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Effect of Temperature on the Spread of Contagious Diseases: Evidence from over 2000 Years of Data 
Mehmet Balcilar1, Zinnia Mukherjee2*, Rangan Gupta3, and Sonali Das4 

 
Abstract: 
The COVID-19 pandemic led to a surge in interest among scholars and public health professionals in 
identifying the predictors of health shocks and their transmission in the population. With temperature increase 
becoming a persistent climate stress, our aim is to evaluate how temperature specifically impacts the incidences 
of contagious disease. Using annual data from 1 AD to 2021 AD on incidence of contagious disease and 
temperature anomalies, we apply both parametric and non-parametric modelling techniques, and provide 
estimates on the contemporaneous, and as well as lagged effects, of temperature anomalies on the spread of 
contagious diseases. A non-homogeneous Hidden Markov Model is then applied to estimate the time-varying 
transition probabilities between hidden states where the transition probabilities are governed by covariates. 
For all empirical specifications, we find consistent evidence that temperature anomalies in fact have 
statistically significant effect of the incidence of the contagious disease in any given year covered in the sample 
period. The best fit model further indicates that the contemporaneous effect of a temperature anomaly on the 
response variable is the strongest, and that given temperature anomaly predictions are becoming very accurate, 
one can prepare effectively with necessary public health response for at least contagious diseases. These 
findings further have implications for designing cost effective infectious disease control policies for different 
regions of the world.   
 
Keywords: Temperature anomaly, contagious disease, General additive model, Nonhomogeneous Hidden 
Markov Model, climate change, public health 
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I. Introduction: 
The global scale and impact of the COVID-19 pandemic led to renewed interests and efforts among scientists, 
governments, and academicians across different fields to identify ways to minimize the cumulative damage 
from such future events to human health and the global economy. It is extremely challenging to compare 
epidemics and pandemics given that a myriad of contextual factors lies behind each occurrence. For example, 
each pandemic is characterized by a specific point of origin and shaped by a unique line of historical events 
leading to the onset of that event. The extent of damage to human lives also varies greatly among the major 
pandemics over the last 2000-plus years. For example, the World Health Organization estimates that the total 
number of deaths from COVID-19 is close to 7 million5, whereas the estimated number of deaths caused by 
the Black Death plague of Central Asia between 1347 and 1351 has been estimated to be between 75 - 200 
million (Cirillo and Taleb, 2020). However, in spite of all the challenges inherent in this type of analysis, the 
effort is always worthwhile given that any lesson learned and applied could potentially lead to scores of human 
lives being saved during a future occurrence.  
A pandemic is defined as a low probability global event with an epicenter located in some part of the world. It 
can happen decades and even centuries after the occurrence of an earlier pandemic, which may have a different 
epicenter located thousands of miles away. Given the rarity and uniqueness of such events, it is extremely 
challenging to identify a common set of contributory factors that cause these events and influence the 
transmission rates through space and time. Nonetheless, all pandemics are major disruptive events that result 
in large shocks affecting one or more economies, and the society’s overall wellbeing. The expected damages 
associated with such events can be multifaceted, sometimes affecting multiple generations of the population, 
albeit in different ways. Unlike earlier pandemics, the 2003 SARS-COVID pandemic and the 2019 COVID-
19 happened at a time when ample scientific evidence was available on global warming (Norris et al., 2016), 
which has spurred interests among scientists and policymakers alike about the relationship between ambient 
temperature and the transmission rate of contagious diseases.  
The Climate Change 2021 report presented by the Intergovernmental Panel on Climate Change presents some 
startling changes in the global environment that have happened over the past few decades, which are 
unprecedent in recent human history. For example, Figure 1 below shows that the global surface temperature 
increased sharply between 1950 and 2020 when contrasted with the relatively moderate rise in surface 
temperature between 1850 and 1950. The left panel in the following figure6 shows the changes in the global 
surface temperature over the past 2000 years using both reconstructed and observed temperature data. The 
reconstructed data covers the period from 1 AD until the year 2000, whereas the observed data covers the 1850 
to 2020 timeframe. The panel on the right focuses on the 1850-2020 period showing the changes in global 
surface temperature. The black line indicates observed temperature data. The brown line shows simulated 
temperature data accounting for both natural and human related factors, while the blue line indicates simulated 
surface temperature data that only accounts from natural climate change related factors. The gap between the 
brown and the blue lines represents an approximate measure of the rise in global surface temperature that stem 
from factors related to anthropogenic activities, particularly those following the first industrial revolution.    

