 
based on analyses of data from 34 male cohorts (1879 – 1913) in age category 
85 – 99 years for five countries of the Central European region. Whole life annuities 
are calculated in each simulation for a fixed interest rate of 1%. Estimates from the 
hierarchical model, showing the diversity of the old age mortality between all 
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countries considered, as well as the global prediction, common for the whole 
region, are for illustration displayed for the last cohort c = 1913 on Figure 2. The 
dashed curve represents estimate of ,1913xµ  calculated based on estimated values of 

the expected value θ  of the country specific parameters. This curve can be inter-

preted as a global estimate for the whole region. Country specific curves ,1913
i
xµ  

are then displayed as the lines scattered around this global curve. These curves are 
calculated based on the estimates of the country specific vector of parameters ( )iβ . 

 For each of the five countries involved in the analysis, the root mean squared 
error (RMSE) of the estimates of the force of mortality and whole life annuities 
in every cohort and every age were calculated for both the single and multi-
population model. For the single-population model, RMSE is for each age point 
x, cohort c, and country i, the standard deviation of the simulated estimates:  
 

( ) ( )
1/22

( , , , )  ( , , )
, ,  s

x c i s x c i
RMSE x c i

n

µ µ − = 
 
 



         

(16) 

 
where  
 ( , , , )x c i sµ  – estimate of the single population model in a simulation s, 

 ( , , )x c iµ   – mean of the estimates of the single-population model over all simulations,  

 n  – number of simulations. 
 
F i g u r e  2 

Multi-population Model: Estimates for Cohort c = 1913 Calculated Based  
on Parameters Estimated for Each Country and the Global Parameters  
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Source: Own work. 

 For the multi-population model, RMSE is calculated as the square root of the 
sum of the variance of the estimation over all simulations and squared estimate 
of the bias. The bias is estimated as the mean difference of the estimates from 
the multi population model from the mean estimate from the single population 
model. So the RMSE of the multi population estimate (denoted by additional 
index m) is calculated as:  
 

( )

( ) ( )
1/222

, , ,

( , , , , )  ( , , , ) ( , , , , )  ( , , )
 s s

RMSE m x c i

m x c i s m x c i m x c i s x c i

n n

µ µ µ µ

=

  − −  = +  
   

 

 

(17) 

where  
 ( , , , , )m x c i sµ  – estimate of the multi-population model in a simulation s,  

 ( , , , )m x c iµ  – mean of the estimates of the multi-population model over all simulations,  

 ( , , )x c iµ  – mean of the estimates of the single-population model over all simulations, 

 n   – number of simulations.  
 
 For each country, the relative difference between RMSE was compared: 
 

( ) ( )
( )

, , , , ,

, ,

RMSE x c i RMSE m x c i

RMSE x c i

−
       (18) 

 
 Contour plots for the relative difference of RMSE of force of mortality and 
whole life annuities for each country are displayed in Appendix in Figure 3 and 
Figure 4 respectively. The contour corresponding to zero difference is marked 
with the bold white line. Single-population model has higher RMSE (of force of 
mortality and whole life annuity, respectively) than the multi-population model 
in areas with a positive difference (lighter areas). In areas with a negative differ-
ence (darker areas), the single-population model outperformed the multi-popula-
tion model. For all countries, there were certain positive and certain negative 
areas. We may state that: 

1. For the Czech Republic, Austria and East Germany relatively large differ-
ence occurs in certain areas (see left column of Figures 3 and 4 in Appendix), 
while as for Slovakia and Hungary, the relative difference is negligible (see right 
column of Figures 3 and 4 in Appendix). Due to the difference in scale of the 
relative difference, the scale of the palette is country specific.  

2. In general, we may state that multi-population model outperformed the 
single-population model for lower and middle cohorts and higher and lower ages 
while as the single-population model outperforms multi-population model for 
lower cohorts and middle ages.  
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3. For the highest cohorts, the difference between the two models is generally 
closer to zero than for the lowest cohorts. 

4. Highest positive values of the relative difference in MSE reaches much 
higher values than the absolute value of the lowest negative difference in MSE. 
So positive gains in using multi-population models are, on the age and cohort 
ranges analysed, often higher than negative drawbacks. 
 
 
Conclusions and Discussion 
 
 The main focus of this article is on a comparison of the performance of the 
single-population and multi-population model. On one hand, including informa-
tion contained in data from geographically and economically closed populations 
could reduce variance in old age force of mortality estimates. On the other hand, 
a bias occurs. A Bayesian hierarchical model is a suitable way to setup a multi-
population model. In our application, we set up a common model for the Czech 
Republic, Austria, Hungary, former East Germany and Slovakia. Resulting un-
certainty for single and multi-population model was compared for each country 
involved. The empirical comparison shows the following main conclusions:  

1. It cannot be stated, that multi or single-population model generally outper-
forms the other one. The difference in RMSE (of both force of mortality as well 
as whole life annuities) and its sign depend on the values of explanatory varia-
bles (age and cohort). 

2. For some countries, the relative difference in RMSE of force of mortality 
as well as the whole life annuity is rather low, and countries for which the differ-
ence is high. 

3. There are ranges of age and cohorts, common to all countries, for which 
multi-population model outperforms single-population model and other common 
ranges, for which single-population model outperforms the multi-population model. 

4. In areas in which the multi-population model outperforms the single-po-
pulation model, the relative difference of RMSE of both the force of mortality 
and the whole life annuity is generally higher than in areas where single-popula-
tion model outperforms the multi-population model. 
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A p p e n d i x 
 
F i  g u r e  3  

Relative Difference of the RMSE of the Force of Mortality in Each Country 

  

  

 

 

Source: Own work. 
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F i g u r e  4  

Relative Difference of the RMSE of the Whole Life Annuities for Each Country 

  

  

 

 

Source: Own work. 


