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Predicting the Conditional Distribution of US Stock Market Systemic Stress: The Role 
of Climate Risks 

Massimiliano Caporin*, Petre Caraiani**, Oguzhan Cepni*** and Rangan Gupta**** 
Abstract 

This paper explores how climate risks impact the overall systemic stress levels in the United 
States (US). We initially apply the TrAffic Light System for Systemic Stress (TALIS3) approach 
that classifies the stock markets across all 50 states based on their stress levels, to create an 
aggregate stress measure called ATALIS3. Then, we utilize a nonparametric causality-in-
quantiles approach to thoroughly assess the predictive power of climate risks across the entire 
conditional distribution of ATALIS3, accounting for any data nonlinearity and structural 
changes. Our analysis covers daily data from July 1996 to March 2023, revealing that various 
climate risk indicators can predict the entire conditional distribution of ATALIS3, particularly 
around its median. The full-sample result also carries over time, when the nonparametric 
causality-in-quantiles test is conducted based on a rolling-window. Our findings, showing that 
climate risks are positively associated with ATALIS3 over its entire conditional distribution, 
provide crucial insights for investors and policymakers regarding the economic impact of 
environmental changes. 
Keywords: State stock markets; Systemic stress; Climate risks; Quantile predictions 
JEL Codes: C21, C32, C53, G10, Q54. 
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1. Introduction 
A recent line of research has associated climate change-related risks to financial stress 
(Battiston et al., 2021; Flori et al., 2021; Del Fava et al., 2024), since extreme weather 
conditions pose a large aggregate risk to the financial system due to occurrences of rare disaster 
events impacting far out-in-the-left-tail realizations of the underlying states of the economy 
(Giglio et al., 2021; Stroebel and Wurgler, 2021; van Benthem et al., 2022). Theoretically 
speaking, the key assumption underlying rare-disaster models used to explain this nexus is that, 
the entire universe of assets in an economy is exposed to an aggregate jump-risk factor (Rietz, 
1988; Barro, 2006, 2009). It follows that, even though in the cross section, some assets are 
more exposed to such a tail event than others: for instance, a jump-risk factor should be an 
important driver of the time-series variation in the tails of individual asset returns (Balcilar et 
al., 2023; Bonato et al., 2023; Salisu et al., 2023), due to reduction in productivity and/or the 
increase in the stochastic depreciation rate of capital to produce adverse impact on equity 
valuations (Donadelli, 2017, 2021a, b, 2022). In other words, one can hypothesize that the 
jump-risk factor associated with the climate risks, has predictive power for movements in the 
stress-levels of the aggregate stock market. 
Against this backdrop, as our first objective, we compute, for the first time, a measure of 
aggregate systemic risk of the United States (US) economy based on state-level stock market 
data, by utilizing the TrAffic LIght System for Systemic Stress (TALIS3), recently developed 
by Caporin et al. (2021). TALIS3 combines the information contained in the Delta Conditional 
Value-at-Risk (ܴܸܽ݋ܥ߂)) and the US state-level shortfalls (i.e., the realized losses of a state 
stock market are larger than the expected Value-at-Risk – VaR) to provide accurate systemic 
risk rankings. Therefore, TALIS3 identifies the contribution of each US state for the systemic 
risk of the aggregate US stock market by combining signals from two different sources. The 
decision to employ the TALIS3 methodology over other stress indicators, as outlined by Benoit 
et al. (2017) and Silva et al. (2017), is driven by multiple factors. Firstly, TALIS3 uses 
appropriate and well-known loss functions to quantify the level of stress of a particular state 
(i.e., squared deviations between the equity returns of a state and the corresponding VaR) and 
the system stress (i.e., the ܴܸܽ݋ܥ߂ measure of Girardi and Ergün (2013)). Secondly, to analyse 
the severity of such stress regimes, these loss functions are dynamically analysed, leading to a 
colour-based classification of the states that includes four possible regimes. Lastly, TALIS3 also 
allows the derivation of an aggregated index (ATALIS3) based on the risk classification of each 
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of the states, which provides a way to move beyond the isolated state-level categorization and 
gain a complete understanding of the dynamics of the equity market system.  
The rationale behind our regional assessment of stock market stress to develop the ATALIS3 
index stems from research indicating that companies’ main operations often cluster around 
their headquarters, affecting investment patterns as investors tend to prefer local companies 
(Pirinsky and Wang, 2006; Chaney et al., 2012). This local bias in investments (Coval and 
Moskowitz, 1999, 2001; Korniotis and Kumar, 2013) underlines the relevance of our regional 
stress analysis. By identifying and measuring stress levels across different states, we provide a 
nuanced picture of systemic stress in the equity market, invaluable for investors' portfolio 
strategies. 
Moreover, we analyse, again for the first time, the predictive ability of climate anomalies—
such as unusual temperature patterns, precipitation levels, and variations in heating and cooling 
days—on the entire conditional distribution of the ATALIS3 indicator, using the nonparametric 
causality-in-quantiles test of Jeong et al. (2012), both for the full-sample, and in a time-varying 
(rolling-window) set-up (as in Bonaccolto et al. (2018)). This method is particularly effective 
as it enables us to detect predictability across the entire conditional distribution of ATALIS3, 
resulting from climate risks, while addressing the challenges posed by nonlinearities and 
structural breaks in the data. Moreover, given the presence of a fat tail in the unconditional 
distribution of the ATALIS3, a quantiles-based nonparametric predictive approach is more 
relevant in our context, rather than conditional mean-based nonlinear/nonparametric causality 
tests (as in, Hiemstra and Jones (1994), and Diks and Panchenko (2005, 2006), Nishiyama et 
al. (2011)), which may overlook significant influences on different segments of the systemic 
stress distribution. In addition to our focus on the aggregate level of equity market stress, we 
also briefly discuss findings from a pooled state-level multinomial logistic approach-based 
analysis of the effect of climate risks on the indicators of ordered regimes of stress.  
Financial markets react swiftly to extreme events, integrating and transmitting new information 
rapidly into the broader economy, as highlighted by Caporin et al. (2022). Therefore, by 
studying the role of climate risks in predicting the time-varying stress in the financial system 
at a high frequency is likely to provide early relevant insights to policymakers in terms of its 
impact on the macroeconomy, for instance through MIxed DAta Sampling (MIDAS) models 
(Bańbura et al., 2011). Furthermore, the indirect impacts of climate risks on the 
macroeconomy, through financial stress, supplement their direct consequences on the U.S. 
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economy, as noted by Colacito et al. (2019), Sheng et al. (2022), and Cepni et al. (2024). This 
potentially leads to a more sustained effect on the real economy, necessitating that 
policymakers adjust the intensity of their monetary and fiscal strategies accordingly. Hence, 
our findings regarding the predictive power of climate risks on systemic stress in the U.S. stock 
market underline a significant intertwining of environmental factors with financial stability. 
The fact that climate risk indicators, such as abnormal weather patterns and temperature 
anomalies, exhibit a tangible influence on the distribution of systemic stress levels across the 
U.S. equity markets suggests that climate change is not merely an environmental or social issue 
but a core financial one. The identified relationships between climate risks and market stress 
underscore the pressing need for the financial industry and regulators to integrate climate-
related data into their risk assessment models and investment strategies more comprehensively. 
The remainder of the paper is organized as follows: Section 2 outlines the data, involving the 
construction of ATALIS3 and (two) climate risks metrics, and presents the basics of the 
nonparametric causality-in-quantiles test. Section 3 discusses our empirical findings, with 
Section 4 concluding the paper.  