                                                           
5 Source: WHO COVID Dashboard https://COVID19.who.int/. 
6 Source: IPCC Climate Change 2021: The Physical Science Basis. 



3 
 

 
Figure 1: History of global temperature change and causes of recent warming. 
Source: IPCC, 2021: Climate Change 2021: The Physical Science Basis (page 6). 
 Between 1970 and 2020, the global surface temperature increased faster than any other 50-year period over at 
least the past 2000 years. Hot extreme events, such as heatwaves, have become more frequent and intense 
since 1950, whereas cold extreme events have become less frequent and less severe. Human induced climate 
events have led to droughts. While the facts about the changes in the global environment are gravely 
concerning by themselves, they however do not capture the full magnitude of potential adversity that can stem 
from such changes in the future, such as hastening the spread of infectious diseases in the future (McDermott, 
2022). Geographic boundaries of disease ranges are climate sensitive. They can both shift and expand with 
changes in temperature through effects of various disease carrying vectors. For example, valley fever is a 
fungal disease that is endemic to southwestern United States (Gorris et al., 2019), with the regions temperature 
and precipitation affecting the number of Valley fever cases, and the extent of the spread of the disease across 
the region. Using climate projections for the 21st century along with a climate niche model derived from 
contemporary climate and disease incidence data, Corris et al. (2019) predict that throughout this century the 
endemic region will spread north reaching up to the Canadian border covering western U.S. states and resulting 
in 50% more cases. 
Since contagious diseases often affect the human population through carrier organisms, it is essential to 
understand the effect of temperature changes on the spread of contagious diseases among wildlife. While the 
frequency of infectious disease outbreaks among wildlife has increased in recent decades paralleling global 
climate, the exact mechanisms through which climate change affects the spread of infectious disease largely 
remains unknown. To address this gap in knowledge, using both laboratory experiments and field prevalence 
estimates, Cohen et a. (2017) and Cohen et al. (2020) tested the thermal mismatch hypothesis, which posits 
that cool-adapted host species are more susceptible to pathogen infection during warm temperature periods 
whereas warm-adapted host species are more susceptible to pathogens during periods of cool temperatures. 
The datasets used in these studies include a large and highly diverse spectrum of wildlife hosts and parasites 
that vary in ecologically important traits across a worldwide climatic gradient. Their results confirmed the 
thermal mismatch hypothesis, which suggests that as climate change shifts hosts away from their optimal 
temperature ranges, hosts can become more susceptible to infectious diseases though the exact effect will be 
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dependent on the particular host and the direction of the shift in climate patterns. Another example is that from 
Morens et al., (2020) who compared the 1918 influenza pandemic with the 2019 COVID pandemic, two 
disastrous health emergencies caused by different viruses that occurred a century apart from each other.  The 
authors were able to identify similarities in both the clinical, pathological, and epidemiological features of the 
two pandemics, and in the civic, medical, and public health responses to these events. 
In this paper, we take a historical perspective to understand the relationship between contagious disease 
outbreaks and changes in ambient temperature. Using alternative model specifications, both parametric and 
nonparametric, we first derive estimates for the causal relationship between temperature anomalies and 
contagious disease outbreak in any given year, modelled as a binary variable. The time evaluation of the 
transition probabilities of switching between contiguous disease and non- contiguous disease states or time 
periods are further studied using a non-homogenous hidden Markov model, under the assumption that the data 
generated follows a Markov process. Bearing the name of Russian mathematician Andrey Markov, the Hidden 
Markov Model (HMM) is a stochastic model that is assumed to involve a Markov process in which a sequence 
of events is characterized by their dependance only on the state that has occurred prior to that event, and not 
on any preceding states. The Markov process is essentially a stochastic process with a memoryless property, 
implying that if the current state is given, past states do not play any role in its transition from a current state 
to a future state. Note, the transition process itself remains unobserved, and is assumed to follow a Markov 
process. The probability of the process transitioning from a given state in the present to a future state is referred 
to as a transition probability. A transition matrix provides the set of transition probabilities that describe the 
likelihood of transition from any present state to all possible future states. The “hidden” in the term refers to 
the prior states remaining unobserved. HMM models have wide ranging applications in finance (Dias et al., 
2015; Mamon and Elliott, 2007), statistics (Genon-Catalot et al., 2000; Scott et al., 2005), cognitive science 
(Nock and Young, 2002; Dasgupta and Gershman, 2021), mobile communication (Yap and Chong, 2017; Gani 
et al., 2009), and climatology (Zucchini and Guttorp, 91, Green et al., (2011)). The HMM model can be 
extended to a nonhomogeneous HMM model (NHMM) if we relax the assumption of homogeneity among the 
transitions and allow them to depend on additional variables. 
The analysis presented in this paper contributes to the strand of academic literature that aims to develop our 
understanding of how environmental factors affect the outbreak and spread of contagious diseases, both 
contemporarily and temporally. While the extent of damages associated with every pandemic is characterized 
by a unique set of contributory factors, comparing different pandemics and identifying similar features can 
offer valuable lessons. We demonstrate that temperature changes have always played a fundamental role is the 
spread of contagious diseases. Our results identify a common factor in pandemics covering the past two 
millenniums. These findings are particularly relevant in developing effective public health strategies to manage 
future outbreaks and the spread of contagious diseases. These strategies must be designed and implemented 
while considering the pace of changes in the global environment, driven by global economic expansion, 
geographic shifts in economic activities, and population growth.   
The paper is organized as follows: Section II provides our data sources and presents a description of the dataset. 
In Section III, we present the methodology used in the analysis, which is followed by a discussion of the results 
in Section IV. In Section V, we include some reflections and concluding remarks.  
II. Data Sources and Description: 
The data used in this paper was obtained from the data on contagious diseases presented in Table 1 in Cirillo 
and Taleb (2020), which runs till 2019. We then include the years 2020 and 2021 as periods associated with 
the COVID-19 pandemic. Table 1 in this paper follows Cirillo and Taleb (2020) and lists the contagious disease 
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events included in our analysis.7,8,9 The table provides information about the primary regions of the world that 
were affected and estimated death tolls.  
 

[Insert Table 1] 
 

The temperature anomaly data from 1 AD until 2019 were acquired from Hawkins10 (2020), and then updated 
from the National Oceanic and Atmospheric Administration (NOAA) until 2021 AD. Table 2 describes the 
data characteristics for the different variables used in the analysis. The complete dataset including observations 
on temperature anomalies and contagious disease breakouts contains 2021 observations. It has been divided 
into two subsamples comprising the “Non-Disease” and “Disease” periods. A temperature anomaly occurs 
either when the observed temperature is higher than a reference value such as the long-run average value of 
temperature or (a positive anomaly), or when it is lower than the reference value (a negative anomaly).11 A 
high temperature anomaly occurs when the standard deviation between the observed temperature and the 
reference value is greater than 0.25 points whereas a low temperature anomaly occurs when the difference is 
less than 0.25 points. 

[Insert Table 2] 
III. Methodology 
Let, ݐ = 1,2, … , 2021  denote the year of observation, ݀௧ denote a binary variable taking value of 1 if a 
contiguous disease occurred in year ݐ and zero, otherwise; ℎ௧ denotes temperature anomaly; and ߬௧ denote a 
linear time trend, i.e., ߬௧ =  .ݐ
We start with the linear probability model: 

݀௧ = ଴ߚ + ଵℎ௧ߚ + ଶℎ௧ିଵߚ + ଷℎ௧ିଶߚ + ସ߬௧ߚ + ௧ߝ (1) 
where ߝ௧ is an identically and independently distributed error term with zero mean and constant variance ߪଶ, 
,௧~݅݅݀(0ߝ ௧࢞ ଶ). Definingߪ = (1, ℎ௧ , ℎ௧ିଵ, ℎ௧ିଶ, ߬௧)ᇱ and ࢼ = ,଴ߚ) ,ଵߚ ,ଶߚ ,ଷߚ  ସ)′, we can write Eq. (1) asߚ

݀௧ = ௧࢞ᇱࢼ + ௧ߝ ݐ          , = 1,2, … , ܶ (1′) 
Defining ߨ௧ = (௧࢞)ߨ = ܲ(݀௧ = ௧ߨ ௧), linear probability model implies that࢞|1 = ௧݀)ܧ = (௧࢞|1 =  ௧࢞ᇱࢼ
while  ܧ(݀௧ = (௧࢞|0 = 1 − ௧ߨ = 1 −  .௧࢞ᇱࢼ
We use the linear probability model as one of the benchmark models. The second benchmark model we use 
is the logistic probability model defined as: 

݀௧ = exp {݃(࢞௧)}
1 + exp {݃(࢞௧)} + ௧ߝ (2) 

                                                           
7 Source: Cirillo and Taleb (2020) and https://en.wikipedia.org/wiki/List_of_epidemics_and_pandemics#cite_note-38 
(retrieved July 24, 2023) 
8 Source: https://www.worldhistory.org/article/1532/plagues-of-the-near-east-562-1486-ce/ (retrieved July 24, 2023) 
9 Source: https://listfist.com/list-of-epidemics-compared-to-coronavirus-COVID-19 (retrieved July 24, 2023) 
10 Source: https://web.archive.org/web/20200202220240/https://www.climate-lab-book.ac.uk/2020/2019-years/. 
11 Source: https://www.ncei.noaa.gov/access/monitoring/global-temperature-
anomalies#:~:text=The%20term%20temperature%20anomaly%20means,cooler%20than%20the%20reference%20value
. 
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where the logistic link function ݃(࢞௧) is defined as 
(௧࢞)݃ = log{ߨ(࢞௧) [1 − ⁄[(௧࢞)ߨ } = ௧࢞ᇱࢼ (3) 

