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Comparison of Estimation Uncertainty in Lifelong
Annuities for Bayesian Single- and Multi-population
Old Age Mortality Model*

Pavel ZIMMERMANN - Jan FOJTIK — Martin MAIKA — Tomas KAREBL

Abstract

Old age mortality modelling is often associatedhwack of reliable data,
especially for small populations. We focus on apraach to incorporate infor-
mation contained in the data from closed populaiamd study its impact on
estimation uncertainty in an old age mortality mod#e assume a two-dimen-
sional age cohort extension of the exponential (fenmtz) model. We compare
uncertainty of the parameter estimates for two neodene first is a single popu-
lation model based on data solely from one counitye second is a multi-
population model for a sample of populations fréva tentral European region.
Bayesian generalized linear model and a hierarchiBayesian generalized
linear model is applied. We quantify the differeirtéhe uncertainty of the esti-
mates of the force of mortality and whole life abnibased on root mean
squared error of the predictions for different ageshorts and populations.

Keywords: old age mortality, Bayesian GLM, Bayesian Hieraozthi model,
multi-population model

JEL Classification: C10, C11, J10, J11

Introduction

Mortality modelling is a major concern for pubpolicy, social security, and
private insurance. Sufficient amount and qualitynairtality data is absolutely
critical for successful model development, its aggtion, and evaluation. Old
age mortality modelling is, however, very oftenaasated with lack of data,
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incorrect or even missing values. This shortconoftgn results in wide confi-
dence intervals of predictions or even misleadingdjgtions. The presented
article suggests a method for incorporation of tololl data to an old age mor-
tality model and quantifies the impact of this diddial data on estimation un-
certainty measured by the root mean squared error.

In general, mortality is modelled separately fdula and old ages. A low
number of observations for old ages prevents usingels with age specific
parameters, e.g. Lee and Carter (1992) or its riwadgiibns, which are generally
popular for adult ages. Therefore, old age modedsoften formulated as one-
-dimensional models, so called ‘mortality laws’,thwionly a few parameters.
Gompertz (1825) assumed exponential growth of rigrtaith increasing age.
Makeham (1860) subsequently extended this modél itonstant parameter
which represented mortality caused by age indepdneleernal causes. Later
on, with increasing amount of empirical observationolder ages, the exponential
growth was challenged by some authors and a slowesase was suggested.
Koschin (1999) extended Gompertz-Makeham model antladditional parame-
ter in order to slow exponential growth of mortaliSome authors proposed
logistic curve as an alternative. Historically, fivst mortality model based on
logistic curve assumption was introduced by Petl82). In the recent past, the
logistic curve was applied by Thatcher (1999) ofidgtean and Pollard (1980).
A comprehensive summary of old age mortality modkelsrovided by Pitacco,
Denuit and Haberman (2009) or Burcin, Tesarkova fdlo (2010). Several
publications focus on dynamics of mortality at @de. A comparative study
of mortality trajectories at extremely old ages vpamblished in Gavrilov and
Gavrilova (2014). Age specific shifts of the logistnodel were investigated by
Teséarkova Hulikova (2012). Long-term mortality tlerwith respect to high age
mortality were studied for example by Gavrilov d@dvrilova (2011).

We assume a two-dimensional extension of the eeqtéad model and model
the cohort-age specific force of mortality at olgea simultaneously in the age
and cohort dimension. Our main aim is to compareettainty of the force of
mortality estimates for two models. The first modeh single population model
of the old age mortality fitted based on data sofebm one population. The
second model is a multi-population model for a dangb populations from the
Central European region. We quantify the differeincehe uncertainty of the
estimates from the two models for five countriemfithe central European region,
measured by mean squared error for both the fdroeodtality and whole life
annuity. The main question is: “To what extent deten surrounding populations
reduce the estimation uncertainty.” Ahcan et ab1@ proposed incorporating
information from surrounding countries using nuroarioptimization method to
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obtain a linear combination of death rates froma@urding countries which opti-

mally explains the target population. The ‘miximg’base population and the line-
ar combination is then based on credibility appnaadking into account different

exposures of each country. Resulting ‘credibiligtad are then used to apply
standard single population models. We use Bayenithods. Namely Bayesian
generalized linear model (BGLM) and hierarchicay®san generalized linear
model (HBGLM). Czado, Delwarde and Denuit (2005)eistigated Bayesian

