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Forecasting Gold Returns Volatility Over 1258-2023: The Role of Moments 
Thanoj K. Muddana*, Komal S.R. Bhimireddy**, Anandamayee Majumdar*** and Rangan 

Gupta**** 
Abstract 

We analyze the role of leverage, lower and upper tail risks, skewness and kurtosis of real gold 
returns in forecasting its volatility of over the annual data sample of 1258 to 2023. To conduct 
our forecasting experiment, we first fit Bayesian time-varying parameters quantile regressions 
to real gold returns, under six alternative prior settings, to obtain the estimates of volatility (as 
inter-quantile range), lower and upper tail risks, skewness and kurtosis. Second, we forecast 
the derived estimates of conditional volatility using the information contained in leverage of 
gold returns, tail risks, skewness and kurtosis using recursively estimated linear predictive 
regressions over the out-of-sample periods. We find strong statistical evidence of the role of 
the moments-based predictors in forecasting gold returns volatility over the short- to medium 
term, i.e., till one- to five-year ahead, when compared to the autoregressive benchmark. Our 
results have important implications for investors and policymakers. 
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1. Introduction 

The “safe haven” property of gold is well-recognized (Boubaker et al., 2020; Salisu et al., 
2022a, 2023), wherein during periods of heightened risks in other financial (stocks, bonds and 
(crypto)currencies) markets, gold provides portfolio-diversification benefits. Naturally, 
forecasting volatility of gold returns is of interest to investors for devising hedging strategies, 
as well as, in the pricing of related derivatives. Understandably, there exists a large literature 
that has aimed to forecast gold volatility (see, Salisu et al. (2020, 2022b), Gupta and Pierdzioch 
(2021), Gupta et al. (2023a), and Gabauer et al. (forthcoming) for detailed reviews). While the 
predictive role of various macroeconomic, financial and behavioural variables have been 
analysed in this process, with the advent of intraday data, the information content of accurately 
estimated (realized) moments of gold prices (Gkillas et al., 2020; Bouri et al., 2021; Demirer 
et al., 2021) in forecasting its daily (realized) volatility over the last two and a half decades 
have been strongly highlighted in many papers, even over and above economic drivers (see, 
for example, Demirer et al. (2019), Asai et al. (2019, 2020), Bonato et al. (2021), Gupta and 
Pierdzioch (2022), Luo et al. (2022), and references cited therein). The underlying reason 
behind the success of these moments, such as leverage (only negative returns), tail risks, 
skewness and kurtosis, emanates from the fact that these statistics of gold prices provides an 
empirical proxy for rare disasters (associated with not only financial crises, but also natural 
disasters, geopolitical events, and even outbreak of contagious diseases (Balcilar et al., 2022; 
Bouri et al., 2022)), which are known to explain asset price movements (Rietz, 1988; Longstaff 
and Piazzesi, 2004; Barro, 2006, 2009; Barro and Ursúa, 2012). 

Against this backdrop, the objective of this paper is to take a historical perspective, by 
analyzing the role of leverage, tail risks, skewness and kurtosis or real gold returns in 
forecasting its volatility over the longest available annual data sample of 1258 to 2023, which 
ensures us in avoiding, the so-called, “sample-selection bias.” At the same time, the role of 
disaster events, as reflected by the moments, being rare, warrants the need to look at long spans 
of data (Ćorić, 2018, 2021).  This exercise, is not only of importance to investors, but also 
policymakers, as gold returns volatility is known to be a metric for global uncertainty (Salisu 
et al., 2022c), and its accurate forecasting would allow the design of appropriate monetary and 
fiscal policy responses in preventing recessionary outcomes. 

To conduct our forecasting experiment, we take a two-step approach. As the only data 
frequency available for gold prices over our sample period is annual, computing the realized 
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moments using higher-frequency is not possible. To tackle this issue, we rely on a quantile 
regression approach (Koenker and Bassett, 1978), whereby this method is designed to estimate 
the conditional quantiles of an endogenous variable (gold returns). However, realizing the 
possibility of structural changes (which we show below to exist in the gold returns using formal 
statistical tests), we actually estimate quantile regressions featuring time-varying parameters to 
obtain robust statistical inference and calculations of the underlying moments from the 
conditional quantiles, following Pfarrhofer (2022). Once we obtain the relevant estimates of 
the conditional quantiles (under alternative Bayesian priors), we are able to derive metrics of 
volatility (inter-quantile range), upper and lower tail risks, skewness and kurtosis, besides 
leverage (i.e., negative gold returns only), and utilize the calculated moments to forecast 
volatility based on a linear predictive regression model, which is recursively-estimated over 
the out-of-sample period to produce multi-horizon forecasts. 