Thus, we can write ݀௧ = (௧࢞)ߨ + (௧࢞)ߨ ௧, whereߝ = exp {݃(࢞௧)} [1 + exp {݃(࢞௧)}]⁄ . Here, ߝ௧ is distributed 
with mean zero and variance equal to  ߨ(࢞௧)[1 −   .[(௧࢞)ߨ
A generalized additive model (GAM) replaces the logistic link function in Eq. (3) with 

(௧࢞)݃ = ଴ߚ + ଵ(ℎ௧)ݏ + ଶ(ℎ௧ିଵ)ݏ + ଷ(ℎ௧ିଶ)ݏ + ସ(߬௧)ݏ (4) 
where ݏ௜(⋅), ݅ = 1,2, … ,4, are univariate smooth functions of their arguments. For the GAM model in Eq. (4), 
we specify the smooth terms ݏ௜(⋅), as nonparametric functions, which are estimated using  thin-plate regression 
splines (Wood, 2003). We also specify a first order serially correlated GAM specification where ߝ௧ follows a 
first order autoregressive process [AR (1)], i.e., ߝ௧ = ௧ିଵߝߩ + ,௧~݅݅݀(0ݒ ௧ withݒ  .(௩ଶߪ
The time evaluation of the probabilities of switching between contiguous disease and non- contiguous disease 
states (periods) can be studies using a Hidden Markov Model (HMM), which is a statistical model that defines 
a probability distribution over possible sequences of observations in which each observation is a member of a 
discrete set of outcomes. It is often used to model time-varying processes. The model is based on the 
assumption that the underlying process that generates the data is a Markov process, and that the hidden states 
of the process are unobserved. In our case, the binary variable ݀௧, which indicates the presence or absence of 
a contiguous disease in year ݐ, is a two-state process, with ݀௧ taking values 0 or one. Let these finite state states 
be Λ = {1,2}. The HMM model expresses Markov evolution on the measurable space Λ in terms of a regular 
Markov chain using the latent variable ܵ௧ ∈ {1,2}, where ܵ௧ = 1 denoting the non-disease stated and ܵ௧ = 2 
denoting the disease state. In general, ܵ௧ may have ܯ states, ܵ௧ ∈ Λ = {1,2, … ,  with the evolution of the ,{ܯ
state-space expressed with transition probability matrix ࡼ = ,݅ ,[௜௝݌] ݆ = 1,2, … ,  and stationary probability ,ܯ
distribution ࣊ = ,ଵߨ) ,ଶߨ … , ݐ ெ)′. The transition probability of switching from state ݅ in yearߨ − 1 to state ݆ 
in year ݐ is defined with the following properties: 

௜௝݌ = ܲ(ܵ௧ = ݆|ܵ௧ିଵ = ݅) ∈ (0,1),       ∀݅, ݆
∑ ௜௝ெ௝ୀଵ݌ = 1,        ∀݅ = 1,2, … , ܯ (5)  

In our case with ܯ = 2, we have two free transition probabilities ݌ଵଶ = (ܵ௧ = 2|ܵ௧ିଵ = 1) and ݌ଶଵ =
(ܵ௧ = 1|ܵ௧ିଵ = 2) with ݌ଵଵ = 1 − ଶଶ݌ ଵଶ and݌ = 1 − = ଶଵ. The stationary probabilities݌ ,ଵߨ) ,ଶߨ … ,   ′(ெߨ
are defined with the following properties: 

௜ߨ = ܲ(ܵ௧ = ݅) ∈ (0,1),       ∀݅
∑ ௜ெ௜ୀଵߨ = 1, (6)  

which implies one free state probability ߨଶ since ߨଵ = 1 − ܯ ଶ withߨ = 2.  
If the transition probabilities ݌௜௝  are independent of time, then the HMM is time invariant or homogenous. 
However, the homogenous HMM is quite restrictive for many real-world cases where the transition 
probabilities change over time, likely due to the effects of some underlying factors. We can relax this restrictive 
assumption by allowing the transition probabilities to be time-varying which leads to a non-homogenous HMM 
model (NHMM). The time-varying transition probabilities model is an extension of the standard HMM. In the 
standard Markov model, the transition probabilities between states are constant over time. In the time-varying 
transition probabilities model, the transition probabilities can vary over time. The time-varying transition 
probabilities model is a more accurate representation of reality than the standard HMM. It can be used to model 
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processes that change over time, such as the spread of disease, the growth of a population, or the price of a 
stock. An attractive approach making transition probabilities time-varying is to allow them to depend on some 
other covariate. The NHMM model with a time-varying transition probabilities and covariates ࢠ௧ =
ଵ௧ݖ) , ଵ௧ݖ , … , (௧ࢠ)௜௝݌ ௄௧)′ can be represented asݖ = ܲ(ܵ௧ = ݆|ܵ௧ିଵ = ݅,  ௧). The transition probabilities betweenࢠ
hidden states are allowed to vary over time and are governed by covariates ࢠ௧. In this model, the probability 
of transitioning from one hidden state to another at any given time ݐ depends on both the value of the covariate 
at that time and the values of the transition probabilities at previous times.  
Given that the observed state variable ݀௧ is binary, we use a NHMM with a logistic link function. The 
covariates are specified to include the temperature anomaly series ℎ௧ and a linear time trend in addition to a 
constant vector, i.e., ࢠ௧ = (1, ℎ௧, ߬௧)′. The logistic HMM model specifies the transition probabilities {݌௜௝ , ݅, ݆ ∈
Λ} and stationary distribution components {ߨ௜, ݅ ∈ Λ} with the following logistic models: 

(௧ࢠ)௜௝݌ = exp൛ࢻ௜௝ᇱ ௧ൟࢠ
1 + exp൛ࢻ௜௝ᇱ ௧ൟࢠ = exp൛ߙ଴,௜ + ଵ,௜௝ℎ௧ߙ + ଶ,௜௝߬௧ൟߙ

1 + exp൛ߙ଴,௜ + ଵ,௜௝ℎ௧ߙ + ଶ,௜௝߬௧ൟߙ , ݅, ݆ ∈ Λ (7) 

