
Kubiuk, Yevhenii; Kyselov, Gennadiy

Article

Development of an algorithm for code clone detection
in source code based on abstract syntax tree

Technology audit and production reserves

Provided in Cooperation with:
ZBW OAS

Reference: Kubiuk, Yevhenii/Kyselov, Gennadiy (2023). Development of an algorithm for code
clone detection in source code based on abstract syntax tree. In: Technology audit and production
reserves 4 (2/72), S. 33 - 36.
https://journals.uran.ua/tarp/article/download/286472/280637/661682.
doi:10.15587/2706-5448.2023.286472.

This Version is available at:
http://hdl.handle.net/11159/631585

Kontakt/Contact
ZBW – Leibniz-Informationszentrum Wirtschaft/Leibniz Information Centre for Economics
Düsternbrooker Weg 120
24105 Kiel (Germany)
E-Mail: rights[at]zbw.eu
https://www.zbw.eu/
Standard-Nutzungsbedingungen:
Dieses Dokument darf zu eigenen wissenschaftlichen Zwecken und zum
Privatgebrauch gespeichert und kopiert werden. Sie dürfen dieses Dokument
nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich
ausstellen, aufführen, vertreiben oder anderweitig nutzen. Sofern für das
Dokument eine Open-Content-Lizenz verwendet wurde, so gelten abweichend
von diesen Nutzungsbedingungen die in der Lizenz gewährten Nutzungsrechte.
Alle auf diesem Vorblatt angegebenen Informationen einschließlich der
Rechteinformationen (z.B. Nennung einer Creative Commons Lizenz)
wurden automatisch generiert und müssen durch Nutzer:innen vor einer
Nachnutzung sorgfältig überprüft werden. Die Lizenzangaben stammen aus
Publikationsmetadaten und können Fehler oder Ungenauigkeiten enthalten.

Terms of use:
This document may be saved and copied for your personal and scholarly purposes.
You are not to copy it for public or commercial purposes, to exhibit the document
in public, to perform, distribute or otherwise use the document in public. If the
document is made available under a Creative Commons Licence you may exercise
further usage rights as specified in the licence. All information provided on this
publication cover sheet, including copyright details (e.g. indication of a Creative
Commons license), was automatically generated and must be carefully reviewed by
users prior to reuse. The license information is derived from publication metadata
and may contain errors or inaccuracies.

 https://savearchive.zbw.eu/termsofuse

https://savearchive.zbw.eu/
https://www.zbw.eu/
http://hdl.handle.net/11159/631585
mailto:rights@zbw-online.eu
https://www.zbw.eu/
https://savearchive.zbw.eu/termsofuse
https://www.zbw.eu/

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

33TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 4/2(72), 2023

ISSN 2664-9969

UDC 004.85:004.032.2
DOI: 10.15587/2706-5448.2023.286472

DEVELOPMENT OF AN ALGORITHM FOR
CODE CLONE DETECTION IN SOURCE CODE
BASED ON ABSTRACT SYNTAX TREE

The object of research of this work is the algorithm for searching for duplicates in the program code based on
the Abstract Syntaxes Tree (AST). The main tasks solved within the framework of this study are the detection of
duplicate code and the search for vulnerabilities in the program code.

The obtained results showed that the proposed algorithm is resistant to type 1 and 2 clones, which means its
effectiveness in detecting similar code fragments with identical or variant text. However, for type 3 and 4 clones,
the algorithm may show less efficiency due to the change in the AST structure for these types of clones.

Experimental studies of the proposed algorithm showed that the algorithm can detect matches between unrelated
files due to the presence of typical AST chains present in many programs. This can lead to a certain level of false
positives in the detection of duplicates.

Testing of the algorithm in the task of finding vulnerabilities showed that:
1. The best recognition is observed for the «SQL injection» vulnerability, but it also has the highest number

of false positives.
2. Memory leak and null pointer dereferencing vulnerabilities are detected with equal effectiveness and

false positives.
3. «Buffer overflow» has the lowest recognition rate but fewer false positives compared to «SQL injection».
The study showed that the use of AST allows for the effective detection of duplicate code and vulnerabilities

in the software code. The developed tool can help software developers reduce maintenance efforts, improve code
quality, and ensure software product security.

Keywords: clone detection, abstract syntax tree, AST, hashing, vulnerability search, false alarms.