2. Data and Methodology 
2.1. Construction of the variables of interest 

We employ daily stock log-returns returns, which start on the 2nd of February, 1994, for the 50 
states of the US to compute the TALIS3 for each of the states, and then the ATALIS3 for the 
overall US. The state-level stock market indexes are derived from the Bloomberg terminal, 
which in turn, creates these indexes by taking the capitalization-weighted index of equities for 
companies domiciled in each US state. TALIS3 can be used to monitor and process signals 
related to market shortfalls for the purpose of building systemic risk rankings, and is a system 
providing a classification of the underlying states into four categorizations of increasing stress: 
green, yellow, orange, and red. This stratification aids in the clear identification and 
understanding of varying degrees of financial stress within individual states. 
As discussed earlier, our classification system, which utilizes two distinct loss functions 
calculated on a daily basis for this analysis: the first evaluates systemic risk using the ܴܸܽ݋ܥ߂ 
measure, while the secondary function assesses risk at the state level by calculating the squared 
difference between the state's VaR and the aggregate equity market returns, based on the Center 
for Research in Security Prices (CRSP) composite index, obtained from Professor Kenneth R. 
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French’s data library.1 Then, conditional expectations to a distress regime (for the market and 
states, respectively) are computed for both loss functions. Contrasting the sample expectations 
to local thresholds (median loss functions over a rolling-window), states are ranked into the 
four stress classes, leading to TALIS3. Furthermore, using the collections of all the stress 
indexes of the states, an aggregated indicator is also derived: the stress level is used as a weight 
for the aggregation of ܴܸܽ݋ܥ߂ the state in a weighted geometric mean. The state- specific 
stress and the aggregated index provide relevant information for the analysis of the market 
conditions during turmoil.2  
Using the US state level equity market indexes and the aggregated market index, we proceed 
to the computation of the state-specific TALIS3 and to the country-wide ATALIS3 index, with 
Figure 1(a) plotting the latter, over the period of 16th July, 1996 to 31st March, 2023. Note the 
length of the sample period is driven by data availability, and underlying estimations 
requirement at the time of writing this paper.3 The state-level TALIS3, reported with a specific 
colour shade, is plotted in Figure A1 in the Appendix of the paper separately for the days of 
each year (1996-2023), with the stress-level of the 50 states (ordered alphabetically4) 
represented in each row. Notably, the ATALIS3 spikes moderately during the Asian financial 
crisis of 1997, the Dot-com bubble burst of 2000, the European sovereign debt crisis of 2009 
to 2010, the Brexit and the sell-off in 2016, and the start of the Russia-Ukraine War in 2022. 
But the highest peaks are unsurprisingly associated with the Global Financial Crisis (GFC) of 
2007-2009, and the outbreak of the COVID-19 pandemic in 2020, with the lowest level of the 
index observed over 2003 to 2006 during the tranquil market phase in the US. Though the stress 
levels of each state depicts quite a bit of heterogeneity, as seen from in Figure A1, all the states 
are virtually in red, i.e., highest class of stress, during the latter part of 2008 and early part of 
2020, corresponding to the peaks of the GFC and the coronavirus outbreak.   

                                                             
1 https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. 
2 For additional details on the methodology, we refer the reader to Caporin et al. (2021). 
3 We lose several data points due to the evaluation of TALIS3: 500 observations for the estimation of a GARCH 
model in the evaluations of ܴܸܽ݋ܥ߂ and VaR, 60 additional data to define the threshold for loss functions 
evaluation, and finally 60 more daily periods for the determination of the losses. 
4 Alabama (AL), Alaska (AK), Arizona (AZ), Arkansas (AR), California (CA), Colorado (CO), Connecticut (CT), 
Delaware (DE), Florida (FL), Georgia (GA), Hawaii (HI), Idaho (ID), Illinois (IL), Indiana (IN), Iowa (IA), 
Kansas (KS), Kentucky (KY), Louisiana (LA), Maine (ME), Maryland (MD), Massachusetts (MA), Michigan 
(MI), Minnesota (MN), Mississippi (MS), Missouri (MO), Montana (MT), Nebraska (NE), Nevada (NV), New 
Hampshire (NH), New Jersey (NJ), New Mexico (NM), New York (NY), North Carolina (NC), North Dakota 
(ND), Ohio (OH), Oklahoma (OK), Oregon (OR), Pennsylvania (PA), Rhode Island (RI), South Carolina(SC), 
South Dakota (SD), Tennessee (TN), Texas (TX), Utah (UT), Vermont (VT), Virginia (VA), Washington (WA),  
West Virginia (WV), Wisconsin (WI), and Wyoming (WY).  
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At the same time, we collect daily weather data also from the Bloomberg terminal, as compiled 
by the National Climatic Data Center (NCDC), for the US, as well as for the 50 states, with the 
former being the cross-sectional average of the weather variables across the latter over time. 
The weather data captures meteorological phenomena along several dimensions, including 
temperature, precipitation, number of heating degree days (HDD), number of cooling degree 
days (CDD), and wind speed as described below: 
• Temperature (݌݉݁ݐ௧): The average temperature (usually of the high and low) that was 
observed between 7am and 7pm local time, expressed in Fahrenheit. 
• HDD (ܪ௧): The number of degrees that the day's average temperature is below 65 degrees 
Fahrenheit. It's used to calculate the heating requirements of a building. 
• CDD (ܥ௧): The number of degrees the day's average temperature is above 65 degrees 
Fahrenheit, aiding in estimating a building's cooling needs. 
• Precipitation (ܿ݁ݎ݌௧): The amount of rain, snow, sleet, or hail that falls in a specific location. 
• Wind speed (݀݊݅ݓ௧): The average speed of the wind, not accounting for gusts, represented 
in knots. 
As in Choi et al., (2020), we decompose the weather-related variables into three components 
that account for seasonal, predictable, and abnormal patterns. In particular, for each day, t, we 
compute the daily weather measure (Wt) for the overall US, using the following formula: 