Poisson log-bilinear mortality predictions for adafjes in contrast to traditionally
used Lee-Carter model (Lee and Carter, 1992). Ant@ardoutsos and Ouburg
(2015) extended the model of Czado to include mpleltpopulations. Forecasts
of male period life expectancy at birth for all otuies of the world until the year

2100 were also performed using a Bayesian hier@athmodel proposed by

Raftery et al. (2013). The application of Bayesiandom-effects approach for
improving mortality predictions of a small poputatiwas investigated by Jonker,
van Lenthe and Congdon (2012), who concluded thge&an Monte Carlo simu-
lations outperform traditionally calculated life pctancies in bias, root mean
square error and credible intervals coverage. Gainroontribution is the con-

struction of a multi population old age HBGLM modw®id its application on

central European region in order to quantify thducdion of uncertainty in pa-

rameter estimates in comparison to a single papualatodel.

The structure of the article is as follows. Settiopresents underlying data
and corresponding notation used. Single-populatr@del together with the
likelihood specification, prior and posterior diktrtions are introduced in Sec-
tion 2. Section 3 extends the single model to atifpopulation hierarchical
model and describes corresponding prior distrilmstiof model parameters. Sec-
tion 4 describes simulation procedures used fopsamfrom posterior distribu-
tions of the hierarchical model. Empirical resudt® presented in Section 5.
Conclusions based on presented results are indagbn.

1. Data and Notation

Our scripts for statistical software R, togethdéthveample dataset for Czech
Republic are placed at a link speciffeBource of all data used in this paper is
The Human Mortality Database (Wilmoth, ShkolnikowdaBarbieri, 2012), ab-
breviated as HMD in further text. The input data #re ‘Death rates’ and ‘Ex-
posure-to-risk’ data in cohorts data section in ype@ age and one year calendar
intervals. Number of deaths is calculated as théiphel of death rate and the

2 Scripts produced for this research are placed at:
<https://drive.google.com/file/d/10gqdQfMAVrtvKsU48avyiWugaghlwqU/view?usp=sharing>.
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exposure to risk. Five countries are included in analysis: Austria, Hungary,
former East Germany, Czech Republic and Slovakias& countries were chosen
with respect to geographical, historical and scgiimilarities to the Czech Repub-
lic. Poland would also be a suitable candidategrunhately, reliable data are not
available. The model was fitted for the age rarfge 89. The inclusion of obser-
vations from younger ages would reduce the infleenfcthe old age data which
are the main focus of the research. Observatioogea®9 years of age are either
not available at all or its quality is dramaticdthyv. For the age category 85 — 99
and the selected set of countries, cohorts fron® 1871913 are available.

Population exposed to risk of death of the cobaittthe agex is denoted,
the number of deaths i3, . The force of mortality is denoteg .. Countries are
distinguished by upper right indexThe total number of countries involved is
denotedy. In age-cohort format, HMD publishes only deathiesay . and expo-
sure to riskE, . Therefore cohort number of deaibs: is calculated as

D,.=m E (1)

X,C—XC

Probability that a person at agef the cohort will survive to an age + 1 is
denotedpy . and calculated as follows

1
Prc = OXP[ e o O 2)
0

The analysis will take into account not only agéart specific death rates
but also age-cohort specific whole life annuiti€serefore a whole life annuity
for an agex and a cohort is calculated as

a,.=> pV ®3)

where
v — denotes discounting factor.