(௧ࢠ)௜ߨ = exp{ࢽ௜ᇱࢠ௧}
1 + exp൛ࢽ௜ᇱࢠ௧ൟ = exp൛ߛ଴ + ଵ,௜ℎ௧ߛ + ଶ,௜߬௧ൟߛ

1 + exp൛ߛ଴ + ଵ,௜ℎ௧ߛ + ଶ,௜߬௧ൟߛ , ݅ ∈ Λ (8) 

where ࢻ௜௝ = ,଴,௜ߙ) ଵ,௜௝ߙ , ௜ࢽ ଶ,௜௝)′ andߙ = ൫ߛ଴, ,ଵ,௜ߛ  ଶ,௜൯′ are parameter to be estimated. In reality, only two setsߛ
of transition probabilities and one set of stationary state probability as estimated for a two-state model, since 
probabilities sum to one.  
There are a number of ways to characterize the statistical properties of a logistic hidden Markov model for 
binary time series. One common approach is to consider the model’s ability to correctly predict the next time 
step in the series, given the previous time steps. Another approach is to consider the model’s ability to 
accurately estimate the underlying probabilities of the time series. Using the later approach, we estimate the 
parameters of the NHMM model using maximum likelihood (ML) estimation where the maximization is 
performed using the expectation maximization (EM) algorithm. Once the NHMM model is estimated, there 
are a number of methods for decoding the states and obtaining the relevant probabilities. For our purposes, 
smoothed probabilities are appropriate as they us the full sample information for inference in each time point 
locally.  
IV. Results and discussions: 
Figures 2-9 showcase various attributes of the data. In panel Figure 2 (a), the dummy variable indicating a 
contagious disease in a given year is plotted, while Figure 2 (b) shows both the temperature anomalies and 
years with contagious diseases (shaded bars) between 1 AD and 2021 AD. We use density plots to provide a 
visualization of the data. In Figure 3, we plot the conditional distributions of temperature anomaly using kernel 
density estimates and box plots. The distribution of the temperature anomaly is conditional on the contagious 
disease periods with high temperature anomaly levels (above 0.25) and low temperature anomaly levels (below 
0.25) respectively. Using a Gaussian kernel, the probability density at each data point is estimated, which are 
then smoothed to generate continuous curves. In panel Figure 3 (a), the kernel density estimates are displayed 
for the conditional probability distribution function of the temperature anomaly series, while in Figure 3 (b), 
the boxplots with overlayed observations conditional on the contagious disease status are presented.  

[Insert Figure 2] 
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[Insert Figure 3] 
The autocorrelation (ACF) and the partial autocorrelation function (PACF) of the contagious disease variable 
and the temperature anomaly behavior are presented in Figure 4 along with the cross correlation and partial 
cross correlation functions. Together, they provide insights about the time series characteristics of the data. 
The ACF provides the correlation of between the current and the lagged values of a variable whereas as the 
PACF is used to measure the correlation between the current observation of the variable and an observation 
from a previous time period, after controlling for the observations at the intermediate lags. In Figure 4, the 
gradual declining ACFs and the PACFs together help to define the autoregressive process of the two variables. 
The cross correlation and partial cross correlation plots show the relationship between the two time series used 
in the model. To provide a visual representation of the assessments of the three models, i.e., the logistic 
generalized additive model (GAM – Logistic), a logistic model, and the benchmark linear model are presented 
in figure 5. We plot the predicted probabilities of the occurrence of a contagious disease against the estimated 
residuals (݀௧ −   .௧ෞ), temperature anomalies, and time, in panels (a), (b), and (c) respectivelyߨ 

[Insert Figure 4] 
To provide a visual representation of the assessments of the three models, i.e., the logistic generalized additive 
model (GAM – Logistic), a logistic model, and the benchmark linear model are presented in Figure 5. We plot 
the predicted probabilities of the occurrence of a contagious disease against the estimated residuals (݀௧  ,(௧ෞߨ −
temperature anomalies, and time, in panels (a), (b), and (c) respectively of Figure 5. The receiver operating 
curves (ROC) in panel (d) plot the model sensitivity (true positive rate) against the false positive rate. The true 
positive rate represents the proportion of observations that are predicted to be positive when the observations 
are positive whereas the false positive rate indicates the proportion of observations that are predicted to be 
positive when they are, in fact, negative. The area under the curve indicates the quality of a model in predicting 
the observations. The GAM-Logistic model with the highest area under the curve indicates the best fit among 
three models. 

[Insert Figure 5] 
In Figure 6, we plot the Quantile-Quantile (QQ) plot the histograms of the residuals of the logistic generalized 
additive model (GAM-Logistic). The points in the QQ plot falls on a straight line indicating the residuals of 
the model approximately follow the normal distribution. The histogram of the residuals indicates the residuals 
are centered around zero.   

[Insert Figure 6] 
Figures 7, 8, and 9 provide further visualization of various features of the logistic generalized additive model. 
The smoothed transition and state probabilities estimated using the non-homogenous hidden Markov Model 
are plotted in figure 10. 

[Insert Figures 7, 8, 9, and 10] 
The estimation results from the alternative parametric and nonparametric model specifications are presented 
in Tables 3-6. The tables indicate when the null hypothesis of zero effect of temperature anomaly on disease 
spread can be rejected at the 1% (***), 5% (**), and 1% (*) levels. The R-square, log likelihood function, Akaike 
Information Criterion (AIC), and the Schwartz Bayesian Information Criterion (BIC) values provide measures 
for the quality of the respective models and help us to compare them. The models with the better fits have 
lower AIC and BIC values.  
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In Table 3, the results of the benchmark Linear Probability Model (LPM) are presented with the first column 
providing the estimates of the unrestricted model. Columns 2 through 7 represent the restricted versions of the 
model with estimates of the core model under different zero restrictions on the parameters of the 
contemporaneous and different lagged terms along with the trend variable. The first column represents the 
estimated coefficients of the unrestricted model. None of the coefficients that show the relationship between 
temperature anomalies and the dependent variable are statistically significant. Column 2 presents the 
coefficient of the contemporaneous effect (ߚଵ) is restricted to zero. In column (5), the results of a restricted 
version of the model with both the coefficients of ht and ht-2 set to zero are presented. A comparison of the 
alternative versions indicates the restricted models in columns 5 and 6 are closely comparable. However, 
column 6 with the coefficients of ht-1 and ht-2 set to zero gives the best results qualitatively in terms of the 
information requirement, as confirmed by the AIC and BIC scores. The coefficient for the contemporaneous 
effect is statistically significant at 1%. 

[Insert Table 3] 
While relatively straightforward to specify and estimate, linear probability models are often not a suitable 
choice because the predicted probability values can end up being below zero or greater than 1. To counter the 
standard limitations of the LPM, a logistic model was estimated. The results are presented in Table 4. 
Qualitatively, the results from the logistic model are in line with our findings from the benchmark model for 
both the unrestricted and restricted versions. The best results are for the model that includes a contemporaneous 
effect of temperature anomalies and a trend term. 

[Insert Table 4] 
The results of the nonparametric logistic general additive model (GAM) are presented in Table 5. A GAM is a 
powerful analytical tool because of its ability to fit many types of non-linear data. However, because of this 
flexibility, it can be easy to overfit the data. The goal of the model is to strike a balance between two objectives. 
First, the model must capture the relationship exhibited in the data as closely as possible. This is indicated by 
the “Likelihood” function, which indicates how well a model captures patterns in the data it is fitted to. Second, 
we want to avoid overfitting the data, which is captured by the “wiggliness” in the fit. In the model, the 
smoothing functions, s(.), are represented by penalized regression splines to avoid complex overfitting of the 
model. A smooth or a spline is essentially a function that can take a wide variety of shapes. The smoothing 
functions are estimated with thin plate splines, which do not depend on the prior knowledge of the functional 
form of the data. Thin plate regression splines can be computationally more costly relative to other smoothing 
options such as cubic splines. However, they have the advantage of not requiring knots placements that are a 
feature of conventional regression spine modelling (Crawley, 2013). 
We estimate equation (4) with various restrictions imposed on the smooth functions. In column (2), the results 
presented are conditioned on the smooth function for ht set to zero. Similarly, the results in column (5) are 
derived based on the assumption that the two-period lagged effect and the contemporaneous effect of 
temperature anomaly of dt are assumed to be zero. The estimates presented in column (6) indicate the 
contemporaneous effect of temperature anomaly on the incidence of a contagious disease in a given year is 
statistically significant at the 1% level. This restricted model also provides the lowest AIC and BIC values 
indicating a better fit than the alternative versions of the nonparametric model we estimated.  

