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Climate Risks and Forecastability of US Inflation: Evidence from 
Dynamic Quantile Model Averaging 

Jiawen Luo*, Shengjie Fu**, Oguzhan Cepni*** and Rangan Gupta**** 
 
Abstract  
This study examines the impact of climate-related risks on the inflation rates of the 
United States, focusing on the overall Consumer Price Index (CPI) and its significant 
components, namely food and beverages and housing inflation. Employing quantile 
regression models and a comprehensive dataset spanning from January 1985 to 
September 2022, we analyze five specific climate risk factors alongside traditional 
macroeconomic predictors. Our findings indicate that models incorporating individual 
climate risks generally outperform those considering only macroeconomic factors. 
However, models combination strategies that integrate all five climate risk measures 
consistently deliver superior forecasting performance. Notably, the pronounced effect 
of climate risks on food inflation significantly contributes to the observed trends in the 
overall CPI, which is largely driven by this subcomponent. This research highlights the 
crucial role of climate factors in forecasting inflation, suggesting potential avenues for 
enhancing economic policy-making in light of evolving climate conditions. 
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1. Introduction 
 

Theoretically speaking, extreme weather conditions caused by global warming and 
climate change can impact the inflation of a country through both aggregate demand- 
and aggregate supply-side channels. On one hand, negative supply shocks, which 
operate through lower agricultural production, increased food prices, dampened 
economic activity, reduced labor productivity, and the destruction of transportation 
infrastructure along with increased distribution costs, are likely to cause an inflationary 
impact. On the other hand, adverse demand shocks, which tend to raise the risk aversion 
of economic agents and reduce consumption and investment even after fiscal support 
and reconstruction, are expected to lead to a reduction in inflation. Understandably, the 
final effect on inflation depends on the strength of these two shocks and remains an 
empirical issue. In this regard, the reader is referred to Faccia et al. (2021), Mukherjee 
and Ouattara (2021), Kabundi et al. (2022), Cevik and Jalles (2023), who report mixed 
findings at the international level for panels of developed and emerging countries. As 
far as the United States (US), the focus of our study, is concerned, barring Natoli et al. 
(2023) who report a decline in prices due to climate-related risks, studies have primarily 
indicated that such shocks are indeed inflationary due to a relatively stronger supply-
side influence, impacting particularly via the food sector (see, for example, Laosuthi 
and Selover (2007), Cashin et al. (2017), Kim et al. (2022), Liao et al. (2024), Sheng et 
al. (forthcoming),). 

While the importance of these structural in (full)-sample-based predictive analyses 
cannot be discounted, for design of appropriate monetary policy responses, what 
policymakers ideally need are out-of-sample forecasts of inflation, especially with the 
rising prices in the US being a concern since April, 2021 (Boneva and Ferrucci, 2022). 
Just as globally, damages due to the physical risks of climate change have become more 
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apparent in terms of magnitude, more severe, and more frequent in the US (Mendelsohn 
et al., 2012; Stott, 2016), and such trends are expected to continue (Fifth National 
Climate Assessment (NCA5)1). Naturally, a question of paramount importance to ask 
would be: Is there a role of climate risks in forecasting US inflation, over and above its 
standard predictors?   

In the context of forecasting US inflation, Atkeson and Ohanian (2001) 
demonstrate that even naïve random walk forecasts outperformed those derived from 
the Phillips curve, as noted by Stock and Watson (1999). Consequently, there emerged 
a body of literature that estimated models by utilizing the simultaneous or joint 
information contained in a large number of macroeconomic and financial variables. 
This was achieved through the extraction of a relatively small number of principal 
components (PCs), i.e., latent factors, individual predictors-based forecasts, and model 
combinations (both Bayesian and dynamic averaging), or through Bayesian shrinkage. 
Examples include works by Stock and Watson (2002, 2009), Wright (2009), Koop and 
Korobilis (2012), Faust and Wright (2013), Hauzenberger et al. (2023), and Clark et al. 
(forthcoming), among others cited therein. Simultaneously, to monitor the expected 
evolution of price dynamics, central banks rely not only on point forecasts but also on 
predictive densities. These densities help assess the tail risks of inflation, as shown by 
Kilian and Manganelli (2007) and Andrade et al. (2012), in addition to the uncertainty 
surrounding the future path of inflation. Given the need to forecast the entire conditional 
distribution of inflation, the role of quantile regressions has also gained prominence, as 
evidenced by Manzan and Zerom (2015), Korobilis (2017), Ghysels et al. (2018), 
Korobilis et al. (2021), and Pfarrhofer (2022). 

                         

1 See: https://nca2023.globalchange.gov/. 
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Considering these two modeling issues, namely the importance of a large number 
of predictors and predictive densities, our paper investigates the role of climate-related 
risks—seasonal, predictable, and abnormal patterns of temperature, precipitation, 
heating degree days, cooling degree days, and wind speed—in forecasting the 
conditional distribution of US inflation. This is achieved by controlling for the 
information content of a large number of predictors (134) from the FRED-MD database 
(McCracken and Ng, 2016), summarized through 8 PCs. Specifically, for our objective, 
we utilize Quantile Autoregressive models with exogenous predictors (QAR-X) over 
the monthly period from January 1985 to September 2022. Moreover, we investigate 
not only the role of climate risks in forecasting the aggregate US inflation rate but also 
inflation associated with food and beverages, given its significance in driving overall 
inflation following extreme weather shocks, as suggested by the in-sample literature 
cited earlier. This observation should not be surprising, given that abnormal weather 
patterns would tend to have a major disruptive influence on agricultural production, 
which would then impact the aggregate CPI, with this sector carrying a weight of 14.4% 
in the CPI basket (US Bureau of Labor Statistics (BLS)).2 At the same time, with 
housing comprising of 45.07% of the overall US CPI (BLS), we also consider the role 
of climate risks in forecasting inflation associated with this sub-index, which 
corresponds to the most dominant sector in defining overall inflation. Note that 
abnormal weather can lead to delays in construction projects, which, in turn, can 
decrease the supply of new housing in the short term, leading to upward pressure on 
prices if demand remains constant. Moreover, extreme weather conditions can increase 
the costs of construction materials and labor. For example, rebuilding efforts after a 
hurricane or flood can lead to a surge in demand for materials and labor, thus driving 

                         

2 See: https://www.bls.gov/cpi/tables/relative-importance/2023.htm. 
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up costs. These increased costs can be passed on to buyers, contributing to housing 
inflation. In areas more prone to extreme weather, the cost of insurance can rise 
significantly, decreasing the affordability of housing, affecting demand and prices. 
Additionally, new regulations aimed at making housing more resilient to extreme 
weather can increase construction costs, which may be passed on to consumers, 
contributing to inflation. In other words, multiple channels through which climate risks 
can impact the most dominant component of overall CPI, i.e., housing, require close 
attention from the perspective of forecasting.    

Furthermore, to account for model uncertainty, we employ the Dynamic Model 
Averaging (DMA) method, following Koop and Korobilis (2012), who employed it in 
forecasting US inflation rates, as well as five other dynamic model combination 
approaches (DQMA-I, DQMA-II, DQMA-Gods, DQMA-MSE, DQMA-Eq; which we 
describe in detail below), recently utilized by Cai et al. (2020) while forecasting 
quantiles of realized stock market volatility, i.e., Dynamic Quantile Model Averaging 
(DQMA). One must realize that although a large literature exists on strategies for 
combining forecasts, the combinations are usually derived under the mean squared error 
(MSE) loss or Bayesian frameworks designed mainly for mean regression models (see, 
for example, the survey papers by Chan and Pauwels (2018) and Steel (2020)), with 
dynamic forecast combination designed specifically for quantile estimators being a 
rarity. In this regard, while the DMA is non-quantile-specific, using the same weights 
for each quantile, the other five approaches utilized by us are indeed designed for 
dealing with our quantiles-based models. Note that the dynamic evolution of model 
combination weights also allows us to tackle the issue of structural changes in the 
relationship between the inflation rate and its predictors, as widely acknowledged in the 
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aforementioned inflation forecasting literature, while utilizing time-varying parameter 
models (Stock and Watson, 2007; Bauwens et al., 2015; Hauzenberger et al., 2022). 

The main findings of our paper highlight the critical role of climate-related risks in 
forecasting US inflation, particularly considering their impact on different 
subcomponents such as food and beverages and housing. Our results demonstrate that 
incorporating climate risk metrics generally improves forecasting accuracy across 
various quantiles of the inflation rate. However, no single model consistently 
outperforms others, indicating the importance of model combination strategies. 
Through DMA and five other dynamic model combination approaches (DQMA-I, 
DQMA-II, DQMA-Gods, DQMA-MSE, DQMA-Eq), we show that integrating diverse 
model outputs significantly enhances the stability and accuracy of quantile-based 
forecasting for US inflation rates. Moreover, dynamic model combination approaches 
highlight the relative significance of different climate risk predictors over time. Overall, 
our study contributes to the understanding of how climate risks impact inflation 
forecasting of the US. To the best of our knowledge, this is the first paper to forecast 
the overall US inflation rate and its two important sub-components based on the 
information content of climate risks, over and above other standard predictors, using 
DQMA.3 In the process, we contribute to the vast existing literature on forecasting 
inflation from the perspective of the associated role of climate change, in an ever-
changing environment, captured through quantiles-based model combination strategies. 
In this regard, specifically speaking, our study can be considered to build on the 
somewhat related work of Yeganegi et al. (2023), who produced accurate conditional 
mean forecasts of the US inflation (over medium- to long-run) based on the information 

                         

3 We must point out that D’Ecclesia et al. (2022) highlighted the role of growth in CO2 emissions in 
forecasting annual inflation of the US in a DMA-set-up, over and above other standard predictors used 
in this literature. 
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content of the El Niño Southern Oscillation (ENSO), measured by the Equatorial 
Southern Oscillation Index (EQSOI), using bivariate Singular Spectrum Analysis 
(SSA). 

Our first contribution lies in providing a comprehensive measure of abnormal 
weather patterns that extend beyond the typical focus on temperature (Faccia et al, 2021, 
Lucidi et al. 2022). By considering a range of climate risks—including precipitation, 
heating and cooling degree days, and wind speed—we address a significant gap in the 
literature which often limits its scope to temperature impacts. This broader perspective 
on climate factors is crucial for a more accurate prediction of inflation, compared to 
those considering only traditional macroeconomic predictors (Manzan and Zerom, 
2013; Mandalinci, 2017; Cepni and Clements, 2024). Additionally, by employing 
DQMA, our approach innovatively captures the distributional effects of climate risks 
on inflation. This methodology allows for dynamic adjustments based on evolving 
climate and economic conditions, offering a more robust and responsive modeling 
strategy than traditional methods. The effectiveness of DQMA in handling such 
complex model dynamics is particularly noted in works by Koop and Korobilis (2012), 
who underscore the utility of model averaging techniques in managing prediction 
uncertainty in macroeconomic forecasting.  

The structure of the remainder of this paper is as follows: Section 2 details the 
dataset used in this study. Section 3 describes the econometric models, including the 
model combination strategies and forecast evaluation metrics. Section 4 presents the 
empirical results from the forecasting analysis. Finally, Section 5 concludes the paper. 
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2. Data 
 

In this study, we first gather data on the Consumer Price Index (CPI) for All Urban 
Consumers: All Items in US City Average, along with data for the two sub-indexes: US 
CPI Urban Consumers Food & Beverages and US CPI Urban Consumers Housing. 
These indices are sourced from the FRED database of the Federal Reserve Bank of St. 
Louis. After collecting the data, we transform it to analyze the month-on-month growth 
rates. Furthermore, we collect monthly weather data for the US from the Bloomberg 
terminal, as compiled by the National Climatic Data Center (NCDC). The collected 
weather data encompasses various meteorological dimensions, such as temperature, 
precipitation, number of heating degree days (HDD), number of cooling degree days 
(CDD), and wind speed, as detailed below: 
 • Temperature (ܶ݁݉݌௧): The average temperature (usually of the high and low) 
that was observed between 7am and 7pm local time, recorded in Fahrenheit. 

• HDD (ܦܦܪ௧): This measures the number of degrees that the day's average 
temperature falls below 65 degrees Fahrenheit, useful for assessing the heating 
demands of a building. 

• CDD (ܦܦܥ௧): The number of degrees that the day's average temperature exceeds 
65 degrees Fahrenheit, used to estimate the cooling requirements of a building. 