To the best of our knowledge, this is the first attempt to forecast gold returns volatility based 
on its underlying moments, derived from Bayesian time-varying parameter quantile 
regressions, covering over seven centuries, i.e., 766 years of data. The remainder of the paper 
is organized as follows: Section 2 outlines the data and the basics of the econometric 
methodologies, while Section 3 presents the results from the forecasting exercise, with Section 
4 concluding the paper.  

2.  Data and Econometric Methodologies 

2.1.  Real Gold Price 

For the price of gold, we use annual data of nominal prices (in British pounds) of gold starting 
in 1257 till 2023, which is the earliest date of data availability, and is retrieved from 
MeasuringWorth.1 The nominal price of gold is transformed into its real counterpart by 
deflating with the Consumer Price Index (CPI) of the United Kingdom derived from a database 
maintained by the Bank of England called: “A Millenium of Macroeconomic Data for the 
UK”.2  

Computation of log-returns implies that our effective sample covers 1258 to 2023 for real gold 
returns, with the fluctuating data plotted in Figure 1, and summarized in Table 1. The data is 
                                            
1 https://www.measuringworth.com/datasets/gold/. 
2 https://www.bankofengland.co.uk/statistics/research-datasets. 
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clearly non-normal, as suggested by the strong rejection of the null of normality under the 
Jarque-Bera test, due to positive skewness and excess kurtosis. The non-normalness of real 
gold log-returns serves as a preliminary need to look at a quantiles-based model, besides the 
underlying requirement of obtaining the moments. Furthermore, the Bai and Perron (2003) 
tests of multiple structural breaks applied to an ordinary least squares (OLS) estimation of real 
gold log-returns on a constant yielded four breaks (1377, 1590, 1704, and 1819), and, hence, 
justified the decision to use a time-varying parameter-quantile regression (TVP-QR) approach 
to model gold returns, to which we turn to next.    

[INSERT FIGURE 1 AND TABLE 1]  

2.1. Econometric Models 

2.1.1.  Time-varying parameters-quantile regression (TVP-QR)  

Let ሼݕ௧ሽ௧ୀଵ்  be a scalar time series, in our case depicting the real log-returns of gold, and ሼݔ௧ሽ௧ୀଵ்  
a K×1-vector of explanatory variables at time t = 1, . . . , T, which may comprise an intercept, 
observed/latent factors, additional covariates or lags of the endogenous variable. Here, as in 
Pfarrhofer (2022), we only consider an intercept in the model.  A general version of the TVP-
QR framework is given by:  

௧ݕ   = ௣௧ߚ௧ᇱݔ +  ߳௧ ,           with  ׬ ௣݂(߳௧)଴
ିஶ  d߳௧ =   (1)       .݌

where ݍ௣(ݔ௧) = ௧ᇱݔ  ∋ ݌ for ,ݐݔ conditional on ݐݕ ௣௧ as the pth quantile regression function ofߚ 
(0, 1). The regression coefficients are collected in a K×1-vector ൛ߚ௣௧ൟ௧ୀଵ

் , with them varying 
over time and are specific to the ݌th quantile. The error term ߳ݐ with density ݂݌(•) has its ݌th 
quantile is equal to zero. The density ݂݌(•) is chosen to be the asymmetric Laplace (AL݌) 
distribution. In this paper, in addition to TVPs, the Bayesian QR features a time-varying scale 
parameter similar to a stochastic volatility model. To achieve this, auxiliary variables ݐ݌ݒ ∼
∽ ݐݑ and ,ݐ݌ߪ which follow an exponential distribution with time-varying scaling (௣௧ߪ)ߝ 
 ܰ(0,1), are defined.  

The model in (1) can be written as:  

௧ݕ = ௣௧ߚ௧ᇱݔ + ௣௧ݒ௣ߠ  + ߬ ௣ܶඥߪ௣௧ݒ௣௧ ݑ௧,   ߠ௣ =  ଵିଶ௣
௣(ଵି௣) ,  ߬௣ଶ = ଶ

௣(ଵି௣) .     (2) 
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Let ݕ෤௣௧ = ௧ݕ) − ෤௣௧ݔ and (௣௧ݒ௣௧ߪ௣ඥ߬)/(௣௧ݒ௣ߠ  = ൫߬௣ඥߪ௣௧ݒ௣௧ܫ௄൯ିଵ ݔ௧ with ܫ௄ denoting an 
identity matrix of size K. Conditional on ݒ௣௧ and ߪ௣௧ , (2) can be written as a standard TVP 
regression:  