Yevhenii Kubiuk,
Gennadiy Kyselov

© The Author(s) 2023

This is an open access article

under the Creative Commons CC BY license

How to cite

Kubiuk, Y., Kyselov, G. (2023). Development of an algorithm for code clone detection in source code based on abstract syntax tree. Technology Audit and

Production Reserves, 4 (2 (72)), 33–36. doi: https://doi.org/10.15587/2706-5448.2023.286472

Received date: 24.06.2023

Accepted date: 21.08.2023

Published date: 29.08.2023

1. Introduction

In the modern world, the detection of duplicates in the
program code is an important scientific and technical task,
which requires adaptation of the developed algorithms to
the requirements of speed and accuracy. The problem of
code duplication has a significant impact on the efficiency
of the software development process, as it leads to un-
necessary maintenance effort, delays in making changes,
and overall degradation of code quality. In addition, the
presence of duplicates increases the risk of errors, because
making changes to one piece of code may require repeated
modification of all its copies.

The application of algorithms for finding duplicate code
also plays an important role in the context of detecting vul-
nerabilities in software code. Duplicate code can be an indica-
tion of potential vulnerabilities because vulnerabilities can be
transferred or replicated to multiple locations in the software.
Thus, the use of duplicate detection algorithms helps to identify
these clones and identify potential security issues, thereby
improving the quality and reliability of the software product.

Duplicate code, or clone, can be defined as a piece of
code that is similar to another piece of code in some way.

According to the generally accepted taxonomy of code du-
plicates [1], the following types of clones are distinguished:

– Type-1: identical code except for tab characters.
– Type-2: code fragments are structurally and syntac-
tically identical, only user-defined identifiers such as
variable, type or function names and comments change.
– Type-3: combination of Type-1 and Type-2 clones
with additional modifications of operators, functions
and permutations in the code.
– Type-4: code with similar semantics that performs the
same business task, but the code structure is different.
The problem of detecting duplicate code has been studied

for a long time, so there is a significant amount of research
in this area [2]. Despite this, to date there is no generally
accepted classification of approaches to duplicate detection.
Therefore, let’s focus on the work [3], in which the authors
identified the following approaches: textual, lexical, tree-
based, metrics-based, semantic and hybrid.

Methods based on text [4] and lexical [5] approaches
have the following limitations. They do not use information
about the general structure of the code, which negatively
affects the classification accuracy, and are also not effec-
tive for detecting Type-4 semantic clones.

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

34 TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 4/2(72), 2023

ISSN 2664-9969

Methods based on metrics achieve high accuracy of du-
plicate detection, but they are not effective in the tasks of
detecting vulnerabilities in software code [6, 7]. This is due
to the fact that the presence of vulnerable code has a low
impact on the value of the metrics, which is not sufficient
to define a piece of code as plagiarism, or in the context
of this task – as vulnerability.

In this work, the emphasis is on the tree-based approach,
as it allows detecting clones of all four types, and also has
higher accuracy compared to other approaches [8]. Another
advantage of the tree approach is its successful application in
the tasks of detecting vulnerabilities [9] in the code [10, 11].
This is explained by the fact that the tree-like structure
describing the program code conveys not only information
about the available tokens in the code, but also the semantic
relationships between them.

The aim of research is to evaluate the effectiveness of
tree-based methods in the context of identifying duplicate
code and finding potential vulnerabilities in software code.
The developed tool allows to provide an effective and ac-
curate (~98.3 %) procedure for searching for plagiarism
in the code, focusing on C/C++ programming languages.
In addition, it is also capable of detecting code snippets that
may contain potential vulnerabilities or security issues. This
work is aimed at developing a tool that combines high effi-
ciency and accuracy of duplicate detection with reliable detec-
tion of potential vulnerabilities in software code, which will
contribute to improving the quality and security of software.

2. Materials and Methods

The object of research in this work is the algorithm
for searching for duplicates in the program code, based
on the use of an abstract syntax tree (AST). An AST is
a data structure that represents the syntactic structure
of software code, allowing it to be represented as a tree,
where nodes correspond to syntactic constructs and edges
show the relationships between them.

The algorithm developed in this paper uses AST to
detect duplicate code. It analyzes the structural and syn-
tactic features of the program code by comparing AST

subtrees and finding similar fragments. This approach al-
lows detecting not only textually similar fragments, but
also clones with similar semantics, which increases the
efficiency of the duplicate detection process.