• Precipitation (ܲܿ݁ݎ௧): The total amount of rain, snow, sleet, or hail that falls at a 
specific location. 

• Wind speed (ܹ݅݊݀௧): The average wind speed, excluding gusts, measured in 
knots. 

Following the approach of Choi et al. (2020), we analyze these weather-related 
variables by decomposing them down into three components to account for seasonal, 
predictable, and abnormal patterns. Specifically, for each month ݐ, we compute the 
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monthly weather measure (Wt) for the overall US using the following formula: ௧ܹ =
௧ܹ஺ + ௧ܹெ + ௧ܹ஺௕, where Wt = {Tempt, HDDt, CDDt, Prect, Windt}, and the term ௧ܹ஺ 

represents the average of Wt for the overall US, calculated over the previous 120 months 
leading up to ݐ. The term ௧ܹெ denotes the deviation of the Wt  from the average for the 
same calendar month over the last ten years, adjusted for the mean of these deviations. 
Finally, the variable ௧ܹ஺௕ captures the residual value, representing abnormal deviations 
in weather conditions, which include extreme variations from typical patterns. In our 
analysis, we particularly focus on ௧ܹ஺௕ by standardizing these anomalies, commonly 
referred to as the standardized anomaly. This approach helps highlight significant 
deviations from normal weather conditions. 

In line with the existing literature on forecasting inflation using a large number of 
predictors,  we employ 8 factors extracted from a FRED-MD via the Expectation-
Maximization (EM) algorithm and Principal Component Analysis (PCA).4 The data for 
the three inflation rates, the five climate risk predictors, and the eight factors are plotted 
in Figure 1, covering the monthly sample period from January 1985 to September 2022. 
Descriptive statistics for all variables are presented in Table 1, spanning the same period. 
 

[Insert Table 1 Here] 
[Insert Figure 1 Here] 

 
 
 
 
 
 
 
 
 
 
 

                         

4  The whole dataset can be downloaded from: https://research.stlouisfed.org/econ/mccracken/fred-
databases/. 
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3. Methodology 
 

In this section, we present our econometric models, including the specifics of the DMA 
and DQMA approaches used in model combinations. 
 3.1 Quantile ARX models 

Consider the following general quantile regression: 
௧ݕ = ఛᇱࢼ ௧ࢄ +  ௧,        (1)ߝ

where ݕ௧  is the variable of interest; ࢄ௧  corresponds to the predictors including the 
intercept, own lags, and explanatory variables; ࢼఛ is a vector of coefficients that varies 
with the quantile ߬, ߝ௧ is the error term. The estimation of this quantile regression relies 
on the check function ߩఛ(ݔ) = ݔ ∙ ൫߬ − ݔ)ܫ < 0)൯, 

መఛߚ = arg min ∑ ௧்ୀଵ(௧ߝ)ఛߩ .      (2) 
In our analysis, ݕ௧ is the growth inflation rate, and ܺ௧ includes the intercept term, 

lags of ݕ௧, five abnormal weather variables, and eight control variables, i.e., the factors. 
To assess whether the climate variables enhance the forecasts aggregate and sub-indices 
of US inflation (denoted by IN), we develop seven quantile ARX (auto-regressive with 
exogenous variables) models that integrate various climate risk-related variables as 
predictors: 
QARX-Temp: 

ܫ     ௧ܰା௛ = ଴,ఛߚ + ∑ ܫ௟,ఛߚ ௧ܰାଵି௟௣௟ୀଵ + ௧݌௘௠௣,ఛ்ܶ݁݉ߚ + ஼௢௡௧௥௢௟,ఛᇱࢼ ࢚࢘࢔࢕࡯ ௧ + ௧ା௛ߝ     (3) 
QARX-HDD: 
ܫ ௧ܰା௛ = ଴,ఛߚ + ∑ ܫ௟,ఛߚ ௧ܰାଵି௟௣௟ୀଵ + ௧ܦܦܪு஽஽,ఛߚ + ஼௢௡௧௥௢௟,ఛᇱࢼ ௧࢒࢕࢚࢘࢔࢕࡯ + ௧ା௛ߝ         (4) 

QARX-CDD: 
ܫ ௧ܰା௛ = ଴,ఛߚ + ∑ ܫ௟,ఛߚ ௧ܰାଵି௟௣௟ୀଵ + ௧ܦܦܥ஼஽஽,ఛߚ + ஼௢௡௧௥௢௟,ఛᇱࢼ ௧࢒࢕࢚࢘࢔࢕࡯ +  ௧ା௛       (5)ߝ

QARX-Prec: 
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ܫ ௧ܰା௛ = ଴,ఛߚ + ∑ ܫ௟,ఛߚ ௧ܰାଵି௟௣௟ୀଵ + ௧ܿ݁ݎ௉௥௘௖,ఛܲߚ + ஼௢௡௧௥௢௟,ఛᇱࢼ ௧࢒࢕࢚࢘࢔࢕࡯ +  ௧ା௛      (6)ߝ
QARX-Wind: 

ܫ  ௧ܰା௛ = ଴,ఛߚ + ∑ ܫ௟,ఛߚ ௧ܰାଵି௟௣௟ୀଵ + ௐ௜௡ௗ,ఛܹ݅݊݀௧ߚ + ஼௢௡௧௥௢௟,ఛᇱࢼ ௧࢒࢕࢚࢘࢔࢕࡯ +  ௧ା௛     (7)ߝ
QARX-All: 
ܫ ௧ܰା௛ = ଴,ఛߚ + ∑ ܫ௟,ఛߚ ௧ܰାଵି௟௣௟ୀଵ + ௧݌௘௠௣,ఛ்ܶ݁݉ߚ + ௧ܦܦܪு஽஽,ఛߚ + ௧ܦܦܥ஼஽஽,ఛߚ +
௧ܿ݁ݎ௉௥௘௖,ఛܲߚ + ௐ௜௡ௗ,ఛܹ݅݊݀௧ߚ + ஼௢௡௧௥௢௟,ఛᇱࢼ ௧࢒࢕࢚࢘࢔࢕࡯ +  ௧ା௛                   (8)ߝ
QARX: 
ܫ ௧ܰା௛ = ଴,ఛߚ + ∑ ܫ௟,ఛߚ ௧ܰାଵି௟௣௟ୀଵ + ஼௢௡௧௥௢௟,ఛᇱࢼ ௧࢒࢕࢚࢘࢔࢕࡯ +  ௧ା௛                (9)ߝ
 

where the dependent variable ܫ ௧ܰ = ( ௧ܲ − ௧ܲିଵ)/ ௧ܲିଵ  denotes the month-on-month 
inflation rate, and ௧ܲ is the overall US CPI, or the corresponding indices for food and 
beverages or housing. All models include the same control variables, the eight factors 
extracted from the FRED-MD, denoted by ࢒࢕࢚࢘࢔࢕࡯௧ in all equations. The primary 
distinction between these models lies in the inclusion of different abnormal weather 
variables. We consider three forecast horizons, i.e., h =1-, 6-, and 12-month-ahead. For 
horizons greater than one month, we employ the direct forecast approach, which is 
known to be more robust to model misspecification compared to the iterated version 
(Marcellino et al., 2006). The lag length of the model is determined using the Bayesian 
Information Criterion (BIC), which identifies an optimal lag length of 1 for all three 
measures of inflation rates across the three forecasting horizons, except in the case of 
the housing inflation rate at 1-month-ahead, where 2 lags are optimally chosen. 
 

3.2 Model combination strategies 
 

The existing literature highlights the importance of incorporating model 
combination strategies for macroeconomic forecasting, such as forecasting the US 
inflation rate (see, Nonejad (2021) for a comprehensive review ). For the sake of brevity, 
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we use 1-step-ahead forecasts as an example. Assuming that we have K individual 
models, the forecasts of the k-th model is denoted as ݕො௧ାଵ,௞. The combined forecast is 
then given by:5 

ො௧ାଵݕ = ∑ ො௧ାଵ,௞௄௞ୀଵݕ௧ାଵ|௧,௞ߨ ,                                           (10) 
where 0 ≤ ௧ାଵ|௧,௞ߨ ≤ 1  represents the weight of the k-th model at time ݐ , with the 
constraint that ∑ ௧ାଵ|௧,௞௄௞ୀଵߨ = 1. A crucial aspect is determining the weight ߨ௧ାଵ|௧,௞. In 
this regard, we initially apply the traditional DMA approach proposed by Raftery et al. 
(2010) to estimate the model weights as described in equation (10). The weights have 
the following recursive relationship: 

௧ାଵ|௧,௞ߨ = గ೟|೟,ೖഀ
∑ గ೟|೟,ೖഀೖ಼సభ

 ,                                              (11) 

௧ାଵ|௧ାଵ,௞ߨ = గ೟శభ|೟,ೖ௙ೖ(௬೟శభ|ࢄ೟,ೖ)
∑ గ೟శభ|೟,ೖೖ಼సభ ௙ೖ(௬೟శభ|ࢄ೟,ೖ) ,                                     (12) 

where ݕ௧ାଵ is the variable of interest, ࢄ௧,௞ represents vector of all predictors in the k-th, 
 is the  (௧,௞ࢄ|௧ାଵݕ)is the forgetting factor, typically slightly less than one, and ௞݂  ߙ
predictive density of ݕ௧ାଵ conditional on ࢄ௧,௞. The function ௞݂(ݕ௧ାଵ|ࢄ௧,௞) determines 
how the weight evolves indicating that different functions lead to different dynamics 
in the weighting mechanism. Initially, for the quantile forecasting models, we apply the 
same weights determined by the DMA approach across all quantile levels. Subsequently, 
following Cai et al. (2020), we also explore five dynamic quantiles-based combination 
strategies in this paper: 

DQMA-I: 
According to Koenker and Xiao (2004), the conditional density function can be 

approximated by: 

                         

5 For ease of notation, the subscript ߬ is omitted. 
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௞݂൫ݕ௧ାଵหࢄ௧,௞൯ = ቊ
ఛ೔శభିఛ೔

௤ො೟శభ,ഓ೔శభ,ೖି௤ො೟శభ,ഓ೔,ೖ , ො௧ାଵ,ఛ೔,௞ݍ ݂݅ < ௧ାଵݕ < ො௧ାଵ,ఛ೔శభ,௞ݍ
0, ݁ݏ݈݁ ,  (13) 

where {߬௜}௜ୀଵ௡ାଵ is a chosen sequence of τ’s, with 0 < ߬ଵ < ߬ଶ … < ߬௡ାଵ < 1 for some 
large ݊. ݍො௧ାଵ,ఛ೔,௞ denotes the ߬௜-th conditional quantile estimate of ݕ௧ାଵ conditional on 
 ௧,௞൯ in (12) with (13), we obtainࢄ௧ାଵหݕ௧,௞. By replacing the predictive density ௞݂൫ࢄ
the first combination strategy, named DQMA-I. 

DQMA-II: 
The previous combination strategy does not depend on ߬ , as ݂ remains same at 

different quantiles. Yu and Moyeed (2001) demonstrate that the minimizing the check 
function is equivalent to maximizing a likelihood function formed by combining 
independently distributed asymmetric Laplace densities: 

ఛ݂,௞(ݑ௧ାଵ,௞) = ߬(1 − ߬) exp൛−ߩఛ൫ݑ௧ାଵ,ఛ,௞൯ൟ,    (14) 
where ߩఛ denotes the check function, and ݑ௧ାଵ,ఛ,௞ = ௧ାଵݕ −  ො௧ାଵ,ఛ,௞. By replacing theݍ
predictive density ௞݂൫ݕ௧ାଵหࢄ௧,௞൯  in (12) with ఛ݂,௞(ݑ௧ାଵ,௞)  in (14), we obtain a 
combination strategy that depends on ߬, called DQMA-II. 