2. Single-population Model and Prior Distributions Specification

As stated above, several curves have been profpasttt dependence of old
age mortality on age. In order to keep the numbgammeters reasonable, only
two-parametric specifications were considered. Beptial and logistic curves
are the most popular specifications. As a significdifference between these
two curves appears mainly in extrapolations toeawr age above 105 years,
which is not the main focus of this article, weitimur analysis to the exponen-
tial curve (Gompertz model).
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2.1. Likelihood of the Number of Deaths

Consistently with recent research (Brouhns, Deianidl Vermunt, 2002;
Antonio, Bardoutsos and Ouburg, 2015; or CzadowBerle and Denuit, 2005)
we assume that number of deaths in eachx&geeach cohort follows a Poisson
distribution with expected value proportional t@ thopulation exposed to risk
of death

DX,C = Pdle,C EX, C) (4)

The following 4 parametric linear predictor, itikee linear function of age and
cohort, is assumed for the dependence of the foirerortality on age, cohort,
and interaction of age and cohort:

IN(k4,0) = B+ BX+ BC+ B,xC ()

This means the single population model is speatifie a Bayesian generali-
zed linear model with a Poisson distribution of teeponse variabl®, . and

logarithmic link function with the offset equal tbe logarithm of the exposure

E, ..

2.2. Prior Distributions

Prior distribution represents the information &afale prior to data collection.
Multivariate normal prior distribution is assumeat tthe vector of regression

parametersB = (8,,5,.5:.8.) :
ﬂ~ N4 (:80’20)

where £, and X, are so called hyperparameters determining the shfape prior

distribution. Following (Hoff, 2009), we take anpmpach based on unit infor-
mation, in which the prior distributions for therpmeters are weakly centered
around estimates derived from the observed dateequentist GLM model with
the following schematic specification is construlcte order to set the prior ex-
pectation of;:

D ~ AGE + COHORT + COHORT : AGE

where symbol ‘+' separates the regression terms:addnotes the interactions.
OffsetInE, . was used. For the prior covariantg, a large constant (1000) is

selected for the variances on the diagonal, anepieddence is assumed, i.e. off-
-diagonal elements are set to 0. High prior vaeamlects our uncertainty asso-
ciated with the choice of prior information.
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2.3. Posterior Distribution

Posterior distribution is the distribution thatndaines the information from
both the prior distribution as well as the sampiéerence about parameter esti-
mates is based on posterior density given the fitgrtiata:

p(£1D)0 p(D|B)p(B) (6)

As for generalized linear models, an analyticaifala for the posterior dis-
tribution (6) does not exist in general. We useuattions to create samples from
this distribution and perform an empirical analygiee Metropolis algorithm is
applied to generate a dependent sequence of paravadies whose distribution
converges to target posterior distribution (6). Metropolis algorithm is a two-
step algorithm in which a new value is first progpdbsrom so called proposal
distribution and then either accepted or rejectid an acceptance probability.

A convenient choice for the proposal distributisrsome symmetric distribu-
tion concentrated around current value of the gegadrsequence. Often the multi-
variate normal distribution is used. The basicstdghe Metropolis algorithm are:

For each simulation (‘scars)

1. Generate (‘propose’) a random valgie from proposal distribution

B ~N,(B° ux"X)

where
X —design matrix of the regression function (5),
u — scaling factor set by ‘trial and error* in orde keep the acceptance ratio of the
parameters in a reasonable range.

This range is generally suggested to be between5W% (Hoff, 2009). Fol-
lowing (Czado, Delwarde and Denuit, 2005), theiagafactor is updated every
100 simulations in order to keep the acceptanae irathe required range.

2. Set 5 equal to" or equal to current valug® with acceptance pro-
bability r defined as

__p(IF)IRB) @
p(D157) R, (B7)

where
p, — prior distribution of the vector of parametgrs

p — Poisson likelihood.

Further details on Metropolitan algorithm and raédives can be found e.g. in
Gelman, Carlin and Stern (2014).
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3. Multi-population Hierarchical Model

In order to use the information from several, dme extent similar popula-
tions, a multi-population model is set up. In ortieicapture the variability be-
tween several populations on one hand, and taked¥ntage of using multiple
data sources in order to reduce the uncertaintgstimates, caused by lack
of single population observations, on the otherdhanhierarchical structure is
assumed. The model is specified as a Bayesianrtiecal generalized linear
model.