The algorithm for finding duplicate code works as follows:
– Building an AST: For a file with code A (the source
code against which other files are compared), an AST
is first built. AST represents the code structure and
its semantics.
– Hashing of AST nodes: Sequences of AST nodes of
size N are hashed using the SHA256 algorithm [12].
Each node in the AST has its own unique hash.
– Building an AST for file B: Similar to step 1, an AST
is built for the code file B to be checked for plagiarism.
– Hashing AST Nodes for File B: The AST Node Se-
quences of size N for File B are hashed using SHA256.
Each node receives its own unique hash.
– Comparison of hashes: The number of hashes of file B
that are present in file A is compared. This can be
done by comparing two lists of hashes.
– Calculation of the percentage of matches: The percent-
age of matches is calculated by dividing the number of
matching hashes by the total number of hashes of file B.
– Threshold search: Threshold T is used to decide whether
file B is a plagiarism of file A. If the percentage of
matches is greater than threshold T, then file B is con-
sidered plagiarized.
Schematically, this algorithm can be depicted in Fig. 1.
The size of the window N affects the quality of pla-

giarism recognition, so the following algorithm was used
to determine the optimal value of the window size:

For each value of the window size from 1 to K, a pla-
giarism search was performed, and the average percentage
of plagiarism was calculated for files with clone type 4 as
well as for the original files. Accordingly, the first value
will be considered the upper limit for plagiarism, and the
second value – the lower limit. The optimal value of N
will be the value at which the distance between the upper
and lower limits is maximal.

Thus, the result of the algorithm for choosing the optimal
value of the window size for hashing looks like in Fig. 2.

Fig. 1. Algorithm for finding duplicates based on hashing of AST nodes

Fig. 2. Determination of the optimal window size for hashing: AVG_CLONE – threshold value at which the code is considered plagiarized;
AVG_ORIG – threshold value at which the code is considered original; DIFF – AVG_CLONE and AVG_ORIG difference module

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

35TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 4/2(72), 2023

ISSN 2664-9969

As can be seen from Fig. 2, when the window size is N = 6,
cloned and original code are most clearly distinguished
and have the largest intercluster distance.

3. Results and Discussion

In the course of this study, two important problems
were identified, namely, the search for duplicates in the
program code and the search for vulnerabilities in the
program code. In order to study and solve each of these
problems, separate experiments were conducted.

The first experiment demonstrates the operation of the
algorithm in the task of finding plagiarism in the code.
As part of the experiment, a dataset with files of several
types was created:

– original.cpp – the original file with the code;
– type_1.cpp – type 1 clone. Created on the basis of
original.cpp with the addition of tab characters;
– type_2.cpp – type 2 clone. Created on the basis of
original.cpp, in which the variable names were changed;
– type_3.cpp – type 3 clone. Created on the basis of
original.cpp, in which the values of string literals, some
calculation formulas, and tabulation were changed;
– type_4.cpp – type 4 clone. Original code that solves
the same business problem as original.cpp;
– original_2.cpp – original file with code that solves
a different business problem than original.cpp.
The dataset consisted of 15 files of each type. In Table 1

presents the results of the algorithm for the above dataset.

Table 1

The results of the algorithm for searching for duplicates

File А File B
Average percent-
age of plagiarism

Recognition accu-
racy at T = 0.6

original.cpp type_1.cpp 100 % 100 %

original.cpp type_2.cpp 100 % 100 %

original.cpp type_3.cpp 77.78 % 97.78 %

original.cpp type_4.cpp 61.11 % 95.11 %

original.cpp original_2.cpp 22.57 % 98.67 %

According to Table 1 information, it can be determined
that the algorithm is resistant to clones of type 1 and 2.
This means that it effectively recognizes similar code frag-
ments that have identical text or some variations in the text.

However, for clones of type 3 and 4, the algorithm
may show somewhat lower efficiency, since the structure
of the abstract syntactic tree may change significantly for
these types of clones. This can complicate the process of
recognizing and detecting such clones in the program code.

It is worth noting that matches between two unrelated
files, which can be detected by the algorithm, are explained
by the presence of typical chains of the abstract syntax
tree, which are present in many different code fragments.
These typical chains may result from common structural
patterns or constructs found in many programs.