DQMA-Gods: 
Inspired by the ܴଶ  of classical least squares regression, Koenker and Machado 

(1999) propose a method to quantify the goodness of fit for quantile regressions as: 
ܴଶ = 1 − ௏෡

௏బ,        (15) 
෠ܸ = ∑ ( ௧ܻାଵ − ො௧ାଵ,ఛ)బ்௧ୀଵݍ (߬ − )ܫ ௧ܻାଵ − ො௧ାଵ,ఛݍ < 0)),   (16) 

where ଴ܸ denotes ෠ܸ  for the where only an intercept is included in the model, and ଴ܶ is 
the window size. This ܴଶ is used to determine the dynamic weight of the ݇-th individual 
model at quantile ߬ as: 

௧ାଵ|௧ାଵ,ఛ,௞ߨ = ோ೟,ഓ,ೖమ
∑ ோ೟,ഓ,ೖమೖ಼సభ

.      (17) 
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This combination strategy is depends on ߬ and is named DQMA-Gods. 
DQMA-MSE: 
Cai et al. (2020) also employ the following MSE loss function to determine the 

dynamic weights by defining the MSE for quantile forecasts as: 
௞ܧܵܯ = ଴ܶି ଵ ∑ ൫ݕ௧ − ത௧,௞൯ଶబ்௧ୀଵݕ ,     (18) 

ത௧ାଵ,௞ݕ = ∑ ((߬௜ାଵ − ߬௜) ௤ො೟శభ,ഓ೔,ೖା௤ො೟శభ,ഓ೔శభ,ೖ
ଶ

௡௜ୀଵ ),    (19) 
where ଴ܶ is the window size, and 0 < ߬ଵ < ߬ଶ … < ߬௡ାଵ < 1 is a chosen sequence of 
߬’s. The dynamic weight is then obtained by the following equation: 

௧ାଵ|௧ାଵ,ఛ,௞ߨ = ெௌாೖషభ
∑ ெௌாೖషభೖ಼సభ

.       (20) 

DQMA-Eq: 
The forecast combination puzzle is a well-known phenomenon associated the 

forecast combination, where a combination with all individual models having equal 
weight can perform better than those with complicated weight strategies. Hence, 
following Cai et al. (2020), we also consider the equal weight combination strategy 
named DQMA-Eq: 

ߨ      =  (21)                                                                       .ܭ/1
Among the previous five combination strategies, only DQMA-II and DQMA-Gods 

have weights that vary with different ߬, while the rest have the same weight across the 
chosen quantiles. 
2.3 Evaluation methods for quantile forecasting models 

We consider two types of evaluation approaches for the quantile forecasting 
models. First, we use the violation rate (ܸ݅݋ ఛ ), a quantile forecasting accuracy 
evaluation indicator used in Kuester et al. (2005), Gerlach et al (2011), and Lu and Su 
(2015), expressed as: 
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ఛܴ݋ܸ݅     = ଵ
మ்ି భ்ାଵ ∑ ௧ݕ)ܫ < ො௧,ఛ)మ்௧ୀݕ భ் ,                                   (22) 

where ଵܶ  and ଶܶ are the time-stamps of the first and last out-of-sample forecasts 
respectively, ݕො௧,ఛ is the forecast of ߬th quantile, and ܫ(∙) denotes the indicator function. 
The violation rate can be explained as the ratio of the actual values that are smaller than 
their τ-th forecasting quantiles, with a better model model having a ܸܴ݅݋ఛ to close to τ. 
Second, we employ the out-of-sample ܴைଶ  for quantile regressions to examine the 
performance of models as per Campbell and Thompson (2007) and Lu and Su (2015). 
The out-of-sample ܴைଶ  is defined as: 

     ܴைଶ = 1 − ∑ ఘഓ(௬೟ି௬ො೟,ഓ)೅మ೅భ
∑ ఘഓ(௬೟ି௬ത೟,ഓ)೅మ೅భ

,       (23) 

where ߩఛ(∙) is the check function, ݕത௧,ఛ denotes the unconditional ߬-th quantile over the 
sample involving the past window-size. A higher ܴைଶ  indicates a better model. 

To statistically evaluate the hypothesis of equal predictability of the different 
quantile forecasting models, we adopt the approach proposed by Ge and Lee (2017), 
which extends the Clark and West (2007, CW) test for models of conditional mean to 
those associated with conditional quantiles. Specifically, the adjusted check loss-
differential is defined by: 
ෞݓܿ      = ݃(݁̂଴,௧)(݁̂଴,௧ − ݁̂௜,௧),      (24) 

with, 
݁̂଴,௧ = ௧ݕ − ො௧,ఛ଴ݕ , 
݁̂௜,௧ = ௧ݕ − ො௧,ఛ௜ݕ , 

where ݕ௧, ݕො௧,ఛ଴  and ݕො௧,ఛ௜  denote the actual data and forecasts of the benchmark (0), and i-
th model at ߬-quantile, respectively, and ݃(ݔ) = (߬ − ݔ)ܫ < 0)). Then we employ the 
following test statistic: 
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ܹܥ       = ௖௪തതതത
ఙෝ ,                                                           (25) 

wherein ܿݓതതതത  denotes the mean value of ܿݓෞ , and ߪො  is the heteroscedasticity and 
autocorrelation consistent (HAC) standard error estimator of the sequence ܿݓෞ . 

 4. Empirical results 
4.1. Out-of-sample forecasting results 
 

For the forecasting exercise, we utilize a rolling window of 100 data points to 
estimate the various models and obtain the associated forecasts of the inflation rates. 
We adopt the same procedure outlined by Koop and Korobilis (2012) to derive the 
DMA weights, while the other five DQMA strategies align with Cai et al. (2020). Our 
chosen sequence of 11 quantiles is: 0.05, 0.1, 0.2,…, 0.9, 0.95. 

Tables 2-4 display the quantile forecasting accuracy results, including the 
violation rate, out-of-sample R2, and the CW test statistics, respectively, for the overall 
US inflation rate at the 11 selected quantiles. To determine whether incorporating 
individual climate risk variables into the benchmark QARX model can enhance 
forecasting performance, we first compare the results of each model against the 
benchmark, which does not include weather-related predictors. As evidenced in Tables 
1 and 2, models that incorporate climate risk metrics typically outperform at different 
quantile levels. However, no single model linked to particular extreme weather risks 
consistently outshines others across all inflation rate quantiles, with some even 
underperforming compared to the benchmark QARX model that excludes all climate-
related variables. This variability makes it impractical to preselect a specific model. 
Consequently, we now shift our focus to model combination strategies aimed at 
enhancing the stability of forecasting improvements attributed to climate risks.  
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Table 2 clearly shows that model combination strategies frequently result in 
violation rates that more closely match the corresponding ߬ across all forecast horizons, 
compared to the QARX model. This suggests that model combinations effectively 
integrate diverse information, potentially enhancing the stability and accuracy of 
quantile-based forecasting for US inflation rates. Furthermore, the alternative 
combination strategies  exhibit similar performances, indicating that no single method 
consistently outperforms the others. This reinforces the utility of combining model 
outputs as a robust approach to managing the variability inherent in single-model 
forecasts. 

Turning to the findings in Table 3, which presents the out-of-sample R2, we draw 

parallels with the conclusions from the violation rates. The model combinations 
generally deliver improved predictive accuracy, as evidenced by higher R2 values, 
which measure the proportion of variability in the inflation rate that the models can 
explain. Just like with the violation rates, the R2 

results across different models and 
combination strategies indicate that incorporating multiple predictive approaches can 
mitigate the limitations of relying on a single model or predictor set. This approach is 
particularly effective in capturing the dynamics of inflation, which is influenced by a 
complex interplay of economic factors, including those related to climate risks as shown 
in the extended model setups.       

Table 4 presents the quantile-specific CW test statistics for comparing the forecast 
accuracy of combined models against the benchmark QARX model. The positive and 
statistically significant values indicated by asterisks (**) confirm that the combined 
models generally outperform the QARX model across various quantiles, particularly at 
the middle to higher end of the distribution (0.3 to 0.9). These results highlight the 
effectiveness of integrating multiple models, which tends to enhance forecasting 
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accuracy significantly compared to relying on a single model framework. The CW test 
statistics that are significantly positive across different models and forecast horizons 
(h=1, h=6, and h=12) underscore that the integration of diverse model outputs can 
capture a broader range of inflation dynamics, providing a more robust prediction 
platform. For instance, at a 1-month horizon, the models DQMA-I, DQMA-II, DQMA-
Gods, and DQMA-MSE consistently show higher CW test values in the mid to upper 
quantiles, reinforcing their superior predictive power for inflation forecasts. 

Conversely, where the CW test statistics are negative or not statistically significant 
(e.g., certain values at the h=12 horizon), it suggests that the model combinations do 
not markedly outperform the QARX model, often at the extreme ends of the quantile 
range. This may indicate reduced predictability at these ends or potentially the impact 
of extreme inflation fluctuations which are harder to predict accurately. In such cases, 
the performance of the combined models approximates that of the benchmark, 
highlighting the challenges of forecasting under extreme economic conditions. 

In summary, the incorporation of climate risks-based predictors within these 
combination strategies significantly enhances the accuracy of the forecasts associated 
with the conditional distribution of inflation. This is particularly evident in the robust 
performance of model combinations at the core quantiles. However, the predictability 
at the extreme ends of the distribution remains a challenge, suggesting an area for 
further model refinement and investigation to achieve more consistent predictive 
success across the entire range of inflation rates. 

[Insert Table 2 Here] 
[Insert Table 3 Here] 
[Insert Table 4 Here] 
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4.2. Which models and climate risks predictors matter more? 
 

Figure 2 illustrates the dynamic evolution of model weights across different 
forecast horizons (h=1, 6, and 12) using DMA and DQMA combination strategies, 
highlighting how different models are prioritized in forecasting US inflation quantiles 
under varying conditions. 

From the graphs, it is evident that the benchmark QARX model generally receives 
the lowest weighting across most scenarios. This suggests that, while foundational, the 
QARX model alone may not fully capture the complexity of the factors influencing 
inflation, particularly those related to climate risks. Conversely, the QARX-All model, 
which likely integrates multiple weather-related predictors, tends to receive the highest 
weight over time. This underscores the value of a more comprehensive approach in 
capturing the nuanced impacts of various climate-related risks on inflation. 

The individual weather-based models (QARX-Temp, QARX-HDD, QARX-CDD, 
QARX-Preci, QARX-Wind) exhibit weights that fluctuate significantly over time and 
across forecast horizons. These fluctuations indicate the varying degrees of relevance 
these specific climate factors have under different economic conditions and times. For 
instance, during periods where temperature variations are more pronounced due to 
seasonal changes, the QARX-Temp model may receive a higher weighting. The 
substantial variance in weights, especially visible in the DQMA combinations at h=6 
and h=12, points to the adaptive nature of these forecasting strategies. They recalibrate 
the importance of different models based on the most current data, which is crucial for 
managing the inherent uncertainties in economic forecasting and enhancing the 
reliability of the predictions. 

Overall, this dynamic weighting system demonstrates the strategic advantage of 
model combinations over single-model approaches, particularly in capturing the 
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multifaceted impacts of climate variables on inflation. It highlights the necessity for an 
adaptive, informed forecasting approach that can integrate and re-weight multiple data 
sources in response to evolving economic landscapes. 

[Insert Figure 2 Here] 
 

Furthermore, we also calculate the posterior inclusion probabilities (PIPs), as 
described in Koop and Korobilis (2012), of each of the climate risks to detect their 
respective relative importance in forecasting inflation. The PIP of the i-th predictor at 
time t in ߬-th quantile regression using dynamic combination strategies is defined by: 

ܫܲ   ௧ܲ,ఛ௜ = ∑ ௧|௧ିଵ,ఛ,௞ߨ × ௧௜ܺ)ܫ ∈ ௞)௄௞ୀଵܯ ,          (26) 
where ߨ௧ାଵ|௧,ఛ,௞ is the predicting weight of the k-th individual model as described earlier, 
and ܫ(ܺ௧௜ ∈  ௞) takes a value of 1 if the predictor ܺ௧௜ is included in the k-th individualܯ
model ܯ௞, and zero otherwise. 

[Insert Figure 3 Here] 
 

Figure 3 offers a compelling visualization through heatmaps, detailing the mean 
values of PIPs for five climate risk predictors across various forecasting horizons (h=1, 
6, and 12) and model combination strategies. This visualization serves to underscore 
the relative significance each climate risk holds within the forecasting models employed. 
A few trends are immediately noticeable across the heatmaps. Firstly, certain predictors 
such as precipitation, CDD, HDD, and temperature consistently appear with darker 
shades, indicating higher mean PIPs. This consistent prominence suggests a significant 
reliance on these predictors, likely due to their direct impacts on economic activities 
and consumption patterns, which are closely linked to inflationary trends. In contrast, 
wind speed, while integral, shows lighter shades in some of the model strategies and 
forecast horizons. This variance might reflect their indirect or varying influence on 



21 
 

specific sectors or inflation components, highlighting a nuanced incorporation into the 
models based on their perceived impact.  