For multi-population model, we use analogous $ations as for the single
population model. Namely, we also assume the exp@iencrease of the force
of mortality with age and the Poisson distributfona number of deaths. Simi-
lar regression function as in (5) is assumed.

In order to keep the complexity of notation readua, we use the same nota-
tion as for the single population model. As thddiwing two sections are not
referencing to Section 2, no confusion should appea

3.1. Likelihood of the Number of Deaths and Distribution of Parameters f8

Analogously to the single population model, weuass that the number of
deaths for each age cohortc and each populatianfollows Poisson distribution
with expected value proportional to the populateposed to risk of death

Dy = Pot Y. ®

Again, we assume the four parametric regressiodeintor the expected

force of mortality. This time, however, with poptiten specific parameters:

() = B+ Bxc+ Bc+ B xc ©
It is assumed that vector of parametgfé = (8Y,..., V) is a country spe-
cific realization of a random variable with multnate normal distribution
B~N4(6,%)

where @ can be interpreted as a ‘global’ mean of the patara from which
country specific paramete;&(i) deviate to the extent driven by the covariance
matrix . The model specification is, in fact, a specifizatof a hierarchical
generalized linear model with Poisson distributio the logarithmic link func-
tion, i.e. the transformation that links the expécvalue to the linear predictor.
Prior distributions ofgd andX are specified in accordance with (Gelman, Carlin
and Stern, 2014).
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3.2. Prior Distribution of the Global Parameters 8 and X

We assume semi-conjugate multivariate normal gtistribution for the pa-
rameter@ with hyperparameter§, and A, .

In order to set reasonable values of the hypenpatersd, and A,, a fre-
guentist GLM model with the following schematic sifieation:

D ~ COUNTRY : AGE + COHORT : COUNTRY + COUNTRY HORT : AGE

assuming Poisson distribution with logarithmic lifknction andin E{), as an
offset, was fitted. The interactions with the factariable COUNTRYprovide
country specific estimates of the regression pararseThe hyperparameté
is then set as the simple average of the coungyifspparameters and,, is the

empirical covariance matrix of the country spec#&timates of these regression
parameters multiplied by a large constant (1 000).

3.3. Prior Distribution of the Global Parameter %

A common choice for the prior distribution of avatiance matrix is the in-
verse-Wishart distribution with two hyperparamet&sands,. In accordance

with (Hoff, 2009), we se§, =/, and in order to set the prior relatively diffuse,
we setr), =4+ 2.

3.4. Summary of the Model

Figure 1 summarizes the structure of the moded. mbdel is built from bot-
tom up to the top of the pyramid. The lowest len@hsists of parameters deter-
mining the distribution of hyperparameters which t& seen in the line above.
The middle line represents 4 parameters of theessgyn model for the expected
force of mortality.

Figure 1
Model Construction
Number of deaths D\”C'
. \ ()
Mortality rates H .
/'
Parameters IB‘”
/ ™~
Hyperparameters 9 D
/N /N
Constants 00 A0 So &

Source:Own work.
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4. Multi-population Model Posterior Distributions

Inference about the parameter estimates is basgdirtt posterior density
given the mortality data:

p(B8.6,2|D)0 p(D[S.0 %) p(B.6,%) (10)

We use Markov Chain Monte Carlo simulations to gateesamples from this
distribution and perform an empirical analysis.| Eohditional density of a given
parameter is defined as a density of the givenrpeter conditional on all other
parameters involved. For parameters for which dicalyform of full conditional
density is known, we use Gibbs algorithm. If th# Gonditional density does
not exist in an analytical form, the Metropolis @iighm is applied. The combi-
nation of these two algorithms results in the feilog Metropolis-Gibbs algo-
rithm. Details for each step are in Sections 44.3-

