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The Effects of Uncertainty on Economic Conditions across US States: The Role of 
Climate Risks 

Xin Sheng*, Rangan Gupta**, Wenting Liao*** and Oguzhan Cepni**** 
Abstract 

We analyse the impact of uncertainty on the Economic Conditions Index (ECI) of the 50 US 
states in a panel data set-up, over the weekly period of the 3rd week of April 1987 to the 4th 
week of March 2023. Using impulse response functions (IRFs) from a linear local projections 
(LP) model, we show that uncertainty, as captured by the stochastic volatility (SV) of the ECIs, 
negatively impacts ECI in a statistically significant manner. More importantly, using a 
nonlinear LP model, the IRFs reveal that the adverse effect of uncertainty is significantly much 
stronger under the high-regime of climate risks when compared to the low-regime of the same. 
Understandably, our results have important policy implications. 
Keywords: Economic conditions; Uncertainty; Climate risks; US states; Linear and nonlinear 
local projections models 
JEL Codes: C23, D80, E32, Q54. 
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1. Introduction 
Higher uncertainty, as observed due to the Global Financial Crisis of 2007-2009, and the 
outbreak of the COVID-19 pandemic in 2020, has been shown to adversely impact the state-
level economic activity of the United States (US; see, for example, Shoag and Veuger (2016), 
Mumtaz (2018), Mumtaz et al. (2018), Baker et al. (2022), Hankins et al. (2022), Elkamhi et 
al. (2023)). Theoretically, this is because, economic uncertainty negatively affects the 
aggregate demand of the economy through the traditional channel associated with the real 
option theory as outlined in Bernanke (1983), and more recently, by Bloom (2009, 2014). This 
theory suggests that decision-making is affected by uncertainty because it raises the option 
value of waiting. In other words, given that the costs associated with wrong investment 
decisions are very high, uncertainty makes firms and, in the case of durable goods, also 
consumers, more cautious. As a result, economic agents postpone investment, hiring, and 
consumption decisions to periods of lower uncertainty. At the same time, uncertainty is also 
expected to have a negative effect on the supply side of the economy through lower 
productivity due to the misallocation of factors across firms (Bloom et al., 2018). According to 
Bloom et al. (2018), unproductive firms contract and productive firms expand during normal 
times, which, in turn, helps to maintain high levels of aggregate productivity. But when 
uncertainty is high, firms reduce expansion and contraction, thus shutting off much of this 
productivity-enhancing reallocation, which ultimately manifests itself as a fall in measured 
aggregate total factor productivity, and economic activity. 
We aim to add to this literature on the regional effects of uncertainty in the US from multiple 
perspectives. First, unlike the existing studies on the impact of uncertainty singular metrics of 
state-level real economic activity, such as personal income, real Gross Domestic Product 
(GDP), or unemployment, we analyze a broad measure of economic conditions as developed 
by Baumeister et al. (2024). These Economic Conditions Indexes (ECIs) cover multiple 
dimensions of the state economies involving indicators of mobility, labor market, real 
economic activity, expectations, financial conditions, and household spending. This is 
important since the impact of uncertainty is not only restricted to the real side of the economy 
(Jurado et al., 2015; Ludvigson, 2021; van Eyden et al., 2022). Second, different from the 
abovementioned regional studies on the uncertainty-economic activity nexus conducted at 
monthly, quarterly or annual frequencies, and at times even without time-variation, we 
investigate the effect on the ECI at the weekly level, which, in turn, is the highest possible 
frequency available for such indicators. Understandably, a high-frequency analysis of state 
economic conditions contingent on movements in uncertainty, with the latter captured by the 
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corresponding stochastic volatility of the ECI, is likely to be of more importance to 
policymakers in undertaking appropriate policy decisions in a timely fashion when compared 