Additionally, the differentiation in shading across the DMA and various DQMA 
strategies reveals the diversity in how these models process and prioritize climate risk 
information. Notably, the dynamic DQMA-II approach, especially the quantile-
specific variations, demonstrate an adaptive integration strategy. These models adjust 
the importance of predictors according to the specific demands of the quantile being 
forecasted, potentially enhancing the model’s responsiveness to extreme values or 
outliers that could differently influence the inflation rate at different quantiles.  
4.3. Robustness Checks 
 In this sub-section, we assess the robustness of our results on two fronts. First, we 
switch from using month-on-month inflation rate data to year-over-year inflation rate, 
defined as ܫ ௧ܰ = ( ௧ܲ − ௧ܲିଵଶ)/ ௧ܲିଵଶ . Due to the data change, we reselect the lags 
included in the model based on the Bayesian Information Criterion (BIC), resulting in 
new optimal lag choices of 2, 1, and 1 for forecast horizons h=1, 6, and 12, respectively. 
The quantile Clark-West (CW) test results are reported in Table A1 in the Appendix. 
Second, we implement a new rolling window size of 80 observations, with the results 
presented in Table A2 in the Appendix. 
As observed previously, the results from model combinations, which consider various 
climate risk predictors simultaneously, continue to show relatively more stable 
forecasting improvements compared to the benchmark model. Overall, the alternative 
definition of inflation, i.e., year-on-year growth of US CPI, and a smaller rolling 
window size do not alter the main conclusions derived from the month-on-month 
inflation and those from a larger rolling window length. 
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 4.4. Further Analyses 
 Understanding the differential impact of climate risks on various components of 
the Consumer Price Index (CPI) is crucial. Sub indices such as food and beverages and 
housing reflect diverse economic activities with varying sensitivities to climate 
conditions. Analyzing these indices separately allows for a nuanced understanding of 
how climate risks affect the economy, facilitating targeted policy responses to mitigate 
adverse impacts. Therefore, this section further analyzes the impact of climate risks 
variables on quantile forecasting of food and beverages inflation, as well as housing 
inflation. 

[Insert Table 5 Here] 
[Insert Table 6 Here] 
[Insert Table 7 Here] 

 
Tables 5, 6, and 7 detail the violation rate, out-of-sample R², and CW test statistics 

for quantile forecasts at h=1, 6, and 12 steps ahead for food and beverages inflation. 
The results indicate that climate risk variables generally enhance forecast accuracy for 
this sector. This improvement is most pronounced in the middle to upper quantiles, 
suggesting that extreme weather events are particularly predictive of higher inflation 
spikes, likely due to their impact on agricultural outputs. This finding is in line with 
Niles and Salerno (2018), who documented significant food insecurity linked to climate 
shocks, impacting agricultural productivity and prices. 

[Insert Table 8 Here] 
[Insert Table 9 Here] 
[Insert Table 10 Here] 

 
For the housing CPI index, as shown in Tables 8, 9, and 10, the influence of climate 

risks is less pronounced compared to the food sector. Although there is still a notable 
improvement in forecasting performance, it is less uniform across the quantiles. This 
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may be due to the indirect effects of climate risks on housing, such as changes in 
construction costs and insurance premiums post-climate events, as discussed by Zhou 
et al. (2022) in their study on the vulnerability of farm households to poverty due to 
climate shocks. 

The superior forecasting performance for food and beverage inflation likely stems 
from the direct and immediate impact of weather anomalies on agricultural production, 
a sector highly sensitive to climatic conditions. In contrast, the housing sector, while 
also affected by climate risks, reacts in a more buffered and delayed manner due to the 
nature of construction and real estate markets. 

These results illustrate that while climate risks are a significant predictor for both 
sectors, the immediacy and intensity of the impact vary. The stronger predictive power 
for food and beverages inflation underscores the vulnerability of agriculture to climate 
anomalies, necessitating robust strategies for climate adaptation and mitigation in this 
sector. This aligns with broader findings in the literature, emphasizing the critical role 
of adaptive capacities to buffer against food insecurity and inflationary pressures due 
to climate risks. 
5. Conclusion 

This paper explores the efficacy of incorporating climate risk-related variables into 
quantile regression models to enhance the forecasting performance of the conditional 
distribution of US inflation rates. By comparing models that integrate climate risks with 
a benchmark model that excludes these variables, covering the period from January 
1985 to September 2022, we find that although specific weather variables improve 
inflation forecasts at certain quantiles, there is no universally dominant climate risk 
factor. However, when employing model combination strategies, including those 
tailored to specific quantiles, the augmented models consistently outperform the 
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benchmark across virtually the entire conditional distribution of the aggregate US 
inflation rate. This improvement is particularly notable in forecasts related to the food 
and beverages sector and, to a lesser extent, housing—which constitutes a significant 
portion of overall CPI inflation. 

From an academic perspective, our findings underscore the value of model 
combination methods in effectively handling climate risks to predict inflation's 
conditional distribution more accurately. For policymakers, these results emphasize the 
necessity of integrating diverse climate risk information rather than focusing on isolated 
factors. This approach is vital for crafting nuanced monetary policies that can respond 
adeptly to the inflationary impacts of climate risks. Practically, it is crucial for 
policymakers to prioritize the stability of food inflation, which significantly influences 
the overall inflation structure, especially following extreme weather events. Given the 
direct impact of climate variables on agricultural outputs, enhancing the resilience of 
this sector to climate shocks should be a focal point. This includes investing in 
sustainable agricultural practices, improving water management, and promoting 
technological innovations that can mitigate the adverse effects of extreme weather. 

Additionally, the lesser but still significant impact of climate risks on housing 
inflation suggests a need for policies that encourage building more resilient 
infrastructure and housing. This may involve revising building codes, promoting 
energy-efficient and weather-resistant materials, and considering climate risks in urban 
planning and development strategies. 

As part of future research, it would be beneficial to extend this study to other 
countries, particularly emerging economies, which are more vulnerable to climate 
change due to their reliance on agriculture. Such studies could provide valuable insights 
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into the global applicability of our findings and support the development of targeted 
interventions to mitigate the economic impacts of climate variability. 
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Table 1: Summary statistics 
 

 Mean SD Skew Kurt JB 
statistics 

Ljung-
Box 
Q(5) 

Ljung-
Box 

Q(10) 
Ljung-

Box 
Q(20) 

ADF 
Inflation 0.002 0.003 -0.82 11.79 1508.26*** 121.14*** 146.46*** 183.65*** -12.65*** 

Temperature 1.053 2.420 0.78 5.17 134.69*** 261.23*** 426.54*** 651.73*** -13.48*** 
HDD -0.892 2.303 -1.18 6.33 315.45*** 267.36*** 414.46*** 709.09*** -12.47*** 
CDD 0.302 0.842 1.54 7.64 583.86*** 160.96*** 186.54*** 278.20*** -12.20*** 

Precipitation 0.208 2.972 0.45 4.17 41.00*** 553.33*** 973.09*** 1812.85*** -11.56*** 
Wind Speed -0.078 0.379 0.23 4.35 38.44*** 125.23*** 189.06*** 309.79*** -16.50*** 

F1 -1.368 20.466 0.20 6.69 260.32*** 34.36*** 68.14*** 118.25*** -25.65*** 
F2 -5.676 0.516 -0.76 7.79 475.74*** 55.87*** 92.89*** 122.52*** -20.09*** 
F3 0.054 0.677 1.65 7.68 617.92*** 942.70*** 1322.33*** 1621.30*** -6.84*** 
F4 -0.089 0.274 -0.08 3.04 0.57     582.50*** 959.93*** 1149.94*** -11.49*** 
F5 0.048 0.312 0.11 3.79 12.47*** 5.58     19.24*** 36.19*** -20.53*** 
F6 0.028 0.087 0.31 2.48 12.51*** 1569.57*** 2704.15*** 4532.72*** -4.40*** 
F7 -0.005 0.071 0.44 2.72 15.77*** 1699.08*** 2992.19*** 4686.81*** -4.13*** 
F8 0.003 0.069 0.34 8.64 608.80*** 23.88*** 33.36*** 43.59*** -19.33*** 

Note: SD: standard deviation; Skew: skewness; Kurt: kurtosis; ADF: Augmented Dickey and 
Fuller (1979, 1981) unit root test; *** denotes significance at the 1% level.  

Figure 1: Data plots 
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Table 2: Violation rate results for aggregate US inflation forecasts 
  0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 

h=1 

QARX-Temp 0.0652 0.1105 0.2153 0.3343 0.4079 0.4901 0.5949 0.6827 0.8045 0.8980 0.9462 
QARX-HDD 0.0850 0.1190 0.2380 0.3173 0.4136 0.5014 0.5949 0.6912 0.8159 0.8895 0.9348 
QARX-CDD 0.0595 0.1048 0.2181 0.3144 0.4306 0.5014 0.6091 0.6799 0.7847 0.8924 0.9433 
QARX-Prec 0.0623 0.0992 0.2153 0.3201 0.3938 0.4844 0.5864 0.6799 0.8017 0.8980 0.9490 
QARX-Wind 0.0595 0.0992 0.1955 0.2720 0.4193 0.5099 0.5921 0.6884 0.7932 0.8895 0.9462 
QARX-All 0.0737 0.1190 0.1983 0.2890 0.3711 0.4561 0.5779 0.6459 0.7592 0.8867 0.9263 
QARX 0.0680 0.1190 0.2181 0.3229 0.4164 0.4929 0.5977 0.6856 0.7989 0.8952 0.9490 
DMA 0.0595 0.1161 0.2096 0.3144 0.4136 0.4986 0.5921 0.6912 0.7960 0.9008 0.9462 
DQMA-I 0.0595 0.1048 0.1955 0.3003 0.4136 0.4958 0.5949 0.6941 0.7989 0.8952 0.9377 
DQMA-II 0.0538 0.1105 0.1983 0.3088 0.4023 0.4986 0.5977 0.6856 0.7875 0.9008 0.9462 
DQMA-Gods 0.0567 0.1133 0.2011 0.3003 0.4023 0.4958 0.5949 0.6856 0.7904 0.8980 0.9462 
DQMA-MSE 0.0595 0.1105 0.2011 0.3059 0.3994 0.4986 0.5949 0.6856 0.7904 0.9008 0.9462 
DQMA-Eq 0.0538 0.1105 0.1983 0.3088 0.4023 0.4986 0.5977 0.6856 0.7875 0.9008 0.9462 

h=6 

QARX-Temp 0.0833 0.1092 0.2155 0.2989 0.3764 0.4626 0.5489 0.6063 0.6753 0.8046 0.8736 
QARX-HDD 0.0776 0.1236 0.2098 0.3017 0.3678 0.4655 0.5431 0.6092 0.6753 0.8103 0.8879 
QARX-CDD 0.0833 0.1236 0.2040 0.3046 0.3851 0.4713 0.5517 0.6236 0.7040 0.8046 0.8563 
QARX-Prec 0.0862 0.1178 0.2069 0.2874 0.4080 0.4770 0.5575 0.6121 0.6954 0.8161 0.8592 
QARX-Wind 0.0833 0.1494 0.2069 0.2816 0.3764 0.4770 0.5460 0.6092 0.7098 0.8247 0.8822 
QARX-All 0.0891 0.1207 0.1897 0.2787 0.3707 0.4713 0.5345 0.6063 0.6724 0.7902 0.8477 
QARX 0.0833 0.1322 0.2270 0.2816 0.3822 0.4799 0.5402 0.6178 0.7098 0.8046 0.8822 
DMA 0.0805 0.1236 0.2213 0.2960 0.3736 0.4770 0.5517 0.6121 0.7040 0.7989 0.8707 
DQMA-I 0.0891 0.1351 0.2011 0.2960 0.3937 0.4770 0.5489 0.5977 0.6925 0.8132 0.8707 
DQMA-II 0.0862 0.1178 0.2069 0.2931 0.3649 0.4655 0.5460 0.6149 0.7069 0.8075 0.8793 
DQMA-Gods 0.0862 0.1178 0.1983 0.2989 0.3678 0.4799 0.5517 0.6121 0.7069 0.8075 0.8736 
DQMA-MSE 0.0862 0.1178 0.2040 0.2931 0.3649 0.4655 0.5460 0.6121 0.7069 0.8075 0.8793 
DQMA-Eq 0.0862 0.1178 0.2069 0.2931 0.3649 0.4655 0.5460 0.6149 0.7069 0.8075 0.8793 