Given current values at scarof the Markov chain, generate new values at
sans + 1 as follows:

1. Sample&™*? from its full conditional distribution.

2. Samplez®™ from its full conditional distribution.

3. For each country.

Propose a random valy® from a proposal distribution specified in Sectb8.

i,s)

Set 5 equal toS or equal to current valug’
bility specified in Section 4.3.

with an acceptance proba-

4.1. Gibbs Sampling for 8

In linear as well as in generalized linear modfll,conditional distribution
p(g|3,%,D) of the mean of the regression parameters doesapsnd on the

distribution assumed for the mortalitg D(£ 16 ¥),. Assuming thats have

a multivariate normal distribution and that theoprdistribution foré is also
a normal distribution, the full conditional distation p (8|3 X, D) is the multi-

variate normal distributioN_(6,,A ) , where
Ap= (A5 +az™)” (12)
and
b= Ao(A56,+27B) (12)

where B=4%+ £ +...+ B9 is the vector sum of the vector parametgfs
over all countries involved.
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4.2. Gibbs Sampling for 2

Assuming thap have a multivariate normal distribution and thaopfor
is the inverse-Wishart distribution, the full comnainal distribution p(X|3,6,D)

is also the inverse-Wishart distributiow (7,+9S,+S), where

q

s,=>(8"-6)(8-6) (13)

i=1l
4.3. Metropolis Sampling for 8

A new value is in a given scafirst proposed for each countryand then
either accepted or rejected. The index of the agunis now dropped for sim-
plicity. Standard proposal probability for the arcof parameterg at a current
scans is a multivariate normal distribution with mearuatjto the current value
[ and covariance equal & :

B ~N(p9 &) (14)

whereu is again a scaling factor analogous to the scdhetpr introduced in
Section 2.3 for the single population model. lagain set by “trial and error”
and updated every 100 simulations in order to kbeemcceptance ratio between
20 — 50%. The probability that the proposed vaflids accepted is at the step

calculated as

_ p(DIB)p(B 16° 3?)
" p(D189)p(B° 16 Z°) (15)

A random indicator with alternative distributioritvmean equal to is gene-
rated in each scan. If a success is generatedthibgaroposed value is accepted,
i.e. g = (", Otherwise, 5™ is set equal tg3® .

5. Empirical Results

The estimates of parameters for single and molbgation models are de-
rived from 100 thousand scans. Every 2@8an was saved to reduce the auto-
correlation of consecutive scans resulting in 5d@ukations. The estimates are
based on analyses of data from 34 male cohort9(£8913) in age category
85 — 99 years for five countries of the Centraldpean region. Whole life annuities
are calculated in each simulation for a fixed ies¢rate of 1%. Estimates from the
hierarchical model, showing the diversity of thel aige mortality between all
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countries considered, as well as the global priedgiccommon for the whole
region, are for illustration displayed for the lashortc = 1913 on Figure 2. The
dashed curve represents estimatg/gf,; calculated based on estimated values of

the expected valu@ of the country specific parameters. This curve loarinter-
preted as a global estimate for the whole regiamun@y specific curvesuixy1913

are then displayed as the lines scattered arousmdltdbal curve. These curves are
calculated based on the estimates of the coungwifapvector of parameterg® .

For each of the five countries involved in thelgsia, the root mean squared
error (RMSE) of the estimates of the force of mlagtaand whole life annuities
in every cohort and every age were calculated fiih lthe single and multi-
population model. For the single-population mo@®N|SE is for each age point
X, cohortc, and country, the standard deviation of the simulated estimates

2 1/2

Zs(,u(x, ci,8)- (%G i))

RMSH x ¢ )= - (16)
where
H(X, ¢, i,8) — estimate of the single population model in a &tion s,
Zl(x, ¢, i) —mean of the estimates of the single-populatiodel over all simulations,
n —number of simulations.
Figure 2

Multi-population Model: Estimates for Cohort ¢ = 1913 Calculated Based
on Parameters Estimated for Each Country and the Gibal Parameters

0.35 0.40 045
1 L 1

Force of mortality

0.30
|

0.25
d

Country specific

0.20
1

T T T T T

90 92 94 96 98



714

Source:Own work.