to results based on low-frequency structural analyses. Finally, again for the first time, realizing 
that climate change is one of the most defining challenges of our time by posing a large multi-
dimensional aggregate risk to the macroeconomy and financial markets (Giglio et al., 2021; 
Stroebel and Wurgler, 2021; van Benthem et al., 2022), we test a hypothesis that, the effect of 
uncertainty on the ECI across the US states should be contingent on the level of extreme 
weather-related risks. In particular, the expectation is that the negative effect of uncertainty on 
the ECI should be exacerbated under a regime of higher climate risks compared to a situation 
involving lower values of the same. 
What we postulate above is derived from two strands of theoretical models involving rare 
disaster risks and inattention of economic agents. First, based on the modifications to the 
original models of rare disaster risks (Rietz, 1988; Barro, 2006, 2009), heightened climate risks 
considered as rare disaster events (Baker et al., 2024), are likely to have a negative influence 
on economic activity not only through the deterioration of labour productivity and capital 
quality, but also through the patent obsolescence channel, which in turn, dampens Research 
and Development (R&D) expenditure growth (Donadelli et al., 2017, 2021a, b, 2022). In other 
words, climate risks can produce a reduction in economic activity from both the demand- and 
supply-sides. In this regard, recent empirical studies have confirmed the role of extreme 
weather risks in reducing narrow and broad measures of state-level economic activity, 
including the ECI, of the US (see, for instance, Colacito et al. (2019), Sheng et al. (2020a), 
Cepni et al. (2024)). Second, Sundaresan (2023), motivated by the literature on inattention, 
developed a model to show that rare disaster risks (as proxied by climate risks) enhance 
persistence in the process of uncertainty. More specifically, in this model, agents choose 
whether and how to prepare for different possible states of the world by collecting information, 
but they also optimally ignore sufficiently unlikely events. Hence, the occurrence of such 
events does not resolve, but increases, uncertainty. With uncertain agents having dispersed 
beliefs, uncertainty begets uncertainty, and results in endogenous persistence. The theoretical 
proposition of Sundaresan (2023) has been empirically confirmed by Sheng et al. (2022b), who 
showed that extreme climate-related risks can result in enhancing the persistence of economic 
uncertainties at the state level for the US. 
To achieve our objectives econometrically, we rely on the analysis of impulse response 
functions (IRFs) of the ECIs following a shock to extreme weather shocks based on linear and 
nonlinear Local Projections (LP) approaches of Jordà (2005), and Gorodnichenko and 
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Auerbach (2013) and Jordà et al., (2020), respectively, in a panel data-setting of 50 US states 
over the period of the 3rd week of April 1987 to the 4th week of March 2023. Note that, the 
nonlinear LP model allows us to obtain climate risks-based-regime-specific responses of the 
ECI following a positive shock to uncertainty. We utilize the LP method to obtain the relevant 
IRFs associated with our questions, as it does not require restrictive identification assumptions 
on the specification and estimation of the unknown true multivariate system itself and, thus, 
has a distinct advantage over the traditional Vector Autoregression (VAR) approach. 
Furthermore, the LP model uses simple regression estimation techniques (such as the Ordinary 
Least Squares (OLS)) and can easily accommodate nonlinear models with flexible 
specifications, as used to obtain the state- dependent (as defined by levels of extreme weather 
risks) IRFs for ECI following an uncertainty shock. 
To the best of our knowledge, this is the first paper to analyse the effect of uncertainty on an 
index capturing economic conditions, spanning various sectors of the US states at a high-
frequency, and, more importantly, contingent on regimes of climate risks proxying rare disaster 
events. The remainder of the paper is organized as follows: Section 2 discusses the data used, 
Section 3 presents the linear and nonlinear econometric models and the associated empirical 
findings, and Section 4 concludes.   