The second experiment demonstrates the operation
of the algorithm in the task of finding vulnerabilities in
software code. As part of the experiment, a dataset with
the following types of files was used:

– code_not_vuln.cpp – code without vulnerabilities;
– code_vuln_bo.cpp – code containing an example of
a buffer overflow vulnerability;

– code_vuln_ml.cpp – code containing an example of
a memory leak vulnerability;
– code_vuln_nd.cpp – code containing an example of
a null pointer dereferencing vulnerability;
– code_vuln_si.cpp – code containing an example of
a SQL injection vulnerability;
– bo.cpp – an example of a buffer overflow vulnerability;
– ml.cpp – an example of a memory leak vulnerability;
– nd.cpp – an example of a null pointer dereferencing
vulnerability;
– si.cpp – an example of a SQL injection vulnerability.
The dataset consisted of 25 type files each for the type

code_not_vuln.cpp and code_vuln_*.cpp. The vulnerability
files were presented in a single instance and contained
a typical example of the vulnerability.

Table 2 presents the result of the algorithm.

Table 2

The result of the algorithm for finding vulnerabilities

File А File B
Average percent-
age of plagiarism

Recognition accu-
racy at T = 0.6

code_not_vuln.cpp bo.cpp 7.14 % 96.00 %

code_not_vuln.cpp ml.cpp 5.47 % 97.60 %

code_not_vuln.cpp nd.cpp 5.56 % 98.72 %

code_not_vuln.cpp si.cpp 11.14 % 94.24 %

code_vuln_bo.cpp bo.cpp 75.40 % 88.16 %

code_vuln_ml.cpp ml.cpp 80.00 % 89.60 %

code_vuln_nd.cpp nd.cpp 82.86 % 87.52 %

code_vuln_si.cpp si.cpp 97.41 % 97.28 %

Analyzing the Table 2, the following conclusions can
be drawn regarding the recognition of different types
of vulnerabilities. The best detection indicator revealed
a vulnerability of the «SQL-injection» type. However, it
is worth noting that this vulnerability also has the highest
level of false positives among all considered vulnerabilities.
This may be because the algorithm finds certain patterns
that may look like SQL injection, but are not actually
vulnerabilities.

The «memory leak» and «null pointer dereferencing»
vulnerabilities are detected with about the same efficiency
and have similar false positives. This can be explained by
the fact that both vulnerabilities are related to freeing
memory, which occurs using the same call (for example,
the free() function). This similarity in detection and false
positives may be due to common patterns or characteristics
of these types of vulnerabilities.

From Table 2, it can be seen that the «buffer overflow»
vulnerability has the lowest detection rate among all the
considered vulnerabilities. This may be because the difference
between vulnerable and non-vulnerable code with respect to
buffer overflows can only be expressed through the correct
choice of function, such as using strncpy instead of strcpy.
However, it is worth noting that the false-positive rate
for «buffer overflow» is lower than for «SQL injection».

So, on the basis of the results, it can be said that
the recognition of different types of vulnerabilities has
its own characteristics and it is worth taking into ac-
count specific contextual factors in order to achieve an
optimal balance between the recognition efficiency and
the number of false signals.

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

36 TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 4/2(72), 2023

ISSN 2664-9969

The study showed that the use of AST allows for the
effective detection of duplicate code and vulnerabilities in
the software code. The developed tool can help software
developers reduce maintenance efforts, improve code qua-
lity, and ensure software product security. Also, this tool
can be used to ensure the highest quality of educational
processes, for example, to check students’ programming
laboratory work.

The importance and practical orientation of the research
is conditioned, among other things, by the presence of martial
law in Ukraine. First, the rapid development of high-quality
software code is necessary, and secondly, the training of
IT specialists in the remote mode requires checking the
independent tasks of students and trainees using formal
approaches to control plagiarism in the software code and
identifying code vulnerabilities.

When implementing the developed system, several im-
portant limitations and aspects that may affect the practi-
cal applicability and effectiveness of the obtained results
should be taken into account:

1. Limited to only C/C++ programming language.
2. The system does not detect the location where the

duplicate is present, but only notes its presence.
3. The values of the selected parameters of the algo-

rithm may be less effective for another data set.
Further research can be aimed at improving the algo-

rithm and increasing the accuracy of its operation, as well
as expanding the list of supported programming languages.
One potential area of improvement is to extend the ca-
pabilities of the algorithm so that it not only provides
information about the percentage of plagiarism, but also
points to the pieces of code that are plagiarized themselves.
To do this, it is possible to develop an additional table
that will establish a connection between code fragments
and their corresponding hashes at the stage of hashing
the nodes of the abstract syntactic tree.

4. Conclusions

In this work, experiments were conducted to iden-
tify duplicate code and search for vulnerabilities in the
program code. The results of the study showed that the
algorithm based on the abstract syntax tree (AST) demon-
strates resistance to type 1 and 2 clones, that is, it effec-
tively recognizes similar code fragments with identical or
variant text.