[Insert Table 5] 
In order to account for the possibility that the error term in equation (4) might be correlated over time, we also 
run a version of the GAM specificizing a first order autoregressive process for the error structure. The results 
are presented in table 6, which also includes estimates of ߩ, the autocorrelation parameter.  The estimates from 
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both specifications of the nonparametric model are similar with column 6 (in both tables) indicating the best 
fit to the data compared to the alternative restricted versions of the core model. In fact, the results from the 
parametric and nonparametric models are qualitatively consistent. In all specifications, the restricted version 
of the model that includes the contemporaneous effect of temperature anomaly and the linear trend term 
provide the best fit compared to the complete unrestricted specification and the alter zero-restriction variations 
we imposed.  

[Insert Table 6] 
Table 7 includes the estimates of the parameters of the transition probability expression in equation (7) and the 
parameters in (8) used to derive a set of stationary state probability for the logistic HMM model. The transition 
probabilities are calculated at the zero values of the covariates. The sum of the estimated probabilities of a 
particular state (disease or non-disease) in any time period evolving into either the same state or the alternative 
state in the following period adds up to 1. Regardless of the initial state, the estimated transition probabilities 
imply that the probability of transitioning from a given state in a year to the same year in the following year is 
significantly higher than the probability of transitioning to the other state (0.999 versus 0.0010).  

[Insert Table 7] 
V. Conclusion  
In this paper, using annual data from 1 AD to 2021 AD, we investigated the role of temperature anomalies in 
the spread of contagious diseases. While the pace and extent of transmission of any contagious disease depend 
on many contextual factors such as the availability of healthcare related services, governmental efficacy in 
management of the spread, nature of the diseases, local and regional socioeconomic and environmental 
conditions at the epicenter, etc., this research provides evidence that temperature anomalies have played an 
influential role in the spread of transmissible diseases over the last two thousand years, thereby identifying  a 
common cause among different disease spreads over time. The key finding is robust to model specification 
issues as it is confirmed by the results from the parametric and nonparametric specifications of the core model. 
These results are of particular significance within the context of developing effective climate change adaptation 
strategies, particular those that involve public health related initiatives. Changes in weather and climate 
patterns involve considerable uncertainty. However, our results indicate that given that temperature anomalies 
have a significant bearing on the bearing of contagious diseases, region specific climate forecasting results can 
be combined with demographic information to develop location specific, cost-effective disease control policy 
responses and transmission-based precautionary measures. This is particularly important given that regions 
across the world vary greatly in available resources that can be dedicated to mitigates damages associated with 
the transmission of infectious diseases. Future avenues of research could potentially focus on this line of 
interdisciplinary work.  
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Tables and Figures: 
Table 1: Contagious disease events and dates included in the sample. 

Event Start 
Year 

End 
Year 

Location Estimated 
Deaths 

Plague of Athens -429 -426 Greece, Libya, Egypt, Ethiopia 75,000 – 
100,000 

Antonine Plague 165 180 Roman Empire 5 – 10 million 
Plague of Cyprian 250 266 Europe 310,000 
Plague of Justinian 541 542 Europe, West Asia 15 – 100 

million 
Plague of Amida 562 562 Mesopotamia (modern day 

Turkey) 
30,000 

Roman Plague of 590 590 590 Rome, Byzantine Empire Unknown 
Plague of Sheroe 627 628 Bilad al-Sham 25000+ 

Plague of the British Isles 664 689 British Isles Unknown 
Plague of Basra 688 689 Basra (southeast Turkey) 200,000 

Japanese smallpox epidemic 735 737 Japan 2 million 
Black Death 1331 1353 Eurasia and North Africa 75 – 200 

million 
Sweating sickness 1485 1551 Britain  10,000+ 

Smallpox Epidemic in 
Mexico 

1520 1520 Mexico 5 – 8 million 
Cocoliztli Epidemic of 1545-

1548 
1545 1548 Mexico 5 – 15 million 

1563 London plague 1562 1564 London, England 20,100 
Malta plague epidemic 1592 1593 Malta 3,000 

Plague in Spain 1596 1602 Spain 600,000 – 
700,000 

New England epidemic 1616 1620 New England Unknown 
Italian plague of 1629-1631 1629 1631 Italy 1 million 

Great Plague of Sevilla 1647 1652 Spain 500,000 
Plague in Kingdom of Naples 1656 1658 Italy 1,250,000 

Plague in the Netherlands 1663 1664 Amsterdam, Netherlands 24,148 
Great Plague of London 1665 1666 England 100,000 

Plague in France 1668 1668 France 40,000 
Malta plague epidemic 1675 1676 Malta 11,300 
Great Plague of Vienna 1679 1679 Vienna, Austria 76,000 

Great Northern War plague 
outbreak 

1700 1721 Denmark, Sweden, Lithuania 164,000 
Great Smallpox Epidemic in 

Iceland 
1707 1709 Iceland 18,000+ 

Great Plague of Marseille 1720 1722 France 100,000 
Great Plague of 1738 1738 1738 Balkans 50,000 

Russian plague of 1770 - 
1772 

1770 1772 Russia 50,000 
Ottoman Plague Epidemic 1812 1819 Ottoman Empire 300,000+ 

Caragea’s plague 1813 1813 Romania 60,000 
Malta plague epidemic 1813 1814 Malta 4,500 
First cholera pandemic 1816 1826 Asia, Europe 100,000+ 

Second cholera pandemic 1829 1851 Asia, Europe, North America 100,000+ 
Typhus epidemic in Canada 1847 1848 Canada 20,000+ 

Third cholera pandemic 1852 1860 Worldwide 1 million+ 
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Cholera epidemic of 
Copenhagen 

1853 1853 Copenhagen, Denmark 4,737 
Third plague pandemic 1855 1960 Worldwide (India, China) 12 – 15 million 

Smallpox in British 
Columbia 

1862 1863 Pacific Northwest, Canada, US 20,000+ 
Fourth cholera pandemic 1863 1875 Middle East 600,000 

Fiji Measles outbreak 1875 1875 Fiji 40,000 
Yellow Fever 1880 1900 Mississippi, New Orleans, US 17,000+ 

Fifth cholera pandemic 1881 1896 Asia, Africa, Europe, South 
America 

298,600 
Smallpox in Montreal 1885 1885 Montreal, Canada 3,164 

Russian flu 1889 1890 Russia, worldwide 1 million 
Sixth cholera pandemic 1899 1923 Europe, Asia, Africa 800,000 

China plague 1910 1912 China 40,000 
Encephalitis lethargica 

pandemic 
1915 1926 Worldwide 500,000 

American polio epidemic 1916 1916 United States 7,130 
Spanish flu 1918 1920 Worldwide 17-100 million 