 
2. Data  
Our dependent variable, i.e., the ECIs of the 50 US states, on which we apply the linear and 
nonlinear LPs methods, to derive climate risks-based-regime-independent and regime-
dependent IRFs following an uncertainty shock, is based on the work of Baumeister et al. 
(2024). These authors derive the indexes from mixed-frequency dynamic factor models (DFMs) 
with weekly, monthly, and quarterly variables that cover multiple dimensions of the state 
economies. Specifically, Baumeister et al. (2024) group the underlying variables into six broad 
categories: mobility measures, labor market indicators, real economic activity, expectations 
measures, financial indicators, and household indicators.1 Table 1 in their paper summarizes 
the state-level data that they use in the construction of the weekly ECIs, and also includes 
information on the data frequency, source, transformation, seasonal adjustment, and the start 
date of each series. The indexes are scaled to 4-quarter growth rates of US real GDP and 
normalized such that a value of zero indicates national long-run growth. 

                                                             
1 The data can be downloaded from: https://sites.google.com/view/weeklystateindexes/dashboard. 
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It is important to emphasize that uncertainty is a latent variable, and hence, one requires ways 
to measure it. In this regard, at the state level, uncertainty has been quantified using a 
newspapers-based by Baker et al. (2022) and Elkamhi et al. (2023), where in these authors 
search newspaper articles for terms associated with Economic and Policy Uncertainties (EPUs) 
and, based on the search count results, construct indexes of uncertainty. An alternative to this 
is to extract uncertainty from Stochastic Volatility (SV) estimates of various types of small and 
large-scale structural models analyzed in the macroeconomics and finance literature. As for 
our metric of uncertainty, motivated by the recent work on the nexus between growth and 
growth uncertainty by Balcilar and Ozdemir (2020), Balcilar et al. (2022), and Cepni et al. 
(2024), we use the second route, because the first approach is not applicable in the context of 
our analysis due to unavailability of the uncertainty-related indicators at the weekly frequency, 
with the EPUs being only available in an unbalanced manner at the monthly-level. Hence, our 
measure of state-level uncertainty is derived from SV estimates of the corresponding time-
series of each of the 50 ECIs. 2  Although we could have also relied upon Generalized 
Autoregressive Conditional Heteroskedasticity (GARCH) models, which have a deterministic 
volatility-generating mechanism, we prefer the SV approach because it does not impose 
restrictions on conditional moments (as in GARCH models). In addition, SV models have also 
been shown in the earlier literature to produce a better in-sample fit (as well as superior out-of-
sample forecasts) of volatility and, hence, uncertainty (as discussed in detail by Balcilar and 
Ozdemir (2020)). More specifically, we assume that the ECI of each state follows an AR(2) 
process with stochastic volatility: ܫܥܧ௧ = ܾଵܫܥܧ௧ିଵ + ܾଶܫܥܧ௧ିଶ + ඥ݁ݔℎ௧ߝ௧, ௧ߝ ∼
݅. ݅. ݀. ܰ(0, ܳ), ℎ௧ = ℎ௧ିଵ + ௧ݒߪ , ௧ݒ ∼ ݅. ݅. ݀. ܰ(0,1), where ℎ௧ is the volatility which follows 
a random walk process.  
To produce the metrics of climate risks, we collect daily weather data from the Bloomberg 
terminal, as compiled by the National Climatic Data Center (NCDC), for the 50 states. The 
weather data captures meteorological phenomena along several dimensions, including 
temperature, precipitation, number of heating degree days (HDD), number of cooling degree 
days (CDD), and wind speed as described below: 
• Temperature (݉݁ݐ௧): The average temperature (usually of the high and low) that was 
observed between 7 am and 7 pm local time, expressed in Fahrenheit. 

                                                             
2  We assume that the ECI of each state follows an AR(2) process with stochastic volatility: ݕ௧ = ܾଵݕ௧ିଵ +
ܾଶݕ௧ିଶ + ඥ݁ݔℎ௧ߝ௧ , ௧ߝ ∼ ݅. ݅. ݀. ܰ(0, ܳ), ℎ௧ = ℎ௧ିଵ + ௧ݒߪ , ௧ݒ ∼ ݅. ݅. ݀. ܰ(0,1), where ݕ௧ is the ECI for each state 
at time period ݐ, and ℎ௧ is the volatility which follows a random walk process.  
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• HDD (ܪ௧): The number of degrees that the average temperature of a day is below 65 degrees 
Fahrenheit. It is used to calculate the heating requirements of a building. 
• CDD (ܥ௧): The number of degrees the average temperature of a day is above 65 degrees 
Fahrenheit, aiding in estimating the cooling needs of a building. 
• Precipitation (ܿ݁ݎ௧): The amount of rain, snow, sleet, or hail that falls in a specific location. 
• Wind speed (݀݊݅ݓ௧): The average speed of the wind, not accounting for gusts, represented 
in knots. 
As in Choi et al., (2020), we decompose the weather-related variables into three components 
that account for seasonal, predictable, and abnormal patterns. In particular, for each day, t, we 
compute the daily weather measure (Wt) for each of the states as a time-series, based on: ௧ܹ =

௧ܹெ + ௧ܹ + ௧ܹ, where Wt = {temperaturet (tempt), HDDt, CDDt, precipitationt (precipt), 
wind speedt (windt)}, and the term ௧ܹெ denotes the mean of Wt for a specific-state spanning 
the 120 months prior to t. Moreover, the variable ௧ܹ denotes the difference of the mean of the 
deviation of the Wt from the daily average temperature for the particular state in the same 
calendar day over the last ten years and ௧ܹெ. Finally, the variable ௧ܹ is the remainder (i.e., 
the abnormal deviation of weather conditions) and, hence, captures extreme departures from 
normal weather conditions. For this reason, we focus on this variable in our analysis. We 
standardize the abnormal deviations, commonly known as the standardized anomaly, to obtain 
the comprehensive measure of climate risks (CR), as given by: ௧ܴܥ = ሾ݀ݐݏ(݉݁ݐ௧) +
(௧݅ܿ݁ݎ)݀ݐݏ + (௧ܦܦܥ)݀ݐݏ − (௧ܦܦܪ)݀ݐݏ +  ሿ/5.3 To match the weekly(௧݀݊݅ݓ)݀ݐݏ
frequency of the ECI and its SV, we compute a corresponding weekly version of the CR by 
taking the daily averages over a week. 
Based on data availability at the time of writing this paper, our sample period covers the 18th 
(3rd week of) April, 1987 to the 25th (4th week of) March, 2023.  
 