However, for clones of type 3 and 4, which are cha-
racterized by a change in the AST structure, the algo-
rithm may show less efficiency in detection. This is due
to the difficulty of recognizing and detecting such clones
that have distinct AST structures compared to normal
textual changes.

It is also found that the algorithm can detect matches
between unrelated files due to the presence of typical
AST strings found in many programs. This can create
a certain level of false positives, where the algorithm no-
tices similarities, but there are actually no vulnerabilities.

Conflict of interest

The authors declare that they have no conflict of inte-
rest in relation to this research, whether financial, personal,
authorship or otherwise, that could affect the research and
its results presented in this paper.

Financing

The research was performed without financial support.

Data availability

The manuscript has no associated data.

References

1. Koschke, R. (2007). Survey of research on software clones.
In Dagstuhl Seminar Proceedings. Schloss Dagstuhl-Leibniz-
Zentrum f r Informatik. doi: https://doi.org/10.4230/DagS-
emProc.06301.13

2. Kim, M., Bergman, L., Lau, T., Notkin, D. (2004). An ethno-
graphic study of copy and paste programming practices in
OOPL. Proceedings. 2004 International Symposium on Empirical
Software Engineering. ISESE’04, 83–92. doi: https://doi.org/
10.1109/isese.2004.1334896

3. Ain, Q. U., Butt, W. H., Anwar, M. W., Azam, F., Maqbool, B.
(2019). A Systematic Review on Code Clone Detection. IEEE
Access, 7, 86121–86144. doi: https://doi.org/10.1109/access.
2019.2918202

4. Kal Viertel, F. P., Brunotte, W., Str ber, D., Schneider, K.
(2019). Detecting Security Vulnerabilities using Clone Detec-
tion and Community Knowledge. International Conferences on
Software Engineering and Knowledge Engineering, 245–324.
doi: https://doi.org/10.18293/seke2019-183

5. Nishi, M. A., Damevski, K. (2018). Scalable code clone de-
tection and search based on adaptive prefix filtering. Journal
of Systems and Software, 137, 130–142. doi: https://doi.org/
10.1016/j.jss.2017.11.039

6. Kaliuzhna, T., Kubiuk, Y. (2022). Analysis of machine learning
methods in the task of searching duplicates in the software
code. Technology Audit and Production Reserves, 4 (2 (66)),
6–13. doi: https://doi.org/10.15587/2706-5448.2022.263235

7. Singh, M., Sharma, V. (2015). Detection of File Level Clone for
High Level Cloning. Procedia Computer Science, 57, 915–922.
doi: https://doi.org/10.1016/j.procs.2015.07.509

8. Yang, Y., Ren, Z., Chen, X., Jiang, H. (2018). Structural function
based code clone detection using a new hybrid technique. 2018
IEEE 42nd annual computer software and applications confe-
rence (COMPSAC), 1, 286–291. doi: https://doi.org/10.1109/
compsac.2018.00045

9. NVD. Available at: https://nvd.nist.gov/ Last accessed: 22.07.2023
10. Li, Z., Zou, D., Xu, S., Ou, X., Jin, H., Wang, S. et al. (2018).

VulDeePecker: A Deep Learning-Based System for Vulnerability
Detection. Proceedings 2018 Network and Distributed System Se-
curity Symposium. doi: https://doi.org/10.14722/ndss.2018.23158

11. Chrenousov, A., Savchenko, A., Osadchyi, S., Kubiuk, Y., Kos-
tenko, Y., Likhomanov, D. (2019). Deep learning based auto-
matic software defects detection framework. Theoretical and
Applied Cybersecurity, 1 (1). doi: https://doi.org/10.20535/
tacs.2664-29132019.1.169086

12. Appel, A. W. (2015). Verification of a Cryptographic Primi-
tive. ACM Transactions on Programming Languages and Systems,
37 (2), 1–31. doi: https://doi.org/10.1145/2701415

*Yevhenii Kubiuk, Department of System Design, National Technical
University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute»,
Kyiv, Ukraine, e-mail: eugen.kubiuk@gmail.com, ORCID: https://
orcid.org/0000-0002-7086-0976

Gennadiy Kyselov, PhD, Department of System Design, National
Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic
Institute», Kyiv, Ukraine, ORCID: https://orcid.org/0000-0003-
2682-3593

*Corresponding author