HIV/AIDS pandemic 1981 2023 Worldwide 42 million 
Poliomyelitis in USA 1946 1946 United States 9,000 

Asian flu 1957 1958 Worldwide 1-4 million 
Hong Kong flu 1968 1969 Worldwide 1-4 million 

London flu 1972 1973 United States 1,027 
Smallpox epidemic of India 1974 1974 India 15,000 

Zimbabwean cholera 
outbreak 

2008 2009 Zimbabwe 4,293 
Swine flu 2009 2009 Worldwide 151,700 – 

575,400 
Haiti cholera outbreak 2010 2020 Haiti 10,075 
Measles in D.R. Congo 2010 2014 Democratic Republic of Congo 

(DRC) 
4,500 

Ebola in West Africa 2013 2016 Worldwide (Guinea, Liberia, 
Sierra Leone) 

11,323+ 
Indian swine flu outbreak 2015 2015 India 2,035 
Yemen cholera outbreak 2016 2020 Yemen 3,981 
2018-2019 Kivu Ebola 

epidemic 
2018 2020 DRC and Uganda 2,280 

Measles in D.R. Congo 2019 2020 DRC 7,018 
Dengue fever 2019 2020 Asia-Pacific, Latin America 3,930 

COVID-19 Pandemic 2019 To date Worldwide 7 – 29.3 million 
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Table 2. Descriptive statistics 

 

(1) 
Temperature 

Anomaly: 
Full Sample 

(2) 
Temperature 

Anomaly: 
Non-Disease 

Periods 

(3) 
Temperature 

Anomaly: 
Disease Periods 

(4) 
Low Temperature 

Anomaly: 
Disease Periods 

(5) 
High Temperature 

Anomaly: 
Disease Periods 

(6) 
Contagious 

Disease 

Observations 2021 1662 359 342 17 2021 
Mean -0.2565 -0.2439 -0.3148 -0.3630 0.6542 0.1776 
S.D. 0.1626 0.1315 0.2544 0.1315 0.1789 0.3823 
Min -0.7128 -0.6688 -0.7128 -0.7128 0.4428 0.0000 
Max 1.0071 0.5680 1.0071 0.0774 1.0071 1.0000 
Skewness 1.8552 0.6627 2.8153 0.6760 0.4781 1.6856 
Kurtosis 10.3064 4.2776 9.2488 0.4030 -1.2498 0.8417 
JB 10128.7200*

** 1394.1920*** 1776.7710*** 28.8250*** 1.5200 1018.6720*** 
Q(1) 1608.9177*** 1218.9419*** 291.7578*** 208.1254*** 9.8364*** 1574.3151*** 
Q(4) 5750.1233*** 4171.6226*** 981.4622*** 629.5901*** 17.7115*** 4927.1886*** 
ARCH(1) 1844.5608*** 1297.6202*** 335.4321*** 136.2012*** 4.5872** 1574.9812*** 
ARCH(4) 1876.8272*** 1346.6727*** 337.1974*** 157.6724*** 4.6465 1585.6803*** 

Note: The table reports descriptive statistics for the temperature anomaly (ℎ௧) and contiguous disease variables (݀௧), with annual data 
covering the period from 1 AD to April 2021 (2021observations). In addition to the full sample (column 1), the descriptive statistics 
for the temperature anomaly are reported for four additional sub-samples: periods of non-contiguous disease (݀௧ = 0; column 2), 
periods of contiguous disease (݀௧ = 1; column 3), periods of low temperature anomaly and contiguous disease (݀௧ = 1 and ℎ௧ ≤
0.25; column 4), and ), periods of high temperature anomaly and contiguous disease (݀௧ = 1 and ℎ௧ > 0.25; column 5). The table 
reports mean, standard deviation (S.D.), minimum, maximum, skewness, and kurtosis, as well as the Jarque-Bera normality test (JB), 
first [Q(1)] and fifth [Q(5)] order Ljung-Box portmanteau test for serial correlation, and first [ARCH(1)] and fifth [ARCH(5)] order 
autoregressive conditional heteroskedasticity tests.  **, and *** denote rejection at 10%, 5%, and 1% level, respectively. 
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Table 3. Linear probability model estimates 
 

Model:  (1)  (2)  (3)  (4)  (5)  (6)  (7) 
        
Intercept -0.102***  

(0.019) 
-0.101***  
(0.019) 

-0.100***  
(0.018) -0.099*** 

(0.018) 
-0.098***  
(0.018) 

-0.098***  
(0.018) 

0.077***  
(0.016) 

ℎ௧ -0.080  
(0.121)  -0.108  

(0.115) 
 

 -0.185***  
(0.050) 

-0.393***  
(0.052) 

ℎ௧ିଵ -0.034  
(0.138) 

-0.084  
(0.115) 

-0.087  
(0.117) 

 
-0.186***  
(0.051)   

ℎ௧ିଶ -0.089  
(0.123) 

-0.115  
(0.117)  -0.192*** 

(0.052)    

߬௧ 0.00022***  
(0.00001) 

0.00022***  
(0.00001) 

0.00023***  
(0.00001) 

0.00022*** 
(0.00001) 

0.00023***  
(0.00001) 

0.00023***  
(0.00001)  

        
R-squared 0.139 0.139 0.139 0.139 0.139 0.139 0.028 
Log L -772.311 -772.532 -772.573 -773.186 -773.021 -772.851 -895.195 
AIC 1556.622 1555.064 1555.146 1554.372 1554.042 1553.703 1796.389 
BIC 1590.284 1583.116 1583.198 1584.421 1576.483 1576.144 1813.220 

Note: The table reports the estimates for the linear probability model in Eq. (1) with various zero restrictions on the 
parameters. The variable ℎ௧ denotes the temperature anomaly in year ݐ ,ݐ = 1,2, … ,2021, and ߬௧ denotes a linear time 
trend for year ݐ. The table also reports McFadden’s pseudo-R squared (R-squared), logarithm of the likelihood (Log ܮ), 
Akaike information criterion (AIC), and Schwarz’s Bayesian information criterion (BIC). The standard errors of the 
estimates are given in brackets. Boldface denotes the minimum AIC and BIC values. *** denotes rejection of the null 
hypothesis of zero effect at the 1% level. 
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Table 4. Logistic model estimates 
Model:  (1)  (2)  (3)  (4)  (5)  (6)  (7) 
        
Intercept -4.254***  

(0.217) 
-4.247***  
(0.217) 

-4.247***  
(0.217) 

-4.237***  
(0.216) 

-4.234***  
(0.216) 

-4.237***  
(0.216) 

-2.518***  
(0.149) 

ℎ௧ -0.609  
(0.902)  -0.767  

(0.859)   -1.237***  
(0.334) 

-3.501***  
(0.451) 

ℎ௧ିଵ -0.191  
(1.045) 

-0.592  
(0.860) 

-0.518  
(0.875)  -1.240***  

(0.339)   

ℎ௧ିଶ -0.527  
(0.919) 

-0.717  
(0.875)  -1.271***  

(0.345)    