௧ܹ = ௧ܹெ + ௧ܹ஽ + ௧ܹ஺         (1) 
where Wt = {temperaturet (tempt), HDDt, CDDt, precipitationt (precipt), wind speedt (windt)}, 
and the term ௧ܹெ denotes the mean of Wt for the overall US spanning the 120 months prior to 
t. Moreover, the variable ܹ ௧஽ denotes the difference of the mean of the deviation of the Wt from 
the daily average temperature for the US in the same calendar day over the last ten years and 

௧ܹெ. Finally, the variable ௧ܹ஺ is the remainder (i.e., the abnormal deviation of weather 
conditions) and, hence, captures extreme departures from normal weather conditions. For this 
reason, we focus on this variable in our analysis. We standardize the abnormal deviations, 
commonly known as the standardized anomaly, to obtain the following two comprehensive 
climate risks (CR) measures: 
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1௧ܴܥ = (௧஺݌݉݁ݐ)݀ݐݏ + (௧஺݌݅ܿ݁ݎ݌)݀ݐݏ + (௧஺ܦܦܥ)݀ݐݏ + (௧஺ܦܦܪ)݀ݐݏ + (௧஺݀݊݅ݓ)݀ݐݏ
5          (2) 

              
2௧ܴܥ = (௧஺݌݉݁ݐ)݀ݐݏ + (௧஺݌݅ܿ݁ݎ݌)݀ݐݏ + (௧஺ܦܦܥ)݀ݐݏ − (௧஺ܦܦܪ)݀ݐݏ + (௧஺݀݊݅ݓ)݀ݐݏ

5          (3) 
             
Note that in CR2t the standardized ܦܦܪ௧஺ enters with negative sign. HDD is a measure used to 
estimate the demand for energy needed to heat a building. Hence, high HDD indicates that 
more energy is needed to heat buildings due to lower temperatures, which implies less risk of 
global warming. We plot CR1 and CR2 in Figure 1(b), showing consistent fluctuations over 
the entire sample period. It must be noted that, the same approach as above is used to derive 
the two metrics of climate risks (CR1it and CR2it) at the state-level by focussing on the 
underlying climate variables for each state i.  
Table 1 summarizes ATALIS3, CR1 and CR2. Notably, CR1 exhibits a higher standard deviation 
compared to CR2, as illustrated in Figure 1(b). All the three variables of interest being non-
normal as confirmed by the strong rejection of the null of normality under the Jarque-Bera test. 
Importantly, the heavy tail of ATALIS3 (due to positive skewness and excess kurtosis) provides 
an initial motivation to rely on a quantiles-based test of its predictability due to CR1 and CR2, 
rather than conditional mean-reliant methods. 

[INSERT FIGURE 1 AND TABLE 1] 
To gain an initial understanding of the correlation between ATALIS3 and CR1 or CR2, we refer 
to Figure 2, which displays the conditional quantiles-based response of the former, stemming 
from various quantiles of the latter. This is derived using the Quantiles-on-Quantiles (QQ) 
regression method Sim and Zhou (2015).5 In general, the variables of interest are positively 
correlated across their respective quantiles, with the sign and magnitude virtually being 
invariant over the quantiles of the climate risks metrics. This latter finding provides a 
motivation to consider a predictive approach, which we discuss in the next sub-section, that 
basically concentrates on the conditional distribution of only ATALIS3 rather than also those of 
CR1 and CR2 simultaneously. 

[INSERT FIGURE 2] 
 

                                                             
5 The interested reader is referred to the original paper for complete technical details of the QQ approach. 
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2.2. Nonparametric causality-in-quantiles test 
In this sub-section, we briefly present the methodology for testing nonlinear causality based on 
the framework of Jeong et al. (2012). Let ݕ௧ denote the ATALIS3 and ݔ௧ either CR1 or CR2. 
Further, let ௧ܻିଵ ≡ ,௧ିଵݕ) … , ௧ି௣), ܺ௧ିଵݕ ≡ ,௧ିଵݔ) … , ௧ି௣),  ܼ௧ݔ = (ܺ௧, ௧ܻ), and ܨ௬೟|∙(ݕ௧| •) 
denote the conditional distribution of ݕ௧ given •.  Defining ܳఏ(ܼ௧ିଵ) ≡ ܳఏ(ݕ௧|ܼ௧ିଵ) and 
ܳఏ( ௧ܻିଵ) ≡ ܳఏ(ݕ௧| ௧ܻିଵ), we have  ܨ௬೟|௓೟షభ{ܳఏ(ܼ௧ିଵ)|ܼ௧ିଵ} =  with probability one. The  ߠ
(non)causality in the θ-th quantile hypotheses to be tested are: 
)௬೟|௓೟షభ{ܳఏܨ଴:   ܲ൛ܪ ௧ܻିଵ)|ܼ௧ିଵ} = ൟߠ = 1                                                                                     (4)  
)௬೟|௓೟షభ{ܳఏܨଵ:   ܲ൛ܪ ௧ܻିଵ)|ܼ௧ିଵ} = ൟߠ < 1                                                                                      (5)  
Jeong et al. (2012) show that the feasible kernel-based (standard normal) test statistic has the 
following format: 

መ்ܬ                = 1
ܶ(ܶ − 1)ℎଶ௣ ෍ ෍ ܭ ൬ܼ௧ିଵ − ܼ௦ିଵ

ℎ ൰  ௦̂ߝ௧̂ߝ
்

௦ୀ௣ାଵ,௦ஷ௧
                      

்

௧ୀ௣ାଵ
                        (6) 

where ܭ(•) is the kernel function with bandwidth ℎ, ܶ is the sample size, ݌ is the lag order, 
and ߝ௧̂ = ૚{ݕ௧ ≤ ෠ܳఏ( ௧ܻିଵ)} − )is the regression error, where ෠ܳఏ ߠ ௧ܻିଵ) is an estimate of the 
 th conditional quantile and ૚{•} is the indicator function. The Nadarya-Watson kernel-ߠ
estimator of ෠ܳఏ( ௧ܻିଵ) is given by 

෠ܳఏ( ௧ܻିଵ) = ∑ ܮ ቀ ௧ܻିଵ − ௦ܻିଵℎ ቁ  ૚{ݕ௦ ≤ ௧}௦்ୀ௣ାଵ,௦ஷ௧ݕ
∑ ܮ ቀ ௧ܻିଵ − ௦ܻିଵℎ ቁ௦்ୀ௣ାଵ,௦ஷ௧

                                                                   (7)  

with ܮ(•) denoting the kernel function.  
The empirical implementation of causality testing via quantiles entails specifying three key 
parameters: the bandwidth (h), the lag order (p), and the kernel types for ܭ(∙) and ܮ(∙). We use 
a lag order of one based on the Schwarz Information Criterion (SIC). We determine ℎ by the 
leave-one-out least-squares cross validation. Finally, for ܭ(∙) and  ܮ(∙), we use Gaussian 
kernels. 