h=12 

QARX-Temp 0.1930 0.2515 0.3626 0.4444 0.5351 0.5731 0.6374 0.7047 0.7690 0.8567 0.8947 
QARX-HDD 0.1842 0.2485 0.3801 0.4444 0.5058 0.5673 0.6228 0.7076 0.7690 0.8772 0.8977 
QARX-CDD 0.2018 0.2749 0.4035 0.4708 0.5088 0.5819 0.6433 0.7018 0.7924 0.8713 0.9181 
QARX-Prec 0.2135 0.2661 0.3977 0.4620 0.5117 0.5789 0.6257 0.7047 0.7865 0.8626 0.9094 
QARX-Wind 0.1959 0.2602 0.3947 0.4649 0.5351 0.5702 0.6316 0.6930 0.7924 0.8713 0.9094 
QARX-All 0.2018 0.2573 0.3567 0.4240 0.4883 0.5351 0.5789 0.6696 0.7427 0.8304 0.8509 
QARX 0.2018 0.2544 0.3830 0.4561 0.5205 0.5643 0.6287 0.7018 0.7953 0.8713 0.9006 
DMA 0.2047 0.2661 0.3713 0.4503 0.5205 0.5877 0.6228 0.6988 0.7924 0.8713 0.8977 
DQMA-I 0.2018 0.2602 0.3918 0.4649 0.5146 0.5702 0.6170 0.6901 0.7749 0.8509 0.8947 
DQMA-II 0.2076 0.2661 0.3772 0.4415 0.5146 0.5789 0.6257 0.6930 0.7865 0.8713 0.9006 
DQMA-Gods 0.2047 0.2690 0.3684 0.4298 0.5088 0.5789 0.6257 0.6901 0.7836 0.8684 0.9006 
DQMA-MSE 0.2076 0.2661 0.3743 0.4357 0.5146 0.5789 0.6257 0.6930 0.7865 0.8713 0.9006 
DQMA-Eq 0.2076 0.2661 0.3772 0.4415 0.5146 0.5789 0.6228 0.6930 0.7865 0.8713 0.9006 

Note: The number in bold represents the best model among all individual models; numbers in shade depict the combined model that performs better than the benchmark QARX model.
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Table 3: Out-of-sample R2 results for aggregate US inflation forecasts 
  0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 

h=1 

QARX-Temp 0.2576 0.2120 0.2178 0.2242 0.2191 0.2435 0.2654 0.2709 0.3139 0.3239 0.3210 
QARX-HDD 0.2725 0.2136 0.2208 0.2182 0.2133 0.2303 0.2491 0.2613 0.2900 0.2994 0.2622 
QARX-CDD 0.2810 0.2947 0.2097 0.2201 0.2151 0.2145 0.2489 0.2659 0.3070 0.3575 0.3823 QARX-Prec 0.2920 0.1990 0.2204 0.2436 0.2314 0.2541 0.2647 0.2913 0.3331 0.3395 0.3279 
QARX-Wind 0.3180 0.2332 0.2304 0.2375 0.2389 0.2346 0.2728 0.3110 0.3218 0.3287 0.3789 
QARX-All 0.2077 0.1651 0.1961 0.1874 0.1985 0.2060 0.2228 0.2414 0.2831 0.3407 0.3387 
QARX 0.2786 0.2041 0.2184 0.2207 0.2325 0.2498 0.2715 0.3082 0.3312 0.3350 0.3698 
DMA 0.2929 0.2298 0.2401 0.2354 0.2297 0.2416 0.2720 0.2954 0.3291 0.3576 0.3759 
DQMA-I 0.2658 0.2301 0.2233 0.2496 0.2395 0.2399 0.2626 0.2770 0.3068 0.3566 0.3363 
DQMA-II 0.3051 0.2407 0.2442 0.2442 0.2420 0.2501 0.2777 0.2998 0.3355 0.3588 0.3795 
DQMA-Gods 0.3014 0.2283 0.2402 0.2407 0.2398 0.2496 0.2757 0.2981 0.3362 0.3594 0.3760 
DQMA-MSE 0.3037 0.2403 0.2439 0.2439 0.2420 0.2499 0.2774 0.2994 0.3357 0.3597 0.3806 
DQMA-Eq 0.3051 0.2407 0.2442 0.2442 0.2420 0.2501 0.2777 0.2998 0.3355 0.3587 0.3795 

h=6 

QARX-Temp -0.0049 0.0049 -0.0537 -0.0377 -0.0544 -0.0496 -0.0224 -0.0192 0.0620 0.0708 0.0070 
QARX-HDD 0.1175 0.0237 -0.0435 -0.0423 -0.0571 -0.0262 -0.0268 -0.0078 0.0443 0.1139 0.1646 QARX-CDD 0.0820 -0.0341 -0.0389 -0.0315 -0.0549 -0.0218 -0.0009 0.0285 0.0900 0.0923 0.0418 
QARX-Prec 0.0475 0.0074 -0.0309 -0.0508 -0.0411 -0.0418 0.0041 0.0199 0.0868 0.0888 0.0999 
QARX-Wind 0.1165 0.0320 -0.0777 -0.0452 -0.0587 -0.0124 0.0011 0.0166 0.0783 0.1141 0.1154 
QARX-All -0.0377 -0.0756 -0.0464 -0.0274 -0.0474 -0.0378 -0.0278 -0.0099 -0.0097 -0.0479 -0.0413 
QARX 0.0907 0.0094 -0.0586 -0.0369 -0.0505 -0.0307 0.0063 0.0312 0.1392 0.0942 0.1082 
DMA 0.1197 0.0215 -0.0344 -0.0287 -0.0345 -0.0165 0.0017 0.0146 0.0903 0.0899 0.1261 
DQMA-I 0.0517 -0.0041 -0.0393 -0.0394 -0.0425 -0.0299 -0.0082 0.0108 0.0769 0.0868 0.0993 
DQMA-II 0.1104 0.0200 -0.0338 -0.0265 -0.0338 -0.0147 0.0047 0.0228 0.0935 0.1122 0.1525 
DQMA-Gods 0.1113 0.0109 -0.0370 -0.0264 -0.0350 -0.0146 0.0002 0.0168 0.1049 0.1021 0.1660 
DQMA-MSE 0.1101 0.0194 -0.0336 -0.0262 -0.0336 -0.0148 0.0044 0.0224 0.0926 0.1107 0.1510 
DQMA-Eq 0.1104 0.0200 -0.0338 -0.0265 -0.0338 -0.0147 0.0048 0.0228 0.0935 0.1123 0.1525 

h=12 

QARX-Temp -0.6266 -0.4595 -0.4000 -0.2931 -0.2272 -0.1835 -0.1329 -0.1015 -0.0292 0.0458 0.0757 
QARX-HDD -0.5845 -0.4794 -0.3796 -0.2997 -0.2327 -0.1770 -0.1378 -0.1131 -0.0418 0.0301 0.0776 
QARX-CDD -0.6448 -0.5391 -0.4550 -0.3176 -0.2528 -0.1711 -0.1168 -0.1055 -0.0170 0.0693 0.0570 
QARX-Prec -0.6029 -0.5321 -0.4267 -0.3336 -0.2680 -0.2063 -0.1558 -0.1137 -0.0289 0.0475 0.1375 QARX-Wind -0.7958 -0.5549 -0.4166 -0.3438 -0.2524 -0.1839 -0.1248 -0.0951 -0.0244 0.0213 0.0606 
QARX-All -0.6997 -0.5719 -0.4081 -0.3009 -0.2499 -0.1978 -0.1374 -0.1176 -0.0570 -0.0088 -0.0053 
QARX -0.6344 -0.5258 -0.3712 -0.3255 -0.2503 -0.1700 -0.1325 -0.0877 -0.0309 0.0675 0.1339 
DMA -0.6035 -0.4838 -0.4008 -0.3094 -0.2397 -0.1835 -0.1365 -0.0957 -0.0254 0.0542 0.1257 
DQMA-I -0.7168 -0.5535 -0.4048 -0.3139 -0.2544 -0.1844 -0.1413 -0.1194 -0.0150 0.0209 0.0566 
DQMA-II -0.6026 -0.4844 -0.3912 -0.3007 -0.2320 -0.1728 -0.1241 -0.0901 -0.0147 0.0644 0.1205 
DQMA-Gods -0.6116 -0.4922 -0.3959 -0.2986 -0.2315 -0.1721 -0.1237 -0.0910 -0.0103 0.0679 0.1255 
DQMA-MSE -0.6026 -0.4861 -0.3912 -0.3001 -0.2315 -0.1722 -0.1239 -0.0894 -0.0140 0.0654 0.1210 
DQMA-Eq -0.6025 -0.4844 -0.3912 -0.3007 -0.2320 -0.1728 -0.1241 -0.0901 -0.0148 0.0643 0.1205 

Note: The number in bold represents the best model among all individual models; numbers in shade depict the combined model that performs better than the benchmark QARX model.
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Table 4: Quantile CW test results for aggregate US inflation forecasts 
  0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 

h=1 

DMA 1.386 1.804** 2.472** 2.357** 0.723 0.397 1.358 0.152 1.424 2.533** 1.236 
DQMA-I 1.399 1.569 2.646** 4.479** 2.469** 1.404 1.574 0.764 0.741 2.363** 1.414 
DQMA-II 1.728** 1.876** 2.645** 3.538** 2.026** 1.368 1.808** 0.598 1.695** 2.631** 1.487 
DQMA-Gods 1.676** 1.688** 2.390** 3.213** 1.873** 1.291 1.818** 0.565 1.918** 2.735** 1.422 
DQMA-MSE 1.705** 1.866** 2.667** 3.496** 2.034** 1.364 1.829** 0.599 1.754** 2.683** 1.527 
DQMA-Eq 1.728** 1.876** 2.644** 3.539** 2.026** 1.367 1.807** 0.599 1.694** 2.629** 1.486 

h=6 

DMA 1.360 1.147 2.617** 1.592 1.965** 2.320** 0.767 -0.025 -2.173** 0.557 2.612** 
DQMA-I 1.041 1.007 2.447** 1.025 1.652** 1.582 0.867 0.356 -1.244 0.999 3.072** 
DQMA-II 1.530 1.268 2.976** 2.073** 2.052** 2.664** 1.223 0.697 -1.463 1.729** 2.921** 
DQMA-Gods 1.601 1.096 2.509** 2.098** 2.061** 2.627** 1.082 0.503 -0.461 1.382 2.632** 
DQMA-MSE 1.524 1.256 2.974** 2.082** 2.059** 2.646** 1.212 0.673 -1.494 1.660** 2.912** 
DQMA-Eq 1.530 1.268 2.975** 2.073** 2.051** 2.665** 1.223 0.698 -1.462 1.729** 2.921** 

h=12 

DMA 1.030 1.863** -1.043 2.182** 1.588 -0.758 0.127 -0.324 2.227** 0.707 0.426 
DQMA-I 0.778 0.565 -0.199 2.093** 1.544 1.128 1.292 -0.213 4.263** 0.978 0.439 
DQMA-II 1.173 2.069** -0.463 2.921** 2.654** 0.524 1.655** 0.290 3.330** 1.266 0.413 
DQMA-Gods 1.062 1.892** -0.401 2.945** 2.665** 0.562 1.759** 0.309 3.784** 1.552 0.701 
DQMA-MSE 1.181 2.010** -0.421 2.953** 2.679** 0.583 1.686** 0.353 3.398** 1.341 0.427 
DQMA-Eq 1.176 2.069** -0.465 2.920** 2.652** 0.522 1.653** 0.289 3.329** 1.265 0.412 

Note: The table reports the quantile CW test statistics for the null hypothesis of equal predictive ability between the combination models versus the QARX model; positive values indicate the 
combination models outpeform the QARX model and vice versa, ** indicates significance at the 5% level. 
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Figure 2: Weight evolution of all individual models using DMA and DQMA methods 
 

2(a). h=1 

 
2(b). h=6 
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2(c). h=12 
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Figure 3: Heatmaps based on the mean value for the PIPs of the 5 climate risks 
predictors 