For the multi-population model, RMSE is calculatexithe square root of the
sum of the variance of the estimation over all $ations and squared estimate
of the bias. The bias is estimated as the meaardiite of the estimates from
the multi population model from the mean estimatenf the single population
model. So the RMSE of the multi population estim@enoted by additional
indexm) is calculated as:

RMSE m x ¢ )=
2 1/2

[ X (umxcig-umxc) (T fu(mxciguxe)]| an

n n

where
H(m, % ¢ i, 9 — estimate of the multi-population model in a diations,

p(m, X G i) —mean of the estimates of the multi-populatiodehover all simulations,

Z{(x, G i) — mean of the estimates of the single-populatiodetover all simulations,
n — number of simulations.

For each country, the relative difference betweBSE was compared:

RMSE x ¢)- RMSE m,x,g
RMSH x¢)

Contour plots for the relative difference of RM$Eforce of mortality and
whole life annuities for each country are displairedppendix in Figure 3 and
Figure 4 respectively. The contour correspondingemm difference is marked
with the bold white line. Single-population model agher RMSE (of force of
mortality and whole life annuity, respectively) thdme multi-population model
in areas with a positive difference (lighter are&s)areas with a negative differ-
ence (darker areas), the single-population modigerformed the multi-popula-
tion model. For all countries, there were certaisifie and certain negative
areas. We may state that:

1. For the Czech Republic, Austria and East Germanyivelg large differ-
ence occurs in certain areas (see left column gfireEs 3 and 4 in Appendix),
while as for Slovakia and Hungary, the relative défece is negligible (see right
column of Figures 3 and 4 in Appendix). Due to thiéedénce in scale of the
relative difference, the scale of the palette isntry specific.

2. In general, we may state that multi-population moalgiperformed the
single-population model for lower and middle cohentsl higher and lower ages
while as the single-population model outperforms tipdpulation model for
lower cohorts and middle ages.

(18)
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3. For the highest cohorts, the difference betweernvwiemodels is generally
closer to zero than for the lowest cohorts.

4. Highest positive values of the relative differenceMSE reaches much
higher values than the absolute value of the lowegative difference in MSE.
So positive gains in using multi-population modats, on the age and cohort
ranges analysed, often higher than negative drawgbac

Conclusions and Discussion

The main focus of this article is on a compariséithe performance of the
single-population and multi-population model. Oredmand, including informa-
tion contained in data from geographically and ecooically closed populations
could reduce variance in old age force of mortagyimates. On the other hand,
a bias occurs. A Bayesian hierarchical model igitalsle way to setup a multi-
population model. In our application, we set uppengon model for the Czech
Republic, Austria, Hungary, former East Germany &tal/akia. Resulting un-
certainty for single and multi-population model wamsnpared for each country
involved. The empirical comparison shows the follgyvmain conclusions:

1. It cannot be stated, that multi or single-populatimodel generally outper-
forms the other one. The difference in RMSE (ohbfarce of mortality as well
as whole life annuities) and its sign depend onvtilees of explanatory varia-
bles (age and cohort).

2. For some countries, the relative difference in RMSHEorce of mortality
as well as the whole life annuity is rather lowd aountries for which the differ-
ence is high.

3. There are ranges of age and cohorts, common twatitries, for which
multi-population model outperforms single-populatimodel and other common
ranges, for which single-population model outpen®the multi-population model.

4. In areas in which the multi-population model oufpans the single-po-
pulation model, the relative difference of RMSEbaith the force of mortality
and the whole life annuity is generally higher thamreas where single-popula-
tion model outperforms the multi-population model.
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Appendix

Figure 3
Relative Difference of the RMSE of the Force of Mdality in Each Country
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Figure 4

Relative Difference of the RMSE of the Whole Life Anuities for Each Country
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