3. Empirical Findings 
Before we discuss the results from the causality-in-quantiles test, for the sake of completeness 
and comparability, we conduct the standard linear Granger causality test, with a lag-length of 
one. The resulting 2(1) test statistic associated with the causality running from CR1 and CR2 
to ATALIS3 are 0.024 and 0.667 with associated p-values of 0.878 and 0.414, respectively. In 
other words, the null hypothesis that climate risks does not Granger cause systemic equity 
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market stress for the overall US, cannot be rejected even at the 10% level of significance. 
Nevertheless, this linear approach falls short of capturing the detailed, quantile-specific 
predictability nuances. Consequently, we proceed to the more nuanced nonparametric 
causality-in-quantiles examination. However, to set the stage for this sophisticated analysis, we 
first explore potential nonlinearity and structural shifts within the relationships between CR1 
or CR2 and ATALIS3. The presence of such complexities would validate the necessity for the 
nuanced nonparametric quantiles-based causality approach, as it adeptly addresses nonlinearity 
and structural breaks within the data, issues that are not accommodated by standard linear 
analyses. 
For this purpose, we first apply the Brock et al. (1996, BDS) test on the residual derived from 
the ATALIS3 equations involving one lag each of ATALIS3 and CR1, and ATALIS3 and CR2. 
Table 2 presents the results of the BDS test of nonlinearity. As the table shows, we find strong 
evidence, at the highest level of significance, for the rejection of the null hypothesis of i.i.d. 
residuals at various embedded dimensions (m), which, in turn, is indicative of nonlinearity in 
the relationship between climate risks and US systemic stress. To further motivate the 
causality-in-quantiles approach, we next use the powerful UDmax and WDmax tests of Bai and 
Perron (2003), to detect 1 to M structural breaks in the relationship between ATALIS3 and CR1, 
and ATALIS3 and CR2, allowing for heterogeneous error distributions across the breaks. When 
we apply these tests again to the one-lag-based ATALIS3 equations, we detect three breaks at: 
29th May, 2003; 3rd December, 2008, and; 29th January, 2018 under CR1, and 18th June, 2003; 
3rd December, 2008, and; 12th October, 2018 when using CR2 as the predictor. While the 
second break point is virtually in line with the peak of the GFC following the bankruptcy of 
Lehman Brothers, these dates also fall in and around major weather or climate disaster events 
with losses exceeding $1 billion each (specifically, $37. 5 billion in 2003, $91.4 billion in 2008, 
and $113 billion in 2018) to affect the US over our sample period.6 

[INSERT TABLE 2] 
Given the strong evidence of nonlinearity and structural breaks in the relationship between 
ATALIS3 and CR1, and ATALIS3 and CR2, we now turn our attention to the causality-in-
quantiles test, which is robust to misspecification in the linear model due to its nonparametric 
nature, besides allowing us to test for predictability over the entire conditional distribution of 

                                                             
6 https://www.ncei.noaa.gov/access/billions/state-summary/US. 
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the aggregate US stock market systemic stress indicator. The results are reported in Table 3, 
whereby we test the regime-specific null hypothesis of no-Granger causality running from CR1 
or CR2 to and ATALIS3 over the quantile range of 0.10 to 0.90 based on the standard normal 
test statistic. As can be seen from the table, predictability for ATALIS3 from CR1 and CR2 holds 
over the entire quantile range considered of the aggregate systemic stress indicator at the 1% 
level of significance, with the strongest causal influence observed at the conditional median. 
In fact, the values of the standard normal test statistics under the two climate risks measures 
exceptionally close to each other, which is perhaps not surprising given a strong statistically 
significant correlation of 0.777 (with a p-value of 0.00) between CR1 and CR2. The stronger 
predictability of median levels of equity market stress, which represent typical stress 
conditions, by climate risks as compared to extreme values (tails) can be rationalized. While 
heightened stress levels might correlate with broader macroeconomic factors, as noted by Koop 
and Korobilis (2014) and Kim and Shi (2021), the influence of climate risks and other variables 
on market expectations may be less pronounced under lower stress conditions. In contrast to 
the assumptions made by linear models, our application of a nonparametric model, which is 
designed to handle misalignments due to nonlinearity and structural breaks, demonstrates a 
marked but varied degree of predictability across different quantiles of the conditional 
distribution of ATALIS3 as influenced by CR1 and CR2.7 

[INSERT TABLE 3] 
Although robust predictive inference is derived based on the nonparametric causality-in-
quantiles test, it is also interesting to estimate the sign of the effect of CR1 and CR2 on ATALIS3 
at various quantiles, especially to validate the theoretical positive relationship outlined in the 
introduction. But, in a nonparametric framework, this is not straightforward, as we need to 
employ the first-order partial derivatives. Estimation of the partial derivatives for 
nonparametric models can give rise to complications, because nonparametric methods exhibit 
slow convergence rates, due to the dimensionality and smoothness of the underlying 

                                                             
7 We also utilize an alternative systemic risk measure, as proposed by Mihoci et al. (2020), which accounts for 
links and mutual dependencies between the US state-level stock markets by utilizing tail event information. This 
metric, known as the Financial Risk Meter (FRM), is based on least absolute shrinkage and selection operator 
(LASSO) quantile regression designed to capture tail event co-movements of asset (stock) returns. The results 
from the nonparametric causality-in-quantiles test from CR1 and CR2 to FRM is reported in Table A1 in the 
Appendix of the paper. In line with the findings of ATALIS3, we find that the two climate risks metrics continue 
to predict (with similar strength) the entire conditional distribution of the (rolling-window-based) FRM (over 16th 
July, 1996 to 31st March, 2023), and again, the strongest impact is observed at the conditional median. These 
results ensure the robustness of our empirical conclusions involving climate risks on alternative measures of the 
aggregate US systemic stress based on state-level stock returns. 
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conditional expectation function. However, one can look at a statistic that summarizes the 
overall effect or the global curvature (i.e., the global sign and magnitude), but not the entire 
derivative curve. In this regard, a natural measure of the global curvature is the average 
derivative (AD) using the conditional pivotal quantile, based on approximation or the coupling 
approach of Belloni et al. (2019), which allows us to estimate the partial ADs. Based on the 
ADs reported in Table 4, we find consistent evidence of a positive predictive effect of both 
CR1 and CR2 on ATALIS3, in line with the QQ regression results reported in Figure 2. 