 
Note: The color pattern within each column denote the hightest mean PIP in dark blue to the lowest mean PIP 
in white.  
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Table 5: Violation rate results for US Food & Beverages inflation forecasts 
  0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 

h=1 

QARX-Temp 0.0737 0.1161 0.2238 0.3966 0.4759 0.5666 0.6997 0.7819 0.8414 0.9178 0.9462 QARX-HDD 0.0737 0.1105 0.2266 0.3626 0.4844 0.5637 0.6771 0.7620 0.8470 0.9150 0.9547 
QARX-CDD 0.0652 0.1048 0.2493 0.3484 0.4646 0.5751 0.6686 0.7450 0.8555 0.9263 0.9433 
QARX-Prec 0.0907 0.1275 0.2266 0.3598 0.4816 0.5921 0.6856 0.7564 0.8527 0.9292 0.9462 QARX-Wind 0.0595 0.1133 0.2521 0.3626 0.4504 0.5467 0.6516 0.7564 0.8272 0.9150 0.9348 
QARX-All 0.0793 0.1501 0.2465 0.3626 0.4731 0.5467 0.6629 0.7479 0.8300 0.9207 0.9405 
QARX 0.0680 0.1133 0.2493 0.3654 0.4703 0.5722 0.6742 0.7592 0.8527 0.9178 0.9405 
DMA 0.0652 0.1105 0.2323 0.3654 0.4816 0.5751 0.6827 0.7677 0.8555 0.9207 0.9490 
DQMA-I 0.0765 0.1190 0.2436 0.3654 0.4589 0.5496 0.6516 0.7535 0.8414 0.9178 0.9405 
DQMA-II 0.0652 0.1076 0.2295 0.3796 0.4816 0.5666 0.6771 0.7677 0.8470 0.9263 0.9462 
DQMA-Gods 0.0652 0.1133 0.2295 0.3824 0.4788 0.5637 0.6771 0.7677 0.8499 0.9235 0.9433 
DQMA-MSE 0.0623 0.1076 0.2295 0.3796 0.4816 0.5637 0.6771 0.7677 0.8470 0.9263 0.9462 
DQMA-Eq 0.0652 0.1076 0.2295 0.3796 0.4816 0.5666 0.6771 0.7677 0.8470 0.9263 0.9462 

h=6 

QARX-Temp 0.0718 0.1178 0.2529 0.3391 0.4138 0.4770 0.5776 0.6580 0.7299 0.8161 0.8879 
QARX-HDD 0.0747 0.1408 0.2529 0.3305 0.4109 0.4914 0.5833 0.6782 0.7299 0.8046 0.8908 
QARX-CDD 0.0747 0.1149 0.2241 0.3276 0.4052 0.4885 0.5431 0.6523 0.7040 0.8305 0.8678 
QARX-Prec 0.0776 0.1207 0.2356 0.3075 0.4052 0.4856 0.5546 0.6408 0.7069 0.8046 0.8649 
QARX-Wind 0.0690 0.1322 0.2241 0.3046 0.3908 0.4598 0.5489 0.6264 0.7299 0.8161 0.8966 QARX-All 0.0891 0.1322 0.2098 0.2874 0.3649 0.4626 0.5431 0.6034 0.7069 0.7989 0.8477 
QARX 0.0776 0.1408 0.2328 0.3190 0.4167 0.5029 0.5862 0.6523 0.7126 0.8218 0.8793 
DMA 0.0718 0.1322 0.2241 0.3046 0.4023 0.4684 0.5575 0.6494 0.7213 0.8218 0.8822 
DQMA-I 0.0776 0.1322 0.2443 0.3103 0.3879 0.4655 0.5603 0.6437 0.7213 0.8132 0.8736 
DQMA-II 0.0603 0.1264 0.2328 0.3103 0.3994 0.4713 0.5546 0.6580 0.7241 0.8161 0.8966 
DQMA-Gods 0.0632 0.1264 0.2299 0.3103 0.3994 0.4713 0.5546 0.6523 0.7184 0.8161 0.8908 
DQMA-MSE 0.0603 0.1264 0.2299 0.3075 0.3994 0.4713 0.5546 0.6552 0.7184 0.8161 0.8966 
DQMA-Eq 0.0603 0.1264 0.2328 0.3103 0.3994 0.4713 0.5546 0.6580 0.7241 0.8161 0.8966 

h=12 

QARX-Temp 0.0819 0.1111 0.1842 0.2602 0.3333 0.3977 0.4825 0.5702 0.6462 0.7544 0.8363 
QARX-HDD 0.0789 0.1228 0.1959 0.2632 0.3333 0.3772 0.4620 0.5585 0.6228 0.7719 0.8275 
QARX-CDD 0.0906 0.1316 0.2164 0.2573 0.3450 0.4269 0.4912 0.5585 0.6345 0.7515 0.8158 
QARX-Prec 0.0965 0.1404 0.2105 0.2778 0.3509 0.4269 0.5058 0.5760 0.6491 0.7485 0.8304 
QARX-Wind 0.0906 0.1374 0.2076 0.2924 0.3333 0.4181 0.4825 0.5468 0.6316 0.7602 0.8304 
QARX-All 0.1170 0.1608 0.2164 0.2602 0.3392 0.3772 0.4795 0.5731 0.6404 0.7164 0.8129 
QARX 0.0906 0.1345 0.2105 0.2807 0.3626 0.4181 0.5029 0.5468 0.6257 0.7719 0.8392 
DMA 0.0906 0.1228 0.1959 0.2573 0.3480 0.3918 0.4883 0.5614 0.6374 0.7719 0.8421 
DQMA-I 0.0906 0.1316 0.1871 0.2719 0.3392 0.4064 0.4854 0.5614 0.6491 0.7749 0.8421 
DQMA-II 0.0848 0.1404 0.2076 0.2719 0.3392 0.4035 0.4795 0.5526 0.6374 0.7602 0.8363 
DQMA-Gods 0.0877 0.1433 0.2018 0.2690 0.3392 0.4035 0.4737 0.5614 0.6404 0.7573 0.8333 
DQMA-MSE 0.0877 0.1433 0.2076 0.2719 0.3392 0.4035 0.4766 0.5497 0.6374 0.7602 0.8363 
DQMA-Eq 0.0848 0.1404 0.2076 0.2719 0.3392 0.4035 0.4795 0.5526 0.6374 0.7602 0.8363 

Note: The number in bold represents the best model among all individual models; numbers in shade depict the combined model that performs better than the benchmark QARX model. 



39 
 

Table 6: Out-of-sample R2 results for US Food & Beverages inflation forecasts 
  0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 

h=1 

QARX-Temp 0.0657 0.1707 0.2085 0.2338 0.2546 0.2972 0.3129 0.3225 0.3684 0.3561 0.4031 
QARX-HDD 0.0985 0.1583 0.2008 0.2506 0.2468 0.2937 0.3074 0.3264 0.3621 0.3845 0.4113 
QARX-CDD 0.1753 0.1915 0.1871 0.2286 0.2679 0.2983 0.3019 0.3139 0.3668 0.3684 0.3782 
QARX-Prec 0.0502 0.1635 0.2072 0.2334 0.2513 0.3054 0.3125 0.3107 0.3650 0.3920 0.3946 
QARX-Wind 0.0912 0.1334 0.1877 0.2043 0.2388 0.2656 0.2882 0.3192 0.3366 0.3849 0.3877 
QARX-All 0.1094 0.1593 0.1661 0.1928 0.2049 0.2399 0.2647 0.3108 0.3456 0.3644 0.3353 
QARX 0.1414 0.1886 0.1913 0.2178 0.2518 0.2998 0.3027 0.3138 0.3588 0.3663 0.4050 
DMA 0.1802 0.1985 0.2133 0.2369 0.2610 0.3009 0.3111 0.3244 0.3661 0.3876 0.4137 
DQMA-I 0.0917 0.1713 0.1781 0.2112 0.2444 0.2738 0.3066 0.3242 0.3558 0.3903 0.3810 
DQMA-II 0.1950 0.2031 0.2096 0.2370 0.2590 0.2972 0.3111 0.3251 0.3675 0.3892 0.4152 
DQMA-Gods 0.1895 0.1964 0.2093 0.2368 0.2564 0.2947 0.3095 0.3275 0.3669 0.3903 0.4153 
DQMA-MSE 0.1942 0.2026 0.2092 0.2368 0.2586 0.2968 0.3107 0.3252 0.3674 0.3894 0.4157 
DQMA-Eq 0.1950 0.2031 0.2096 0.2370 0.2590 0.2972 0.3111 0.3251 0.3675 0.3892 0.4152 

h=6 

QARX-Temp 0.0244 0.0272 0.0082 0.0361 0.0698 0.0970 0.1372 0.1864 0.1830 0.1888 0.1419 
QARX-HDD 0.0254 -0.0337 0.0105 0.0353 0.0603 0.0994 0.1347 0.1812 0.2051 0.1780 0.1912 
QARX-CDD 0.0562 0.0348 0.0249 0.0255 0.0694 0.1024 0.1335 0.1968 0.2037 0.1625 0.1548 
QARX-Prec -0.0289 -0.0056 0.0034 0.0212 0.0604 0.0961 0.1341 0.1859 0.1767 0.1800 0.1180 
QARX-Wind -0.1061 -0.0182 0.0309 0.0497 0.0659 0.0967 0.1319 0.1611 0.2311 0.1970 0.1390 
QARX-All -0.0787 -0.0877 -0.0241 0.0090 0.0290 0.0552 0.1033 0.1469 0.1450 0.1430 0.0619 
QARX 0.0084 -0.0027 0.0173 0.0422 0.0666 0.1063 0.1477 0.1882 0.2010 0.1963 0.1015 
DMA 0.0144 0.0084 0.0247 0.0394 0.0640 0.1039 0.1412 0.1951 0.2130 0.2048 0.1983 
DQMA-I -0.0037 -0.0091 0.0031 0.0281 0.0635 0.1011 0.1348 0.2041 0.2159 0.1783 0.1283 
DQMA-II 0.0559 0.0277 0.0378 0.0451 0.0723 0.1091 0.1527 0.1970 0.2092 0.2020 0.2007 
DQMA-Gods 0.0392 0.0198 0.0389 0.0458 0.0721 0.1077 0.1541 0.1997 0.2111 0.2049 0.2008 
DQMA-MSE 0.0555 0.0270 0.0382 0.0454 0.0724 0.1089 0.1527 0.1973 0.2093 0.2018 0.2015 
DQMA-Eq 0.0559 0.0277 0.0378 0.0451 0.0723 0.1091 0.1527 0.1970 0.2092 0.2020 0.2006 

h=12 

QARX-Temp -0.1183 -0.0905 -0.1118 -0.1270 -0.1185 -0.1199 -0.1062 -0.0978 -0.1214 -0.1025 -0.0831 
QARX-HDD -0.1073 -0.1191 -0.1134 -0.1358 -0.1202 -0.1119 -0.1016 -0.1035 -0.1609 -0.1115 -0.1170 
QARX-CDD -0.1657 -0.1570 -0.1573 -0.1539 -0.1371 -0.1398 -0.1034 -0.1042 -0.1161 -0.1747 -0.2220 
QARX-Prec -0.1844 -0.1642 -0.1810 -0.1605 -0.1442 -0.1494 -0.1161 -0.1057 -0.1174 -0.1142 -0.1614 
QARX-Wind -0.1762 -0.1459 -0.1485 -0.1641 -0.1203 -0.1177 -0.1096 -0.1022 -0.1517 -0.1465 -0.1675 
QARX-All -0.2608 -0.2149 -0.1376 -0.1655 -0.1648 -0.1400 -0.1448 -0.1397 -0.2042 -0.2636 -0.2516 
QARX -0.1272 -0.1446 -0.1503 -0.1706 -0.1392 -0.1246 -0.1086 -0.1160 -0.1136 -0.1242 -0.1332 
DMA -0.1249 -0.1328 -0.1449 -0.1629 -0.1339 -0.1253 -0.1079 -0.1151 -0.1473 -0.1293 -0.1372 
DQMA-I -0.1222 -0.1338 -0.1083 -0.1486 -0.1123 -0.0961 -0.0989 -0.1035 -0.1263 -0.0989 -0.0965 
DQMA-II -0.1012 -0.1080 -0.1196 -0.1311 -0.1205 -0.1125 -0.0943 -0.0905 -0.1197 -0.1061 -0.1016 
DQMA-Gods -0.1046 -0.1054 -0.1117 -0.1284 -0.1225 -0.1160 -0.0973 -0.0935 -0.1241 -0.1159 -0.1074 
DQMA-MSE -0.1006 -0.1073 -0.1187 -0.1313 -0.1205 -0.1120 -0.0945 -0.0907 -0.1203 -0.1077 -0.1026 
DQMA-Eq -0.1012 -0.1080 -0.1197 -0.1311 -0.1205 -0.1126 -0.0943 -0.0905 -0.1197 -0.1061 -0.1016 

Note: The number in bold represents the best model among all individual models; numbers in shade depict the combined model that performs better than the benchmark QARX model.