෤௣௧ݕ = ෤௣௧ᇱݔ  ௣௧ߚ + ௧ݑ ௧ݑ     ,  ~ ܰ(0,1).      (3) 

Finally, time-variation in the quantile-specific regression coefficients and the logarithmic scale 
parameters are introduced via standard random walk state equations as follows:  

௣௧ߚ = ௣௧ିଵߚ  + ௣௧ߟ   ,௣௧ߟ   ~ ܰ൫0, Ω௣௧൯ ,        (4)  

log൫ߪ௣௧൯ = log൫ߪ௣௧ିଵ൯ + ݁௣௧, ݁௣௧ ~ ܰ൫0, ߫௣ଶ൯ ,        (5)  

with K × K-matrix ݐ݌ߗ =  ݀݅ܽ݃ (߱௣ଵ,௧, . . . , ߱௣௄,௧) collecting independent state innovation 
variances on its diagonal and ߫௣ଶ  corresponding to the state innovation variance of the scale 
parameters.  

Time-variation for the ݇th coefficient in ݐ݌ߚ is governed by ߱௣௞,௧ for ݇ =  1, . . . ,  The three .ܭ
priors we look into in this regard are the inverse Gamma distribution (iG), static horseshoe 
(shs), and dynamic horseshoe (dhs), wherein, in the first case, time variation is disregarded by 
relying on a constant specification, and time-varying degree of shrinkage without and with 
persistence are considered under the latter two respectively. The set-up is completed by 
assuming iG priors for the case of a time-invariant scale parameter (TIS) of the ܮܣ௣ 
distribution, and on the state innovation variance of the logarithmic time-varying process 
(TVS) of the scale parameter. The resulting posterior distributions and details on the sampling 
algorithm are provided in Pfarrhofer (2022).  

Disregarding a number of draws as burn-in, the Markov chain Monte Carlo (MCMC) algorithm 
delivers draws from the desired posterior distributions. We discard the initial 3000 draws as 
burn-in and use each third of the 9000 subsequent draws for posterior and predictive 
inferences.3 Specifically speaking, using the Bayesian TVP-QR, we obtain the fitted values of 
real gold log-returns (ݕ෤௣௧෢ ) at the quantiles, i.e., p = 0.01, 0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95, 

                                            
3 In this regard, we utilize the R codes corresponding to Pfarrhofer (2022), available at: 
https://github.com/mpfarrho/tvp-qr. 
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and 0.99, to obtain our estimates of lower (LTR) and upper (UTR) tail risks, skewness (SKEW) 
and kurtosis (KURT), to forecast volatility, i.e., the inter-quantile range (IQR), as will be 
discussed in detail below, under six prior settings of: iG-TIS, iG-TVS, shs-TIS, shs-TVS, dhs-
TIS, and dhs-TVS.  

2.1.2. Predictive regression model 

To forecast volatility (IQR), we utilize the following linear predictive regression model, based 
on ሼݖ௧ሽ௧ୀଵ் , which is a M×1-vector of predictors at time t = 1, . . . , T, with the regression 
coefficients represented by a M×1-vector ሼߛ௧ሽ௧ୀଵ் : 

௧ା௛ܴܳܫ = ௧ߛ௧ᇱݖ  ௧ା௛         (6)ߝ +

where, IQR (=ݕ෤଴.ଽ଴෣ −  ௧ା௛ denotingߝ ෤଴.ଵ଴෣) is our metric of real gold log-returns volatility withݕ
the disturbance term, where h (= 1, 2, ….,10) is the forecast horizon. IQRt+h is basically the 
cumulative sum of IQR over the forecast horizon. z includes lags of the IQR, as determined by 
the Schwarz Information Criterion (SIC), leverage (i.e., a time series involving the periods that 
correspond to only negative real gold log-returns: LEV), LTR, UTR, SKEW and KURT. Note 
that, following Gupta et al. (2023b), LTR = ݕ෤଴.଴ହ෣ ; UTR = ݕ෤଴.ଽହ෣; SKEW= (ݕ෤଴.ଽ଴෣ + ෤଴.ଵ଴෣ݕ −
෤଴.ଽ଴෣ݕ)/(෤଴.ହ଴෣ݕ2 − ෤଴.ଽଽ෣ݕ)  = ෤଴.ଵ଴෣), and; KURTݕ − ෤଴.଻ହ෣ݕ)/(෤଴.଴ଵ෣ݕ −  ෤଴.ଶହ෣). Our benchmark modelݕ
simply involves lags of IQR using SIC, with the optimal leg-length being: 2, 2, 6, 3, 4, and 3, 
under iG-TIS, iG-TVS, shs-TIS, shs-TVS, dhs-TIS, and dhs-TVS, respectively.  