[INSERT TABLE 4] 
Next, we briefly discuss the state-level findings. The state-level stress indicators are treated as 
ordered discrete variables, namely, 0 (green), 1 (yellow), 2 (orange), and 3 (red), which 
correspond to increasing levels of stock market stress. We apply multinomial logistic 
regressions using a lag of CR1i and CR2i as predictors. During the estimation process, TALIS3 

is consolidated from the original four regimes (0 to 3) into three, due to the infrequent 
appearance of regime 1 in the data; therefore, it is combined with regime 0. This results in three 
groups: 0-1 (green and yellow), 2 (orange), and 3 (red). We set state 2 as the baseline outcome 
and estimate both pooled and random-effects multinomial logit models. Analysing CR1i and 
CR2i, we find that the estimates of the probability of moving from regime 2 to regime 1, and 
from regime 2 to regime 3, are statistically significant, with the first climate risk metric showing 
a stronger effect than the second. Specifically, as CR1i increases, the likelihood of moving to a 
lower stress regime, i.e., from 2 to 0-1, significantly decreases, whereas the probability of 
escalating to a higher stress regime, i.e., from 2 to 3, increases significantly. For CR2i, these 
effects are statistically significant only when transitioning from regime 2 to regime 0-1. 8 In 
essence, climate risks are generally linked to higher, rather than lower, levels of stress across 
states, aligning with the theoretically expected positive relationship and the empirical findings 
observed for the overall US, as illustrated in Table 4. 
Returning to the predictability of ATALIS3 due to CR1 and CR2, an interesting analysis is to 
provide a time-varying picture instead of the full-sample, by relying on a rolling-window of 
500 observations (with weekly re-estimations to reduce computational burden). This will allow 
us to check if the full-sample result is driven by specific periods. As seen from Figures 3(a) 
                                                             
8 The four-sets of estimate (p-value) from the pooled and random-effects multinomial logit model capturing 
movement out of regime 2 to regime 0-1, and regime 2 to regime 3 for CR1i and CR2i respectively are found to 
be as follows: -0.1150 (0.0000), 0.0323 (0.0070), -0.1306 (0.0000), 0.0317 (0.0080); -0.0228 (0.0040), -0.0097 
(0.2560), -0.0168 (0.0540), -0.0084 (0.3240). Complete details of the results are available upon request from the 
authors.  
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and 3(b), in general, the predictability of the entire conditional distribution of ATALIS3 from 
both CR1 and CR2 tends to hold consistently over July, 1997 to March, 2023, with strongest 
impact around the median, and relatively weaker conditional tails predictability. In other words, 
time-varying quantile causality results are in line with the full-sample evidence, though it must 
be said that conditional mean predictability is relatively stronger during the regimes of 
presidents Barack H. Obama II and Joseph R. Biden Jr, which is, perhaps, understandable in 
light of the strong emphasis on environmental policies by the Democratic Party, 
notwithstanding the fact that these terms also partially included the GFC and the COVID-19.   

[INSERT FIGURE 3] 
It is important to recognize that climate change encompasses both direct physical risks, as 
indicated by our CR1 and CR2 metrics, and indirect transition risks. These transition risks stem 
from shifts towards a low-carbon economy, driven by changes in climate policies, the rise of 
green technologies, and evolving consumer behaviours. Given this, as a robustness check, we 
report the results in Table 5 from the nonparametric causality-in-quantiles test on ATALIS3 due 
to metrics of both physical and transition risks for the US, as developed by Faccini et al. (2023), 
using textual and narrative analysis of Reuters climate-change news.9 Based on a sample period 
of 1st January, 2000 to 31st March, 2023, and utilizing news on “US climate policy”, 
“International summits”, “Global warming”, and “Natural disasters”, we again find strong 
evidence of predictability (primarily at the 1% level of significance) over the entire conditional 
distribution of ATALIS3. As with CR1 and CR2, influence peaks around the median, and is 
relatively weaker at the tails.10 Recognizing that news about US climate policy and 
international summits reflects short- and long-term transition risks, respectively, while articles 
on global warming and natural disasters highlight long-term physical risks, our results suggest 
that both types of risks carry predictable information across various conditional regimes of US-
wide stock market stress. Essentially, our findings derived from CR1 and CR2, which primarily 
represent physical risks, continue to be valid as we broaden the scope to include the transition 
dimension associated with climate change.11  

                                                             
9The data is available for download from: 
https://sites.google.com/site/econrenatofaccini/home/research?authuser=0. 
10 In fact, there is no evidence of causality, even at the 10% level of significance, from CR4 at the quantile of 0.90 
for ATALIS3. 
11 In Table A2 in the Appendix of the paper, the strong predictability of the entire conditional distribution of the 
ATALIS3 due to physical and transition risks of climate change is further robustly verified by using the aggregate 
and 34 disaggregated Media Climate Change Concerns (MCC) indexes, as developed by Ardia et al. (2023) based 
on news about climate change published by major US newspapers and newswires over the period of 1st January, 
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Furthermore, this examination sheds light on how different sources of climate news—ranging 
from policy announcements and international agreements to reports of natural disasters and 
global warming trends—reflect varying timelines and aspects of risk, from immediate to long-
term impacts. This nuanced understanding reinforces the notion that the stock market's 
response to climate change is multifaceted, reflecting a blend of reactions to immediate 
physical dangers and to the longer-term structural shifts in the economy. 