3. Methodology and Results 
3.1. Econometric Models 
The linear panel LP model of Jordà (2005) for computing IRFs of ECIs due to an innovation 
(Shock) to uncertainty is specified as follows: 
,௧ା௦ܫܥܧ = ,௦ߙ + ,௧݇ܿ௦ܷܵℎߚ + ௧,௦ߛ + ߳,௧ା௦, for ݏ = 0,1,2, …  (1)     ܪ

                                                             
3 Note that in CRt, the standardized ܦܦܪ௧ enters with negative sign. HDD is a measure used to estimate the 
demand for energy needed to heat a building. Hence, high HDD indicates that more energy is needed to heat 
buildings due to lower temperatures, which implies less risk of global warming. 
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where ܫܥܧ,௧ା௦ is the ECI of the US state i  in week t + s, with s being the forecast horizon.4  
The coefficient ߚ௦ captures the response of ܫܥܧ,௧ା௦ in week t + s to ܷܵℎ݇ܿ,௧ in week t, and 
the shock is given by the innovation of the SV associated with the ECI in the US state i  in 
week t.5 We also account for unobserved heterogeneity across the states and time periods by 
including cross-section- and time-fixed-effects in the panel specification, indicated ߙ,௦ and ߛ௧,௦, 
respectively. The IRFs from the LP method are computed as a series of ߚ௦ estimated separately 
for each horizon.  
Following the approach of Gorodnichenko and Auerbach (2013) and Jordà et al., (2020), we 
also use a regime-dependent model that includes a smooth transition function, to obtain the 
nonlinear IRFs on the ECI due to the uncertainty (SV) shock (UShock) contingent on low- and 
high-level of CR. We specify the regime-dependent model as follows: 
,௧ା௦ܫܥܧ = ቀ1 − ൯ቁݐ,݅ݖ൫ܨ ݏ,݅ߙൣ

ℎ݃݅ܪ + ,௧݇ܿℎܷܵℎ݃݅ܪݏߚ + ℎ൧݃݅ܪݏ,ݐߛ + ݓܮݏ,݅ߙ൯ൣݐ,݅ݖ൫ܨ + ,௧݇ܿℎܷܵݓܮݏߚ +
൧ݓܮݏ,ݐߛ + ݏ for    ,ݏ+ݐ,݅߳ = 0,1,2, …  (2)       ܪ
,௧൯ݖ൫ܨ = exp(−ݖߛ,௧) 1 + exp(−ݖߛ,௧)⁄ , ߛ > 0,       (3) 
where ݖ,௧ is a switching variable capturing the CR of the US states, which is normalized to 
have a mean of zero and variance of unity. ܨ൫ݖ,௧൯ is the smooth transition function that has a 
bound between 0 and 1, with values close to 1 (0) representing the low (high)-CR regime. 
Superscripts High and Low denote the regimes of high- and low-CR, respectively. 
 
3.2.  Empirical Findings 
In Figure 1, we report the IRF of the ECI due to a one-unit increase in the UShock capturing 
the innovation to the SV over 52 weeks, along with the 95% confidence bands calculated based 
on panel-corrected standard errors. 
As can be seen from Figure 1, following a positive (unfavourable) uncertainty shock, the ECI 
of the US states deteriorate immediately upon impact. The uncertainty shock tends to exert a 
large negative effect on the ECI in the short term, with the impact peaking within 6 weeks to 
more than twelve units. Furthermore, we find that the negative effect of the shock involving 
the SV of the ECI stays significantly until the 34th-week-ahead horizon, i.e., more than eight 
quarters. More importantly, our findings are in line with the theoretical predictions of the 

                                                             
4 The maximum length of forecast horizon is set to 52 in this study, corresponding to a year. 
5 ܵℎ݇ܿ,௧  is obtained from the residuals of and AR(1) fixed-effects panel data model of the US states which 
involves regressing of the SV of the ECI of each state on its own first lag. 
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adverse impact uncertainty is expected to have on the economy emanating from both aggregate 
demand and aggregate supply channels. We also confirm the lower-frequency state-level 
negative effects of uncertainty detected by the existing empirical literature, which we now 
show to extend to weekly economic conditions, encapsulating six dimensions of the US states. 
 