40 
 

 
Table 7: Quantile CW test results for US Food & Beverages inflation forecasts 

  0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 

h=1 

DMA 1.894** 2.579** 2.979** 3.285** 2.420** 1.237 2.359** 2.494** 1.299 2.671** 1.999** 
DQMA-I 1.757** 2.632** 1.080 1.384 1.820** 0.200 1.677** 1.528 0.287 2.438** 1.144 
DQMA-II 2.431** 3.130** 2.541** 2.976** 2.121** 0.868 2.006** 2.293** 1.296 2.585** 2.224** 
DQMA-Gods 2.520** 3.053** 2.188** 2.779** 1.899** 0.712 1.833** 2.291** 1.339 2.594** 2.243** 
DQMA-MSE 2.442** 3.143** 2.481** 2.907** 2.085** 0.824 1.951** 2.287** 1.304 2.591** 2.247** 
DQMA-Eq 2.430** 3.130** 2.542** 2.977** 2.122** 0.869 2.006** 2.293** 1.295 2.585** 2.224** 

h=6 

DMA 1.706** 1.799** 1.840** 1.318 0.915 1.373 0.790 2.471** 1.163 1.637 4.018** 
DQMA-I 1.575 1.644 0.921 0.763 1.345 1.034 1.248 3.380** 1.404 0.810 2.572** 
DQMA-II 2.237** 2.168** 2.524** 1.705** 1.767** 2.191** 1.540 1.996** 0.936 1.561 3.996** 
DQMA-Gods 2.047** 2.108** 2.524** 1.748** 1.734** 2.089** 1.907** 2.298** 1.086 1.809** 4.205** 
DQMA-MSE 2.252** 2.173** 2.527** 1.719** 1.759** 2.166** 1.599 2.039** 0.943 1.588 4.048** 
DQMA-Eq 2.237** 2.168** 2.524** 1.705** 1.768** 2.192** 1.541 1.996** 0.936 1.560 3.995** 

h=12 

DMA 1.460 1.334 1.980** 1.828** 1.607 1.525 1.393 1.730** -0.109 2.170** 0.700 
DQMA-I 2.073** 1.262 3.017** 3.498** 2.574** 2.869** 1.847** 2.028** 0.802 4.451** 2.161** 
DQMA-II 1.372 2.065** 3.037** 4.146** 2.688** 1.880** 2.027** 2.886** 0.044 3.140** 1.848** 
DQMA-Gods 1.328 2.130** 3.240** 4.300** 2.487** 1.716** 1.885** 2.664** -0.060 2.980** 1.681** 
DQMA-MSE 1.400 2.055** 3.036** 4.102** 2.666** 1.900** 2.001** 2.827** 0.027 3.107** 1.806** 
DQMA-Eq 1.371 2.065** 3.036** 4.146** 2.688** 1.881** 2.029** 2.888** 0.044 3.140** 1.847** 

Note: The table reports the quantile CW test statistics for the null hypothesis of equal predictive ability between the combination models versus the QARX model; positive values indicate the 
combination models outpeform the QARX model and vice versa, ** indicates significance at the 5% level. 
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Table 8: Violation rate results for US Housing inflation forecasts 
  0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 

h=1 

QARX-Temp 0.0881 0.1392 0.2443 0.3381 0.4148 0.4972 0.6023 0.6903 0.7869 0.8722 0.9233 
QARX-HDD 0.0852 0.1364 0.2131 0.3295 0.4006 0.4915 0.5938 0.6932 0.7898 0.8722 0.9261 
QARX-CDD 0.0966 0.1563 0.2301 0.3295 0.4261 0.5028 0.5852 0.6932 0.7784 0.8835 0.9261 
QARX-Prec 0.0966 0.1392 0.2102 0.2983 0.3722 0.4744 0.5795 0.6960 0.7926 0.8665 0.9091 
QARX-Wind 0.0682 0.1307 0.2244 0.3153 0.3920 0.4972 0.5824 0.6761 0.7841 0.8835 0.9176 
QARX-All 0.1051 0.1477 0.2472 0.3381 0.4261 0.5000 0.5909 0.6619 0.7443 0.8608 0.9034 
QARX 0.0653 0.1364 0.2244 0.2841 0.4006 0.4943 0.5994 0.6989 0.7756 0.8864 0.9148 
DMA 0.0739 0.1477 0.2273 0.3210 0.4176 0.5085 0.5966 0.6875 0.7926 0.8807 0.9261 
DQMA-I 0.0938 0.1392 0.2386 0.3352 0.4119 0.5000 0.5852 0.6903 0.7727 0.8722 0.9290 
DQMA-II 0.0739 0.1335 0.2131 0.3125 0.4034 0.5057 0.5966 0.6847 0.7926 0.8778 0.9176 
DQMA-Gods 0.0824 0.1364 0.2188 0.3125 0.4034 0.5057 0.5938 0.6818 0.7898 0.8778 0.9233 
DQMA-MSE 0.0739 0.1335 0.2131 0.3125 0.4034 0.5057 0.5966 0.6847 0.7898 0.8778 0.9176 
DQMA-Eq 0.0739 0.1335 0.2131 0.3125 0.4034 0.5057 0.5966 0.6847 0.7926 0.8778 0.9176 

h=6 

QARX-Temp 0.0517 0.0862 0.1724 0.2529 0.3477 0.4282 0.5115 0.6207 0.7241 0.8506 0.9167 
QARX-HDD 0.0546 0.0776 0.1667 0.2615 0.3678 0.4483 0.5029 0.6092 0.7299 0.8477 0.8966 
QARX-CDD 0.0460 0.0805 0.1868 0.2672 0.3678 0.4626 0.5345 0.6408 0.7385 0.8592 0.9109 
QARX-Prec 0.0431 0.0833 0.1523 0.2356 0.3362 0.4310 0.5259 0.6667 0.7471 0.8477 0.9109 
QARX-Wind 0.0489 0.0891 0.1724 0.2529 0.3793 0.4483 0.5374 0.6466 0.7299 0.8621 0.9253 
QARX-All 0.0489 0.0718 0.1868 0.2414 0.3305 0.4224 0.5115 0.6236 0.7184 0.8276 0.9052 
QARX 0.0517 0.0948 0.1724 0.2586 0.3621 0.4626 0.5345 0.6437 0.7500 0.8477 0.9253 
DMA 0.0460 0.0776 0.1609 0.2586 0.3534 0.4425 0.5144 0.6322 0.7270 0.8592 0.9195 
DQMA-I 0.0460 0.0690 0.1753 0.2471 0.3534 0.4282 0.4971 0.6236 0.7098 0.8333 0.8937 
DQMA-II 0.0460 0.0833 0.1638 0.2586 0.3592 0.4397 0.5144 0.6379 0.7356 0.8678 0.9195 
DQMA-Gods 0.0460 0.0776 0.1638 0.2529 0.3534 0.4454 0.5115 0.6379 0.7385 0.8678 0.9167 
DQMA-MSE 0.0460 0.0833 0.1667 0.2586 0.3592 0.4397 0.5144 0.6379 0.7356 0.8649 0.9195 
DQMA-Eq 0.0460 0.0833 0.1638 0.2586 0.3592 0.4397 0.5144 0.6379 0.7356 0.8678 0.9195 

h=12 

QARX-Temp 0.1462 0.2076 0.3216 0.3947 0.4678 0.5322 0.6053 0.6871 0.7398 0.8538 0.8626 
QARX-HDD 0.1433 0.2135 0.3275 0.3860 0.4766 0.5439 0.6170 0.6784 0.7398 0.8421 0.8596 
QARX-CDD 0.1433 0.2105 0.3187 0.4035 0.4444 0.5409 0.6374 0.6813 0.7368 0.8304 0.8596 
QARX-Prec 0.1433 0.2222 0.2982 0.3830 0.4474 0.5263 0.6111 0.6754 0.7544 0.8480 0.8596 
QARX-Wind 0.1550 0.2193 0.3187 0.3947 0.4825 0.5556 0.6404 0.6842 0.7602 0.8538 0.8596 
QARX-All 0.1608 0.2251 0.3363 0.4152 0.4737 0.5468 0.5877 0.6579 0.7398 0.8099 0.8421 
QARX 0.1608 0.2193 0.3129 0.3801 0.4678 0.5556 0.6228 0.6901 0.7485 0.8509 0.8480 
DMA 0.1316 0.1988 0.3041 0.3801 0.4678 0.5380 0.6199 0.6871 0.7456 0.8480 0.8567 
DQMA-I 0.1374 0.2164 0.3246 0.4006 0.4737 0.5351 0.6053 0.6754 0.7485 0.8129 0.8480 
DQMA-II 0.1345 0.2105 0.3041 0.3743 0.4737 0.5497 0.6170 0.6842 0.7456 0.8450 0.8596 
DQMA-Gods 0.1404 0.2105 0.3099 0.3772 0.4649 0.5497 0.6140 0.6813 0.7485 0.8421 0.8596 
DQMA-MSE 0.1345 0.2105 0.3070 0.3743 0.4737 0.5526 0.6170 0.6842 0.7427 0.8450 0.8596 
DQMA-Eq 0.1345 0.2105 0.3041 0.3743 0.4737 0.5497 0.6170 0.6842 0.7456 0.8450 0.8596 

Note: The number in bold represents the best model among all individual models; numbers in shade depict the combined model that performs better than the benchmark QARX model. 
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Table 9: Out-of-sample R2 results for US Housing inflation forecasts 
  0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 

h=1 

QARX-Temp -0.0262 0.0469 0.0926 0.1210 0.1456 0.1838 0.1731 0.1928 0.2292 0.2319 0.2067 
QARX-HDD -0.0200 0.0657 0.1143 0.1380 0.1610 0.1907 0.1875 0.1900 0.2284 0.2304 0.2153 
QARX-CDD -0.0462 -0.0085 0.1603 0.1560 0.1771 0.1972 0.1924 0.1766 0.1967 0.2111 0.2403 
QARX-Prec -0.0742 0.0419 0.1461 0.1698 0.1777 0.1991 0.2058 0.1847 0.2165 0.2235 0.1869 
QARX-Wind 0.0042 0.0340 0.1391 0.1637 0.1928 0.2243 0.2214 0.2262 0.2256 0.2451 0.2028 
QARX-All -0.0616 0.0615 0.1100 0.1344 0.1466 0.1699 0.1556 0.1717 0.2123 0.2196 0.1562 
QARX 0.0336 0.0505 0.1467 0.1868 0.1742 0.2182 0.2074 0.2118 0.2224 0.2423 0.1634 
DMA 0.0442 0.0703 0.1542 0.1725 0.1781 0.2101 0.2018 0.2042 0.2296 0.2485 0.2397 
DQMA-I -0.0151 0.0790 0.1888 0.1548 0.1923 0.2095 0.2010 0.1923 0.2128 0.2270 0.2409 
DQMA-II 0.0366 0.0749 0.1562 0.1734 0.1838 0.2134 0.2047 0.2105 0.2380 0.2538 0.2430 
DQMA-Gods 0.0293 0.0774 0.1445 0.1740 0.1847 0.2133 0.2043 0.2111 0.2392 0.2541 0.2406 
DQMA-MSE 0.0372 0.0757 0.1556 0.1731 0.1835 0.2126 0.2040 0.2104 0.2382 0.2539 0.2432 
DQMA-Eq 0.0366 0.0749 0.1562 0.1734 0.1838 0.2134 0.2047 0.2105 0.2380 0.2538 0.2430 