The benchmark and full (with moments) models are both recursively estimated using OLS over 
the alternative out-of-sample periods, with the detail discussion outlined in the next segment.  

3. Empirical Findings     

 In this section we discuss the findings from our forecasting exercise. A crucial aspect of any 
forecasting experiment involves the determination of the split of the entire sample period into 
in- and out-of-samples. In this regard, the starting point of the out-of-sample, over which the 
benchmark and model with moments for IQR are recursively estimated, corresponds to the first 
break point derived using the Bai and Perron (2003) tests of multiple structural breaks applied 
to the benchmark model under each of the six prior set-ups. To be precise, the starting points 
of out-samples till 2023 for the forecasting exercises are: 1391, 1391, 1464, 1391, 1378, and 
1378 for the models with prior-settings of iG-TIS, iG-TVS, shs-TIS, shs-TVS, dhs-TIS, and 
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dhs-TVS, respectively. Understandably, the corresponding in-sample periods cover 1257-1390, 
1257-1390, 1257-1463, 1257-1390, 1257-1377, and 1257-1377, wherein the full model and the 
benchmark, which is nested in the former, are estimated for the first time, before being 
repeatedly estimated using an expanding-window to produce robust multi-step-ahead forecasts 
accounting for parameter changes due to other breaks over the out-of-samples. In this context, 
note that, the break dates of the benchmark model of IQR using iG-TIS, iG-TVS, shs-TIS, shs-
TVS, dhs-TIS, and dhs-TVS were: 1391, 1598, 1868; 1391, 1609, 1868;  1464, 1910;  1391, 
1550, 1681, 1796, 1910; 1378, 1550, 1688, 1802;  1378, 1550, 1682, 1796, 1910, respectively. 

As part of the metric for forecasting performance of the benchmark and the complete model 
for IQR under the six alternative prior structures, we compare Mean Square Errors (MSEs) 
across the two models. Given this in Table 2, we report the Relative MSEs (RMSEs), which is 
basically the MSE from the model with moments relative to the same from the benchmark. 
Understandably, a value of less than unity, will correspond to the full model outperforming the 
benchmark which does not involve the moments. When considering the iG-TIS and iG-TVS 
cases, clearly in the latter case moments produces more accurate forecast for real gold log-
returns volatility relative to the benchmark till h=5, compared to only h=1 in the former prior 
setting, suggesting the importance of incorporating the role of time-varying (stochastic) 
volatility in the error structure of the TVP-QR framework utilized in the first step to derive 
estimates of IQR, LTR, UTR, SKEW and KURT. Interestingly, the shs-TIS tends to outperform 
the benchmark of the IQR till 8-year-ahead, while the shs-TVS model does so up to h=4. These 
findings highlight time-varying shrinkage of the model parameters incorporated under shs 
unlike with iG, even when ignoring time-variation in error volatility of the TVP-QR fitted to 
real gold log-returns. A similar pattern to shs emerges across dhs-TIS and dhs-TVS till horizons 
six and five, respectively, in terms of outperforming the benchmark. As dhs captures 
persistence in the shrinkage of the time-varying parameters of the TVP-QR model, the last set 
of results depicts the role of this feature, even when time-varying volatility in the error process 
is suppressed. 

[INSERT TABLE 2] 

In Table 2, we also present the MSE-F test statistic of McCracken (2007). The MSE-F statistic 
tests whether the MSE for the full (unrestricted) model with the moments is lower than the 
MSE produced by its nested benchmark (restricted), i.e., without the moments and just the lags 
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of IQR, in a statistically significant manner.4 As can be seen from this table, in all the instances, 
across the six prior settings used to obtain the moments, where the forecasts of IQR obtained 
from LEV, LTR, UTR, SKEW and KURT outperforms the autoregressive benchmark, the gains 
are statistically significant at the 1% level of significance.  