Figure 1: The IRF of US State-Level Economic Conditions Indexes (ECIs) following a 
Positive Uncertainty Shock (UShock) 

 
 
Next, in Figure 2, we turn to test the main hypothesis of our paper, which is that the negative 
effect observed in Figure 1 for the state-level ECIs, are likely to be stronger in regimes 
characterized by relatively higher risks associated with extreme weather events. For this, we 
rely on the climate risks-based-regime-specific IRFs of the ECI following a one-unit increase 
in UShock.  
As observed from the left panel of Figure 2, the maximum negative impact of a positive 
uncertainty shock on the state-level ECIs is relatively stronger, i.e., more severe, when the US 
states are in the high-regime of climate risks, to the extent that the same effect, though negative, 
is not statistically significant in general in the low-climate risks-regime. Specifically speaking, 
when climate risks are aggravated, following a one-unit uncertainty shock the state ECIs are 
reduced to more than nineteen units at the 5th-week-ahead horizon, with the effect staying 
significant till 24-week-ahead. In contrast, when the states are facing lower climate risks, the 
maximum impact of the UShock is not only less prominent in terms of magnitude, but more 
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importantly, in terms of statistical significance given the 95% confidence bands. Only 
intermittent significant negative effects to the order of five units at the 3rd-, 6th-, and 9th-week-
ahead horizons, and three units over the 22nd- to 28th-week-ahead are observed following the 
positive one-unit uncertainty shock.  
When we compare Figures 1 and 2, it is evident that the regime-independent results reported 
in the former figure are basically driven by the effect of uncertainty on the state ECIs under the 
high regime associated with climate risks, and only to a limited degree by the impact under the 
lower-extreme weather-related-regime, in terms of the persistence of the effect associated with 
the length of the weeks-ahead following the shock. Though the initial impact of the nonlinear 
model under the high climate risk regime mimics that of the linear model, the maximum effect 
is much stronger in the regime-dependent case, since the overall linear effect on the state-level 
ECIs is muted by the lower-regime of climate risks. These observations, confirm our hypothesis 
that higher climate risks can deepen the recessionary impact of uncertainty shocks. 
 

Figure 2: The Climate Risks-Based-Regime-Specific IRFs of the US State-Level 
Economic Conditions Indexes (ECIs) following a Positive Uncertainty Shock (UShock) 

 
 
When we dive deeper into why this might be the case, especially in high climate risk regimes, 
several aggregate supply- and aggregate demand-channels come into play. Firstly, high climate 
risks, such as increased frequency of extreme weather events, can lead to significant economic 
disruptions, which can range from range from damages to infrastructure and property, 
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adversely impacting supply chains, to declines in productivity due to workforce dislocation or 
health impacts. Such tangible impacts of climate risks can enhance the negative effects of 
economic uncertainty. In addition, the uncertainty associated with climate risks can also lead 
to higher insurance costs, increased precautionary savings, and diverted resources from 
productive investment towards disaster preparedness and recovery efforts. These factors can 
further strain the economic conditions of states, particularly those that are more susceptible to 
extreme weather events. In essence, in states with high climate risks, the usual channels through 
which uncertainty affects the economy—such as investment and consumption decisions—are 
compounded by the additional risks and costs associated with climate change. This results in a 
more pronounced economic downturn in response to uncertainty shocks, as reflected by a 
relatively greater drop in the ECIs for the states in the high-regime associated with climate 
change-related risks. 
 
4. Conclusion 
In this paper, we analyse the effect of uncertainty on a broad measure of economic conditions 
of the 50 US states, over the weekly period of the 3rd week of April 1987 to the 4th week of 
March 2023, conditional on the high- and low-regimes of corresponding state-level extreme 
weather risks. Our results, based on linear and nonlinear panel data models of local projections, 
show that, while uncertainty, as captured by conditional stochastic volatility of the economic 
conditions indexes (ECIs), negatively impact the ECIs in a statistically significant fashion, 
these effects are immensely magnified when climate risks correspond to the upper-regime. This 
is because, stronger abnormal weather events, corresponding to its high regime, lead to 
enhancement of the adverse effects of the demand- and supply-side channels through which 
uncertainty tends to impact the ECIs. 
 Our findings imply that, while policies aiming at reducing uncertainty will improve economic 
conditions, the size of such positive effects would be contingent on the level of the underlying 
climate risks. In other words, policymakers would need to pursue complementary policies, in 
the sense that such measures would need to ensure simultaneous reduction of uncertainty and 
climate risks, to produce the desired economic effects. In addition, stronger expansionary 
policy responses are required when climate risks are relatively higher across the states. 
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