    [INSERT TABLE 5] 
4. Conclusion 

Climate change is, perhaps, the most important of challenges currently, by imposing large 
aggregate (physical and transition) risks to not only the macroeconomy, but the entire financial 
system. Given this, in this paper, we utilize a new colour-based systemic stress indicator 
namely, the TrAffic LIght System for Systemic Stress (TALIS3) for the state-level stock 
markets of the US. These regional indicators is inspired by the loss functions frequently 
adopted in backtesting analyses of financial markets and systemic risk. Thus, allowing us to 
identify more precisely the equity markets and periods under distress. This new indicator 
provides a state-level ranking system that identifies various levels of systemic risk and provides 
a color-based code similar to the Basel Committee’s TrAffic Light approach adopted to classify 
market risk violations of financial institution. Once we obtain the state-level TALIS3 indicators, 
a weighted measure of aggregate systemic risk (ATALIS3) is derived for the overall US equity 
market. The entire conditional distribution of ATALIS3 is then predicted based on metrics of 
climate risks due to extreme weather conditions, in a nonparametric quantiles-based 
framework. This testing approach allows us to control for misspecification due to uncaptured 
nonlinearity and regime changes in the relationship between aggregate systemic stress and 
climate risks, which we statistically show to exist in our dataset over the daily period of 16th 
July, 1996 to 31st March, 2023. 
We show that while climate risks fail to predict aggregate US systemic stress under the 
misspecified linear Granger causality model, strong evidence of causal influence from extreme 
                                                             
2003 to 31st August, 2022. In the same table, when we use the New York Times news-based aggregate measure 
of physical and regulatory risks related to biodiversity loss of Giglio et al. (2023), predictability of ATALIS3 covers 
the quantile range of 0.10 to 0.70. Hence, extreme high-levels of conditional stock market stress of the US cannot 
be associated with biodiversity risks over the period of 1st January, 2000 to 18th December, 2022, but indeed such 
risks predict low to moderate segment of the conditional distribution of ATALIS3, as did the associated measure 
of aggregate climate risks, with results also presented in Table A2, developed by Giglio et al. (2023). Note that, 
the data sets of Ardia et al. (2023) and Giglio et al. (2023) are, respectively, available for download from: 
https://sentometrics-research.com/download/mccc/ and https://www.biodiversityrisk.org/download/. 
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weather shocks on the entire conditional distribution of the ATALIS3 holds under the robust 
nonparametric causality-in-quantiles, with strongest impact registered around the median. 
Moreover, in line with theoretical predictions defining the climate risks-systemic risks nexus, 
the detected impact of the latter on the entire conditional distribution of the former is positive. 
A brief state-level analysis also confirms that higher climate risks raises the probability of 
moving into higher-regimes of the TALIS3. In addition, our results involving the predictability 
of ATALIS3 continue to be robust, when we utilize news-based measures of not only physical 
risks, but also transition risks, involving climate change. 
Expanding on these insights, it is evident that the integration of climate risk into investment 
strategies not only enhances financial decision-making but also promotes a more sustainable 
market environment. By adopting quantile-based models, investors can navigate through 
varying degrees of market stress with greater precision, tailoring their strategies to withstand 
environmental uncertainties. This approach facilitates a more nuanced understanding of risk, 
enabling investors to identify opportunities even in volatile market conditions, thus 
contributing to the resilience and sustainability of their portfolios. 
Moreover, the predictive power of climate risk indicators in determining financial stress levels 
underscores the importance of environmental considerations in economic planning and 
regulation. Policymakers equipped with this knowledge can design more effective 
interventions, ranging from regulatory adjustments to fiscal incentives, aimed at mitigating the 
adverse effects of climate change on financial markets. By implementing forward-looking 
policies that reflect the intricate relationship between climate risks and market dynamics, 
governments can enhance economic stability, foster green investments, and support the 
transition towards a low-carbon economy. Additionally, the implications of our research extend 
beyond traditional financial markets. The methodologies and findings presented can inform 
risk assessment and investment decisions in sectors directly impacted by climate change, such 
as agriculture, energy, and insurance. By understanding the specific vulnerabilities and 
opportunities within these industries, businesses and investors can better prepare for future 
scenarios, leading to more resilient and adaptive economic systems. 
In essence, our research emphasizes the necessity for an adaptive financial sector that 
proactively addresses the multifaceted impacts of climate risks. As climate change continues 
to shape the global economic landscape, the ability to anticipate and respond to its financial 
implications becomes increasingly critical. This study lays the groundwork for future research 
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aimed at uncovering the complex dynamics between environmental risks and financial systems, 
encouraging further exploration into how different sectors and asset classes are affected by and 
can adapt to the realities of climate change. 
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FIGURES AND TABLES: 
Figure 1. Data Plots 

1(a). Aggregate US Systemic Stress (ATALIS3) 

 
1(b). Aggregate US Climate Risks (CR1 and CR2) 
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Figure 2. QQ Plot of the Climate Risks on the Aggregate US Systemic Stress 
 

2(a). Effect on ATALIS3 from CR1  

  
2(b). Effect on ATALIS3 from CR2  

  
Note: y corresponds to ATALIS3, while x is CR1 or CR2. 
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Figure 3. Time-Varying (Rolling-Window) Nonparametric Causality-in-Quantiles Test 
Results for Aggregate US Systemic Stress due to Climate Risks 
 

3(a). Causality of ATALIS3 from CR1  
 

 
3(b). Causality of ATALIS3 from CR2  

 
Note: Horizontal axis represents the date, while the vertical axis captures the conditional quantiles of ATALIS3, 
with the heat-map representing the time-varying standard normal test statistics corresponding to the hypothesis 
that there is no Granger causality for a particular quantile running from CR1 or CR2 to ATALIS3; 1.645, 1.96, and 
2.575 represents the critical values at the significance level of 10%, 5% and 1%, respectively.  
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Table 1. Summary Statistics 
Variable 

Statistic ATALIS3 CR1 CR2 
Mean 2.8593 -0.0831 -0.0316 

Median 2.4631 -0.0979 -0.0596 
Maximum 16.1024 2.6543 2.9789 
Minimum 0.3350 -1.9844 -1.4524 
Std. Dev. 1.8593 0.5933 0.4168 
Skewness 2.3957 0.0972 0.3870 
Kurtosis 12.3755 3.0637 3.5199 

Jarque-Bera 30665.7800*** 11.5822*** 240.4740*** 
Observations 6639 

Note: Std. Dev: stands for standard deviation; The null hypotheses of the Jarque-Bera test correspond to normality; 
*** indicates rejection of the null hypothesis at the 1% level of significance. 
  