߬௧ 0.002***  
(0.0001) 

0.002***  
(0.0001) 

0.002***  
(0.0001) 

0.002***  
(0.00001) 

0.002***  
(0.0001) 

0.002***  
(0.000)  

        
R-squared 0.164 0.163 0.164 0.163 0.163 0.163 0.036 
Log L -790.317 -790.545 -790.481 -790.782 -790.881 -790.657 -911.140 
AIC 1590.634 1589.090 1588.963 1587.564 1587.763 1587.315 1826.280 
BIC 1618.686 1611.532 1611.404 1604.395 1604.594 1604.146 1837.501 

Note: The table reports the estimates for the logistic probability model in Eq. (2) with various zero restrictions on the 
parameters. The variable ℎ௧ denotes the temperature anomaly in year ݐ ,ݐ = 1,2, … ,2021, and ߬௧ denotes a linear time 
trend for year ݐ. The table also reports McFadden’s pseudo-R squared (R-squared), logarithm of the likelihood (Log ܮ), 
Akaike information criterion (AIC), Schwarz’s Bayesian information criterion (BIC). The standard errors of the 
estimates are given in brackets. *** denotes rejection of the null hypothesis of zero effect at the 1% level. 
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Table 5. Logistic generalized additive model estimates 
 

Model:  (1)  (2)  (3)  (4)  (5)  (6)  (7) 
        
Intercept -4.739***  

(0.750) 
-4.767***  
(0.755) 

-4.753***  
(0.754) 

-4.829***  
(0.764) 

-4.784***  
(0.760) 

-4.791***  
(0.760) 

-1.822***  
(0.075) 

  **ଵ(ℎ௧) 12.337ݏ
(3.933)  13.788**  

(3.964)   73.866***  
(5.246) 

251.475***  
(6.633) 

  ଶ(ℎ௧ିଵ) 9.124ݏ
(4.186) 

29.620***  
(5.257) 

10.414*  
(4.145)  70.326***  

(5.429)   

  ଷ(ℎ௧ିଶ) 0.499ݏ
(1.243) 

3.048  
(2.053)  64.645***  

(4.986)    

  ***ସ(߬௧) 207.781ݏ
(12.176) 

208.388***  
(12.188) 

208.685***  
(12.182) 

209.577***  
(12.214) 

210.482***  
(12.196) 

209.530***  
(12.199)  

        
R-squared 0.393 0.390 0.393 0.384 0.389 0.388 0.167 
Log L -544.991 -549.450 -545.648 -556.882 -551.469 -550.085 -789.674 
AIC 1141.834 1145.625 1138.606 1151.717 1141.915 1138.542 1595.723 
BIC 1287.286 1276.693 1271.321 1258.182 1251.255 1246.180 1641.660 
UBRE 595.411 598.140 595.064 603.269 598.528 596.767 803.486 

Note: The table reports the estimates for the logistic probability model in Eq. (4) with various restricted variants. The 
variable ℎ௧ denotes the temperature anomaly in year ݐ ,ݐ = 1,2, … ,2021, and ߬௧ denotes a linear time trend for year ݐ. 
The smooth terms ݏ௜(⋅)are represented using penalized regression splines with smoothing parameters selected by 
unbiased risk estimator (UBRE) criterion. The table reports estimate of the intercept with its standard error in brackets. 
For the smooth terms ݏ௜(⋅), the table reports the approximate significance χଶ statistics with effective degrees of freedom 
in brackets. The table also reports McFadden’s pseudo-R squared (R-squared), logarithm of the likelihood (Log ܮ), 
Akaike information criterion (AIC), Schwarz’s Bayesian information criterion (BIC), and unbiased risk estimator 
(UBRE) score. *** denotes rejection of the null hypothesis of zero effect at the 1% level. 
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Table 6. Logistic generalized additive model estimates with serial correlation 
Model:  (1)  (2)  (3)  (4)  (5)  (6)  (7) 
        
Intercept -4.682***  

(0.697) 
-4.683***  
(0.697) 

-4.695***  
(0.701) 

-4.729***  
(0.705) 

-4.713***  
(0.705) 

-4.719***  
(0.705) 

-1.823***  
(0.074) 

  **ଵ(ℎ௧) 11.569ݏ
(3.546) 

 
13.269***  
(3.595) 

  
75.069***  
(4.931) 

250.085***  
(6.239) 

  **ଶ(ℎ௧ିଵ) 9.393ݏ
(3.832) 

67.878***  
(5.178) 

9.887**  
(3.713) 

 
69.784***  
(5.051) 

  
  ଷ(ℎ௧ିଶ) 0.862ݏ

(1.000) 
2.127  

(1.000) 
 

67.738***  
(4.676) 

   
  ***ସ(߬௧) 192.115ݏ

(12.023) 
192.891***  
(12.029) 

193.256***  
(12.030) 

195.289***  
(12.056) 

195.721***  
(12.043) 

195.017***  
(12.045) 

 0.878 0.885 0.858 0.854 0.858 0.858 0.891 ߩ 
        
R-squared 0.393 0.389 0.393 0.383 0.388 0.388 0.167 
Log L -599.653 -602.125 -600.074 -607.753 -603.168 -601.435 -802.978 
AIC 1217.306 1218.251 1214.148 1225.505 1216.337 1212.870 1611.955 
BIC 1267.799 1257.523 1253.421 1253.557 1244.389 1240.922 1628.786 

Note: The table reports the estimates for the logistic probability model with AR(1) error structure in Eq. (4) with 
various restricted variants. The variable ℎ௧ denotes the temperature anomaly in year ݐ ,ݐ = 1,2, … ,2021, and ߬௧ denotes 
a linear time trend for year ݐ. The smooth terms ݏ௜(⋅)are represented using penalized regression splines with smoothing 
parameters selected by generalized cross-validation (GCV). The table reports estimate of the intercept with its standard 
error in brackets. For the smooth terms ݏ௜(⋅), the table reports the approximate significance χଶ statistics with effective 
degrees of freedom in brackets. The table also reports McFadden’s pseudo-R squared (R-squared), logarithm of the 
likelihood (Log ܮ), Akaike information criterion (AIC), and Schwarz’s Bayesian information criterion (BIC). 
Parameters are estimated using a generalization of the penalized quasi likelihood algorithm. ** and *** denote rejection of 
the null hypothesis of zero effect at the 5% and 1% levels, respectively. 
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Table 7. Estimates of the hidden Markov model 
 