h=6 

QARX-Temp 0.1995 0.2111 0.2431 0.2236 0.2010 0.1827 0.2399 0.2595 0.2863 0.3297 0.3686 
QARX-HDD 0.1918 0.2071 0.2384 0.2107 0.2109 0.1806 0.2353 0.2573 0.2835 0.3464 0.3709 
QARX-CDD 0.2129 0.2309 0.2050 0.1926 0.1904 0.1943 0.2359 0.2669 0.2918 0.3492 0.3909 
QARX-Prec 0.1887 0.2275 0.2227 0.2306 0.2235 0.2045 0.2574 0.2827 0.3188 0.3117 0.3514 
QARX-Wind 0.2101 0.2241 0.2498 0.2433 0.2308 0.2011 0.2566 0.2805 0.2949 0.3220 0.3720 
QARX-All 0.1253 0.1889 0.2107 0.2250 0.2070 0.2172 0.2452 0.2762 0.2721 0.3034 0.3829 
QARX 0.1416 0.2005 0.2430 0.2137 0.2169 0.1955 0.2237 0.2503 0.3107 0.3373 0.3723 
DMA 0.2189 0.2364 0.2619 0.2369 0.2270 0.2034 0.2496 0.2742 0.3125 0.3485 0.4045 
DQMA-I 0.1609 0.1988 0.2147 0.2233 0.2275 0.1972 0.2396 0.2664 0.2749 0.3088 0.3961 
DQMA-II 0.2304 0.2422 0.2575 0.2363 0.2258 0.2090 0.2578 0.2846 0.3175 0.3485 0.4150 
DQMA-Gods 0.2325 0.2408 0.2554 0.2367 0.2293 0.2119 0.2605 0.2856 0.3172 0.3479 0.4198 
DQMA-MSE 0.2310 0.2423 0.2577 0.2367 0.2261 0.2093 0.2581 0.2847 0.3174 0.3481 0.4150 
DQMA-Eq 0.2304 0.2422 0.2575 0.2363 0.2258 0.2090 0.2578 0.2846 0.3175 0.3485 0.4150 

h=12 

QARX-Temp -0.4811 -0.2060 -0.0828 -0.0611 -0.0347 -0.0236 0.0032 0.0525 0.0713 0.1268 -0.1754 
QARX-HDD -0.4550 -0.1509 -0.0874 -0.0560 -0.0549 -0.0339 0.0011 0.0780 0.0804 0.1150 -0.0720 
QARX-CDD -0.4418 -0.2017 -0.0805 -0.0764 -0.0515 -0.0174 -0.0162 0.0338 0.0681 0.1232 -0.0371 
QARX-Prec -0.4198 -0.2349 -0.0429 -0.0685 -0.0261 0.0001 0.0253 0.0640 0.0881 0.1493 -0.0634 
QARX-Wind -0.5086 -0.2595 -0.0821 -0.0537 -0.0293 -0.0170 0.0037 0.0477 0.0877 0.1074 -0.0948 
QARX-All -0.5833 -0.2995 -0.1486 -0.1298 -0.1173 -0.0789 -0.0387 0.0002 0.0626 0.0427 -0.0102 
QARX -0.4737 -0.1956 -0.0776 -0.0378 -0.0199 -0.0132 0.0049 0.0664 0.0827 0.1587 -0.0348 
DMA -0.4246 -0.1649 -0.0617 -0.0475 -0.0263 -0.0094 0.0102 0.0623 0.0846 0.1388 -0.0335 
DQMA-I -0.4979 -0.2269 -0.0962 -0.0840 -0.0618 -0.0424 -0.0241 0.0126 0.0553 0.1131 0.0079 
DQMA-II -0.4376 -0.1647 -0.0653 -0.0527 -0.0310 -0.0146 0.0069 0.0615 0.0911 0.1347 -0.0330 
DQMA-Gods -0.4402 -0.1678 -0.0658 -0.0539 -0.0342 -0.0167 0.0038 0.0612 0.0922 0.1325 -0.0340 
DQMA-MSE -0.4386 -0.1649 -0.0653 -0.0530 -0.0313 -0.0147 0.0070 0.0616 0.0912 0.1342 -0.0328 
DQMA-Eq -0.4376 -0.1647 -0.0653 -0.0527 -0.0310 -0.0146 0.0069 0.0615 0.0911 0.1347 -0.0330 

Note: The number in bold represents the best model among all individual models; numbers in shade depict the combined model that performs better than the benchmark QARX model.
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Table 10: Quantile CW test results for US Housing inflation forecasts 

  0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 

h=1 

DMA 0.675 1.687** 1.269 0.514 1.970** 1.631 1.043 1.251 1.866** 1.931** 2.763** 
DQMA-I 0.489 2.796** 3.144** 0.303 3.120** 1.799** 1.561 1.060 1.691** 1.673** 2.905** 
DQMA-II 0.615 1.802** 1.514 0.256 2.106** 1.115 1.311 1.778** 2.740** 2.408** 2.789** 
DQMA-Gods 0.664 1.968** 0.915 0.572 2.137** 1.208 1.385 1.918** 2.807** 2.374** 2.676** 
DQMA-MSE 0.632 1.819** 1.482 0.283 2.064** 1.098 1.281 1.799** 2.760** 2.398** 2.776** 
DQMA-Eq 0.614 1.802** 1.514 0.255 2.106** 1.114 1.310 1.778** 2.739** 2.407** 2.789** 

h=6 

DMA 2.429** 3.148** 2.425** 2.943** 2.237** 2.065** 4.490** 3.986** 1.677** 2.466** 2.326** 
DQMA-I 1.997** 1.934** 0.900 2.762** 2.085** 1.988** 2.630** 2.698** 0.763 1.219 3.149** 
DQMA-II 2.481** 3.119** 2.175** 3.066** 1.909** 2.745** 5.277** 4.807** 1.786** 2.630** 2.502** 
DQMA-Gods 2.565** 3.090** 1.876** 3.047** 2.098** 3.003** 5.464** 4.944** 1.784** 2.687** 2.585** 
DQMA-MSE 2.496** 3.129** 2.180** 3.093** 1.942** 2.782** 5.258** 4.796** 1.801** 2.619** 2.503** 
DQMA-Eq 2.482** 3.119** 2.174** 3.065** 1.908** 2.744** 5.277** 4.807** 1.785** 2.629** 2.502** 

h=12 

DMA 2.689** 2.062** 2.020** -0.271 0.471 1.345 1.345 0.315 1.396 -0.886 0.495 
DQMA-I 1.772** 1.418 0.099 -1.420 -0.721 -0.668 -0.604 -1.476 0.084 -0.551 1.609 
DQMA-II 2.405** 2.012** 1.767** -0.436 0.465 0.600 0.985 0.509 2.202** -1.035 0.659 
DQMA-Gods 2.205** 1.878** 2.104** -0.502 0.412 0.426 1.049 0.615 2.339** -1.111 0.673 
DQMA-MSE 2.395** 1.999** 1.759** -0.446 0.461 0.600 1.035 0.543 2.206** -1.053 0.665 
DQMA-Eq 2.405** 2.012** 1.767** -0.435 0.466 0.600 0.984 0.509 2.202** -1.034 0.660 

Note: The table reports the quantile CW test statistics for the null hypothesis of equal predictive ability between the combination models versus the QARX model; positive values indicate the 
combination models outpeform the QARX model and vice versa, ** indicates significance at the 5% level. 
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Appendix 
Table A1: Quantile CW test results for aggregate US year-on-year inflation forecasts 

  0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 

h=1 

DMA 2.532** 3.148** 2.145** 2.065** 3.424** 2.240** 1.796** 1.395 0.696 2.673** 1.728** 
DQMA-I 2.606** 1.785** 1.870** 2.770** 3.522** 1.907** 2.055** 2.398** 0.624 1.611 2.454** 
DQMA-II 2.822** 2.893** 2.582** 3.048** 4.782** 3.221** 2.891** 2.323** 1.677** 2.928** 2.186** 
DQMA-Gods 2.817** 2.893** 2.592** 3.045** 4.781** 3.238** 2.902** 2.330** 1.686** 2.932** 2.194** 
DQMA-MSE 2.830** 2.902** 2.586** 3.054** 4.784** 3.234** 2.896** 2.343** 1.686** 2.922** 2.190** 
DQMA-Eq 2.821** 2.894** 2.584** 3.049** 4.785** 3.222** 2.891** 2.320** 1.675** 2.928** 2.186** 

h=6 

DMA 1.749** 1.538 2.582** 3.771** 2.556** 2.426** 1.278 -0.234 0.410 0.899 0.885 
DQMA-I 1.990** 2.582** 1.822** 2.228** 2.325** 2.775** 1.768** 0.555 0.069 0.754 2.234** 
DQMA-II 2.016** 1.990** 2.646** 3.800** 3.333** 2.703** 1.397 -0.133 0.564 1.367 1.875** 
DQMA-Gods 1.991** 1.957** 2.598** 3.789** 3.334** 2.714** 1.397 -0.079 0.567 1.355 1.753** 
DQMA-MSE 2.028** 2.017** 2.662** 3.806** 3.338** 2.710** 1.420 -0.098 0.553 1.387 1.891** 
DQMA-Eq 2.016** 1.988** 2.645** 3.795** 3.333** 2.695** 1.385 -0.135 0.563 1.366 1.878** 

h=12 

DMA 0.029 3.260** 3.244** 1.416 2.525** 2.705** 1.493 1.696** 0.812 0.010 1.765** 
DQMA-I 1.582 2.726** 3.902** 1.145 0.695 2.072** 2.154** 1.858** 0.920 1.567 1.798** 
DQMA-II 0.512 3.339** 4.558** 1.786** 1.939** 3.368** 2.970** 2.756** 1.036 0.958 2.178** 
DQMA-Gods 0.891 3.602** 4.658** 1.932** 2.056** 3.151** 2.964** 2.778** 1.069 0.937 2.187** 
DQMA-MSE 0.590 3.429** 4.631** 1.874** 2.018** 3.394** 3.000** 2.748** 1.056 0.951 2.161** 
DQMA-Eq 0.511 3.329** 4.549** 1.773** 1.920** 3.370** 2.967** 2.755** 1.031 0.960 2.181** 

Note: The table reports the quantile CW test statistics for the null hypothesis of equal predictive ability between the combination models versus the QARX model; positive values indicate the 
combination models outpeform the QARX model and vice versa, ** indicates significance at the 5% level. 
 



45 
 

Table A2: Quantile CW test results for aggregate US inflation forecasts when window size = 80 
  0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 

h=1 

DMA 1.971** 3.062** 2.515** 1.925** 1.091 1.158 1.358 2.769** 2.845** 4.054** 2.275** 
DQMA-I 2.482** 2.807** 1.777** 2.454** 0.992 1.366 0.808 2.364** 2.412** 3.258** 1.900** 
DQMA-II 2.506** 3.469** 2.622** 2.936** 1.792** 2.134** 2.009** 2.867** 3.161** 4.060** 2.266** 
DQMA-Gods 2.419** 3.267** 2.612** 2.514** 1.664** 1.946** 1.779** 2.886** 3.244** 4.058** 2.286** 
DQMA-MSE 2.481** 3.430** 2.654** 2.871** 1.799** 2.112** 2.003** 2.910** 3.211** 4.095** 2.276** 
DQMA-Eq 2.506** 3.468** 2.620** 2.937** 1.791** 2.137** 2.011** 2.867** 3.161** 4.059** 2.266** 

h=6 

DMA 1.928** 2.656** 1.311 1.125 1.189 0.390 -0.439 -0.042 0.282 -0.989 1.597 
DQMA-I 0.711 1.553 1.913** 0.665 0.205 -0.478 -0.694 -0.129 -0.058 -0.923 0.855 
DQMA-II 1.875** 2.738** 1.600 1.361 1.527 0.915 -0.333 0.396 0.801 -0.611 2.090** 
DQMA-Gods 1.888** 2.772** 1.897** 1.432 1.788** 0.992 0.368 1.137 1.319 -0.682 1.998** 
DQMA-MSE 1.881** 2.746** 1.626 1.370 1.520 0.896 -0.354 0.354 0.715 -0.636 2.016** 
DQMA-Eq 1.874** 2.737** 1.600 1.361 1.527 0.915 -0.335 0.396 0.802 -0.611 2.089** 

h=12 

DMA 2.548** 2.376** 2.514** 1.256 0.542 1.589 1.038 0.822 2.095** 1.182 2.734** 
DQMA-I 2.425** 2.080** 3.031** 2.322** 1.240 1.074 1.709** 0.955 2.821** 1.624 2.689** 
DQMA-II 3.146** 2.782** 3.648** 2.462** 0.964 1.618 1.680** 1.622 2.514** 1.222 2.764** 
DQMA-Gods 2.878** 2.361** 3.330** 2.646** 1.241 1.459 1.830** 1.784** 2.924** 1.400 2.860** 
DQMA-MSE 3.147** 2.794** 3.656** 2.503** 1.023 1.640 1.703** 1.671** 2.544** 1.235 2.775** 
DQMA-Eq 3.146** 2.783** 3.649** 2.461** 0.961 1.618 1.679** 1.620 2.512** 1.222 2.764** 

Note: The table reports the quantile CW test statistics for the null hypothesis of equal predictive ability between the combination models versus the QARX model; positive values indicate the combination 
models outpeform the QARX model and vice versa, ** indicates significance at the 5% level. 