  
 Table 2. Brock et al. (1996, BDS) Test of Nonlinearity 

Independent 
Variable 

Dimension (m) 
2 3 4 5 6 

CR1 15.2700*** 18.8253*** 21.0609*** 22.7954*** 24.4877*** 
CR2 15.3108*** 18.8850*** 21.1254*** 22.8558*** 24.5357*** 

Note: Entries correspond to the z-statistic of the BDS test with the null of i.i.d. residuals, with the test applied to 
the residuals recovered from the ATALIS3  equation with one lag each of ATALIS3 and CR1 or CR2; *** indicates 
rejection of the null hypothesis at 1% level of significance. 
 
 
Table 3. Nonparametric Causality-in-Quantiles Test Results for Aggregate US Systemic Stress 
due to Climate Risks 

Quantile CR1 CR2 
0.10 5.9031*** 6.3116*** 
0.20 8.4778*** 8.5217*** 
0.30 9.4221*** 9.0749*** 
0.40 9.7952*** 10.1142*** 
0.50 10.2621*** 10.6016*** 
0.60 10.1990*** 10.1362*** 
0.70 9.7817*** 9.0834*** 
0.80 8.4769*** 8.0777*** 
0.90 5.7272*** 5.6254*** 

Note: Entries report the standard normal test statistic for the hypothesis that there is no Granger causality for a 
particular quantile running from CR1 or CR2 to ATALIS3; *** indicates rejection of the null hypothesis at 1% level 
of significance (Critical value: 2.575). 
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Table 4. Average Derivative Estimates for the Effect of Climate Risks on Aggregate US 
Systemic Stress 

Quantile CR1 CR2 
0.10 0.0377 0.0546 
0.20 0.0378 0.0987 
0.30 0.0020 0.0350 
0.40 0.0027 0.0175 
0.50 0.0341 0.0440 
0.60 0.0074 0.1054 
0.70 0.0454 0.2546 
0.80 0.0051 0.1988 
0.90 0.0007 0.2398 

Note: Entries correspond to average derivative (AD) estimates of the sign of the effect of climate risks: CR1 and 
CR2 on ATALIS3 at a particular quantile. 
 
 
Table 5. Nonparametric Causality-in-Quantiles Test Results for Aggregate US Systemic Stress 
due to Climate Risks based on Reuters Climate-Change News 

Quantile US Climate Policy International Summits Global Warming Natural Disasters 
0.10 4.2628*** 2.7627*** 4.5446*** 4.1973*** 
0.20 4.7565*** 3.6803*** 6.2187*** 5.0017*** 
0.30 4.6441*** 3.5589*** 5.1757*** 6.1664*** 
0.40 4.8520*** 3.4781*** 4.6347*** 5.4626*** 
0.50 5.2815*** 3.5528*** 4.7213*** 5.5177*** 
0.60 5.4953*** 3.3856*** 4.8027*** 5.3232*** 
0.70 5.0432*** 3.2653*** 4.3666*** 4.7862*** 
0.80 3.9397*** 2.6668*** 4.1682*** 4.4742*** 
0.90 2.4743** 1.5532 2.8176*** 3.0906*** 
Note: Entries report the standard normal test statistic for the hypothesis that there is no Granger causality for a 
particular quantile running from a particular news-based metric of climate risks to ATALIS3; *** and ** indicates 
rejection of the null hypothesis at 1% (Critical value: 2.5750) and 5% (Critical value: 1.96) levels of significance, 
respectively. 
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APPENDIX: 
Figure A1. Time-Series of State-Level Systemic Stress Indexes (TALIS3): July 1996-March, 
2023 
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Note: Each row of the figures correspond to the 50 US states ordered alphabetically as follows: Alabama (AL), 
Alaska (AK), Arizona (AZ), Arkansas (AR), California (CA), Colorado (CO), Connecticut (CT), Delaware (DE), 
Florida (FL), Georgia (GA), Hawaii (HI), Idaho (ID), Illinois (IL), Indiana (IN), Iowa (IA), Kansas (KS), 
Kentucky (KY), Louisiana (LA), Maine (ME), Maryland (MD), Massachusetts (MA), Michigan (MI), Minnesota 
(MN), Mississippi (MS), Missouri (MO), Montana (MT), Nebraska (NE), Nevada (NV), New Hampshire (NH), 
New Jersey (NJ), New Mexico (NM), New York (NY), North Carolina (NC), North Dakota (ND), Ohio (OH), 
Oklahoma (OK), Oregon (OR), Pennsylvania (PA), Rhode Island (RI), South Carolina (SC), South Dakota (SD), 
Tennessee (TN), Texas (TX), Utah (UT), Vermont (VT), Virginia (VA), Washington (WA),  West Virginia (WV), 
Wisconsin (WI), and Wyoming (WY); The colors correspond green, yellow, orange and red, corresponds to the 
lowest- to the highest-level of stock market stress in each states at a particular date of a specific year.    
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Table A1. Nonparametric Causality-in-Quantiles Test Results for an Alternative Measure of 
Aggregate US Systemic Stress (Financial Risk Meter (FRM))  due to Climate Risks 

Quantile CR1 CR2 
0.10 10.4534*** 10.6080*** 
0.20 14.4006*** 14.6364*** 
0.30 16.8923*** 16.3486*** 
0.40 17.9692*** 17.7272*** 
0.50 18.0771*** 17.8905*** 
0.60 17.7964*** 17.1962*** 
0.70 16.6515*** 16.0349*** 
0.80 13.8949*** 14.1704*** 
0.90 10.1776*** 10.2429*** 

Note: Entries report the standard normal test statistic for the hypothesis that there is no Granger causality for a 
particular quantile running from CR1 or CR2 to FRM; *** indicates rejection of the null hypothesis at 1% level of 
significance (Critical value: 2.575). 
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Table A2. Nonparametric Causality-in-Quantiles Test Results for Aggregate US Systemic Stress due to Climate Risks based on Climate Change 
Related Topics from Newspapers  
 Quantile 

Predictor 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 
Aggregate 6.7022*** 8.5988*** 9.1940*** 9.6542*** 9.6286*** 9.2941*** 8.6321*** 7.1845*** 5.3504*** 

Cluster Business Impact 7.0519*** 8.6009 9.3371*** 9.4977*** 10.3022*** 10.1211*** 9.5130*** 7.9678*** 4.8906*** 
Cluster Environmental Impact 6.5022*** 8.4369 8.5289*** 8.8041*** 9.45***81 9.1377*** 8.1560*** 6.7643*** 5.2784*** 