Parameter Estimate 
Probabilities at zero values of 

the covariates 
     
 ଵଵ 0.9990݌  ଵ,ଵଶ -0.8445 (0.9618)ߙ    ଴,ଶ -6.9516*** (0.7727)ߙ
 ଵଶ 0.0010݌  ଶ,ଵଶ 0.0023*** (0.0004)ߙ
 ଶଵ 0.0010݌  ଴,ଶ 2.3465*** (0.0016)ߙ
 ଶଶ 0.9990݌  ଵ,ଶଶ -0.0184 (0.1223)ߙ
    ଶ,ଶ 0.4651*** (0.0155)ߛ    ଵ,ଶ 17.7412 (18.0686)ߛ    ଴ -683.0342 (23.2476)ߛ    ଶ,ଶଶ 0.00002*** (0.000002)ߙ
     Log L -262.0879    AIC 542.1758    BIC 592.6779    Note: The table reports the estimates for the non-homogenous hidden Markov model defied 

in Eqs. (5)-(8) The variable ℎ௧ denotes the temperature anomaly in year ݐ ,ݐ = 1,2, … ,2021, 
and ߬௧ denotes a linear time trend for year ݐ. The table also reports the logarithm of the 
likelihood (Log ܮ), Akaike information criterion (AIC), and Schwarz’s Bayesian 
information criterion (BIC). score. *** denotes rejection of the null hypothesis of zero effect 
at the 1% level. 
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Figure 2.  Contagious disease and temperature anomaly series 

 
Note: The figure plots the dummy indicator for the contiguous disease and the temperature anomaly over the years from 
1 AD to 2021. Shaded regions in Figure (b) indicate presence of contiguous disease 
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Figure 3.  Conditional distribution and temperature anomaly series 

 
Note: The figure displays the density and boxplots of the temperature anomaly conditional on the status of the 
contagious disease with high and low temperature anomaly levels.  High and low anomaly levels are defined values 
above 0.25 and below 0.25, respectively, which is the value naturally splits continues disease occurrences into these 
classes.  Panel (a) displays kernel density estimates with a gaussian kernel. Panel (b) displays boxplots with overlayed 
observations conditional on the contagious disease status.  
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Figure 4.  Autocorrelations and cross correlations of contagious disease and temperature anomaly 
(a) Autocorrelation and partial autocorrelation of contagious disease 

 
(b) Autocorrelation and partial autocorrelation of temperature anomaly 

 
(c) Cross correlation and partial cross correlation of contagious disease and temperature anomaly 

  
Note: The figure displays the autocorrelation function (ACF), partial autocorrelation function (PACF), cross correlation 
function (CCF), and partial cross correlation function (PCCF) of contiguous disease and temperature anomaly series. 
All four measures (ACF, PACF, CCF, and PCCF) when a binary contiguous disease series is involved are obtained 
using Cohen’s ߢ statistic (see Weiss, 2018, p. 130), a measure of signed serial dependence for discrete-valued time 
series. 
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Figure 5.  Linear, logistic, and logistic generalized additive model fit assessment 
 

 
Note: The figure presents model assessment for the best, among all models considered, logistic generalized additive 
model (GAM-Logistic), a logistic model that has the best AIC among the logistic models, and a benchmark linear 
model. Panel (a) plots predictions ( ߨො௧) against the residuals (݀௧ −  ො௧) with a local polynomial regression (LOESS) fitsߨ
using a second-degree polynomial. Panel (b) plots the predicted probability of the occurrence of a contiguous disease by 
temperature anomaly with the trend variable set equal to zero. Panel (c) plots the predicted probability of the occurrence 
of the occurrence of a contiguous disease by the time trend with the temperature anomaly set equal to zero. Panel (d) 
plots the receiver operating curves. 
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Figure 6.  Diagnostics for the logistic generalized additive model  

 
Note: The figure presents model diagnostics for the selected logistic GAM model. Quantile-quantile (QQ) plot of the 
model residuals are obtained by generating reference quantiles that associate each data point with a quantile of the 
uniform distribution. The residuals vs. linear predictor plot is based on fitted model prediction of a binomial link 
function of expected value for each data point. 
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Figure 7.  Conditional predictions from the logistic generalized additive model 

 
Note: The figure displays conditional predictions for the probability of contagious disease from the logistic generalized 
additive model. In Panel (a), predictions for the time trend ߬௧ conditional on three specific values of temperature 
anomaly are displayed: high temperature anomaly (Case A: ℎ௧ = 0.654) corresponding to the mean temperature 
anomaly in high temperature contagious disease periods (ℎ௧ > 0.25 and ݀௧ = 1), medium temperature anomaly (Case 
B: ℎ௧ = −0.244) corresponding to the mean temperature anomaly in no contagious disease periods (݀௧ = 0), and low 
temperature anomaly  (Case C: ℎ௧ = −0.363) corresponding to the mean temperature anomaly in low temperature 
contagious disease periods (ℎ௧ ≤ 0.25 and ݀௧ = 1). In Panel (b), predictions for the temperature anomaly (ℎ௧) 
conditional on three specific values of time are displayed. The time periods that the predictions are conditioned on are: 
߬௧ = 1900 (Case D), ߬௧ = 1800 (Case E), and ߬௧ = 1700 (Case F).   
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Figure 8. Partial effects and partial derivatives in the logistic generalized additive model 
 

 
Note: The figure depicts the partial effects and partial derivatives of the temperature anomaly ℎ௧ and time trend ߬௧ in the 
logistic GAM model, which is specified as the ݃(ℎ௧ , ߬௧) = ܿ + ௛(ℎ௧)ݏ +  ఛ(߬௧), where the function ݃(⋅) is a logisticݏ
link function defined as ݃(⋅) = log{1]/(⋅)ߨ − ℎ௧)ߨ where ,{[(⋅)ߨ , ߬௧) = ܲ(݀௧ = 1|ℎ௧ , ߬௧) = exp{݃(ℎ௧ , ߬௧)}/
(1 + exp{݃(ℎ௧ , ߬௧)}).  
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Figure 9. The joint partial effects of temperature anomaly and trend in the logistic generalized 
additive model 
 

 
Note: The figure presents the full joint effects of temperature anomaly and trend 
variables with over-imposed contour lines. The partial effect estimates are obtained 
from a tensor product smoother with a logistic link function defines as  ݃(ℎ௧ , ߬௧) =
ܿ + ℎ௧)ݏ , ߬௧), where the function ݃(⋅) is a logistic link function defined as ݃(⋅) =
log{1]/(⋅)ߨ − ℎ௧)ߨ with {[(⋅)ߨ , ߬௧) = ܲ(݀௧ = 1|ℎ௧ , ߬௧). The tensor product smooth 
 .is constructed using row Kronecker products (⋅)ݏ
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Figure 10. Smoothed transition and state probability estimated from a non-homogenous hidden 
Markov model. 
 

  
Note: The figure depicts the time-varying transition and state probabilities from a two-state, ௧ܵ ∈ {1,2} with ௧ܵ = 1 
denoting the non-contagious disease state and ௧ܵ = 2 contagious disease state, non-homogenous hidden Markov model. 
The transition probability estimates are given in Panels (a)-(d) are specified as ݌௜௝(ࢠ௧) = ܲ( ௧ܵ = ݆| ௧ܵ = ݅, (௧ࢠ =
exp{ࢻ௜௝ᇱ ௧}/(1ࢠ + exp{ࢻ௜௝ᇱ ,݅ ,({௧ࢠ ݆ ∈ {1,2}, where ࢠ௧ = (1, ℎ௧ , ߬௧)′ and ࢻ௜௝ = ,,଴௜ߙ) ଵ,௜௝ߙ ,  ଶ,௜௝)′. The estimates areߙ
obtained using maximum likelihood based on the expectation maximization (EM) algorithm.   