Cluster Research 6.3597*** 8.6236 8.8227*** 9.4877*** 9.955***8 9.6173*** 8.7806*** 7.4601*** 5.7057*** 
Cluster Societal Debate 6.5199*** 8.0873 8.5356*** 9.0489*** 9.1546*** 9.0986*** 8.0285*** 6.7409*** 5.0701*** 

Agreements/Actions 6.2776*** 8.2306 9.3209*** 9.3017*** 9.4515*** 9.8014*** 9.5501*** 7.8907*** 5.4572*** 
Agriculture Shifts 6.7132*** 7.0483 7.4303*** 7.7336*** 7.7692*** 7.7422*** 7.6347*** 5.7009*** 4.2210*** 
Airline Industry 6.1414*** 7.3829 7.3405*** 7.3058*** 7.6482*** 7.7626*** 7.6447*** 6.0101*** 4.4061*** 
Arctic Wildlife 5.2763*** 5.8774 5.5070*** 5.7006*** 5.9017*** 5.7682*** 5.4079*** 4.0559*** 3.1075*** 

Car Industry 6.0648*** 7.1156 7.5269*** 8.6715*** 9.3113*** 8.3467*** 7.7159*** 5.9401*** 4.5084*** 
Carbon Credits Market 5.6387*** 7.1911 8.2533*** 8.5336*** 8.4004*** 8.2704*** 7.3693*** 5.9346*** 4.3898*** 

Carbon Reduction Technologies 6.5770*** 7.9249 8.4209*** 8.2654*** 8.8321*** 8.3656*** 8.5174*** 6.9872*** 4.6937*** 
Carbon Tax 6.2973*** 8.0794 9.4758*** 9.7775*** 9.6834*** 8.7436*** 8.2559*** 6.8059*** 4.8722*** 

Cities 6.2360*** 7.4734 7.5790*** 7.7531*** 7.7649*** 8.0702*** 7.8163*** 5.7297*** 4.2630*** 
Climate Legislation/Regulations 5.9903*** 7.2252 7.8863*** 8.2120*** 8.9996*** 8.7268*** 8.0722*** 6.3968*** 4.7304*** 

Climate Summits 5.5815*** 7.6801 8.2079*** 8.5898*** 8.8860*** 9.1717*** 8.0142*** 6.5097*** 4.5671*** 
Controversies 6.6257*** 8.8292 9.0266*** 9.3340*** 10.0929*** 9.8341*** 8.5609*** 6.5286*** 4.8188*** 

Corporations/Investments 5.8496*** 7.0563 7.3282*** 7.6481*** 8.1911*** 7.7647*** 7.1523*** 5.9838*** 4.4834*** 
Ecosystems 5.8857*** 6.9363 7.4339*** 8.2813*** 8.2243*** 7.5958*** 7.5133*** 5.7932*** 3.9616*** 

Extreme Temperatures 6.2225*** 7.9997 8.5914*** 8.5510*** 9.2876*** 8.4826*** 7.6737*** 6.3955*** 4.6882*** 
Food Shortage/Poverty 5.8551*** 7.7213 7.6889*** 8.7209*** 8.0530*** 7.5923*** 7.2606*** 5.9160*** 4.0997*** 

Forests 5.7788*** 7.2531 6.9272*** 6.4122*** 7.1514*** 6.8488*** 7.1195*** 5.7647*** 4.2054*** 
Glaciers/Ice Sheets 5.5436*** 7.0149 7.0776*** 7.4493*** 7.5055*** 7.7622*** 7.2580*** 5.5825*** 4.2629*** 

Global Warming Sentiments 6.1927*** 7.8416 8.7254*** 9.1427*** 9.7472*** 9.4459*** 8.9862*** 7.6357*** 5.6058*** 
Government Programs 6.2209*** 8.2218 8.4974*** 8.8787*** 8.9030*** 8.2844*** 8.0255*** 6.5339*** 4.7481*** 

Hurricanes/Floods 5.9395 7.5025 6.8736*** 6.8477*** 6.9724 6.7375*** 6.6679*** 5.2759*** 3.6039*** 
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Legal Actions 5.6974*** 7.8411*** 7.7398*** 8.3820*** 8.6556*** 8.5897*** 8.3117*** 6.3541*** 4.5742*** 
Marine Wildlife 5.6013*** 6.7522*** 6.3569*** 7.3543*** 7.2392*** 6.4886*** 7.0439*** 5.9740*** 4.1507*** 

Political Campaign 5.6904*** 7.6156*** 8.2239*** 8.8140*** 8.6859*** 8.4890*** 7.3975*** 5.9431*** 4.4358*** 
Renewable Energy 6.2072*** 8.0293*** 8.2069*** 8.1886*** 8.9063*** 8.6154*** 8.6164*** 6.6972*** 4.6741*** 
Scientific Studies 6.5128*** 7.8317*** 8.7285*** 9.1166*** 9.7669*** 9.1992*** 8.8351*** 7.1924*** 4.8077*** 

Social Events 6.1882*** 8.4583*** 8.3018*** 9.0680*** 9.3321*** 9.3179*** 8.2399*** 6.4692*** 4.2783*** 
Tourism 6.3251*** 7.5743*** 7.8591*** 7.6887*** 8.7464*** 8.6950*** 8.6735*** 6.2420*** 4.5598*** 

UN/IPCC Reports 6.1854*** 7.8403*** 8.0576*** 8.4710*** 8.6903*** 8.5866*** 8.0008*** 6.5041*** 4.8343*** 
Water/Drought 6.2577*** 7.8323*** 7.5892*** 7.8566*** 7.5711*** 7.7080*** 7.5602*** 6.1439*** 4.1021*** 

Biodiversity Risks 2.0234** 2.8073*** 2.8715*** 2.5800*** 2.5497** 2.0737** 2.1937** 1.4013 1.0476 
Climate Risks 2.6171*** 3.2686*** 2.6876*** 1.8953* 2.0754** 2.2527** 2.3879** 1.5380 0.8719 

Note: Entries refer to standard normal test statistics for the hypothesis that there is no Granger causality for a particular quantile running from newspapers-based (New York Times, Washington Post, Los Angeles Times, 
Wall Street Journal, Houston Chronicle, Chicago Tribune, Arizona Republic, USA Today, New York Daily News, and New York Post) climate risks to ATALIS3, with the first 35 indexes (see, Table 3 for complete details 
on the themes of business impact, environmental impact and societal debate) from Ardia et al. (2023), and the final two from Giglio et al. (2023); ***, **, and * represents significance level of 1%, 5% and 10%, 
respectively, with corresponding critical values of 2.575, 1.96 and 1.645. 