One must realize that, it is not possible to compare the findings across the prior-settings in 
terms of deciding on what is the best model when it comes to forecasting IQR of real gold 
returns based on its derived moments, as the underlying estimate of the conditional volatility 
differs. But we can safely say that, except for the case of iG-TIS, moments can produce accurate 
forecasts for real gold log-returns volatility over the short- to medium-run, with time-variation 
and its persistence involving parameter shrinkage playing important roles, even more than the 
underlying nature of stochastic volatility of the errors in the TVP-QR, when computing the 
conditional estimates of volatility and its moments of real gold log-returns. In any event, to 
gain some insight as to what might be the most relevant model for real gold log-returns to 
utilize for the purpose of obtaining the moments, we looked at the full-sample fits at the 
conditional median, i.e., p=0.50, of the Bayesian TVP-QR models under iG-TIS, iG-TVS, shs-
TIS, shs-TVS, dhs-TIS, and dhs-TVS, and found that the MSEs are:  133.9299, 133.2372, 
134.0049, 134.0201, 133.7264, and 134.2596, respectively. This suggested that at the normal 
state of real gold log-returns, i.e., at the conditional median, the best model is the IG-TVS, 
followed closely by the dhs-TIS.5 Using this information, and the results reported in Table 2, 
we can then suggest that indeed IQR is forecastable in a statistically accurate manner with the 
information of the moments at least till 5-year ahead – a finding that aligns with the fact that 
economic losses are at its strongest in the first few years following rare disaster-related shocks 
(Ćorić and Škrabić Perić, 2023). 

4. Conclusion   
The objective of this paper is to analyze the role of leverage, tail risks, skewness and kurtosis 
or real gold returns in forecasting its volatility over the annual data sample of 1258 to 2023. 
                                            
4 The MSE-F test is designed to accommodate for nestedness across the two competing models. The statistic is 
formally given as: (T-R-h+1)(MSE0/MSE1-1), where MSE0 (MSE1) is the MSE from the restricted or benchmark 
(unrestricted or full) model, T is the total sample size, R is number of observations used for estimation of the 
model from which the first forecast is formed (i.e. the in-sample portion of the total number of observations), and 
h the forecasting horizon.  
5 When we look at relatively bearish and bullish gold markets at p=0.25 and 0.75, our results for the in-sample 
performance of the Bayesian TVP-QR model under the six prior settings continued to suggest the best fit for the 
prior settings of iG-TVS. Specifically speaking, under iG-TIS, iG-TVS, shs-TIS, shs-TVS, dhs-TIS, and dhs-
TVS, the MSEs at p=0.25(0.75) are:  161.8381 (163.2265), 157.4114 (160.4385), 162.8762 (164.1333), 158.8050 
(160.4644), 162.6659 (164.5052), and 158.6311 (161.1871), respectively. 
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For this purpose, we undertook a two-step approach. First, we fit Bayesian time-varying 
parameters quantile regressions to real gold returns, under six alternative prior settings, to 
obtain the estimates of volatility i.e., the inter-quantile range, lower and upper tail risks, 
skewness and kurtosis. Second, we forecast the derived estimates of conditional volatility using 
the information contained in leverage of gold returns, tail risks, skewness and kurtosis using 
recursively estimated linear predictive regressions over the out-of-sample periods. We find 
strong statistical evidence, in five out of the six prior structures defining the Bayesian models 
of gold returns, of the role of the moments-based predictors in forecasting gold returns volatility 
over the short- to medium term, i.e., till one- to five-year ahead, when compared to the 
alternative autoregressive benchmarks. 

Forecasting gold returns volatility is of interest to investors for devising hedging strategies, 
given its “safe haven” role. Naturally, the fact that gold returns volatility can be accurately 
forecasted over short- to medium-run based on leverage, tail risks, skewness and kurtosis of 
real gold returns over the longest data sample available, thus avoiding any possibility of 
sample- selection bias, should be a valuable findings for investors in making optimal portfolio 
decisions in the face of rare disaster risks. At the same time, disaster risks reflected in the 
moments driving gold returns volatility -a metric of uncertainty, should carry valuable policy-
related information. This is because the recessionary effects of rare disaster risks are likely to 
be prolonged via its link with the variability in gold prices in the future, to which the 
policymakers can respond in a timely-fashion by enhancing the size and persistence of 
expansionary monetary and fiscal policies to reduce the likelihood of deep economic losses. 

As part of future research, contingent on data availability, it would be interesting to perform 
such an analysis on historical data of other commodities as well, for the sake of comparability 
with our findings associated with real gold returns volatility.    
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Figure 1. Plot of Real Gold Log-Returns (1258-2023) 

 
Table 1. Summary Statistics Real Gold Log-Returns (1258-2023; Observations (N) = 766) 

Statistic Value 
Mean -0.2778 

Median -0.4350 
Maximum 137.9600 
Minimum -41.5800 

Standard Deviation 11.5794 
Skewness 2.1502 
Kurtosis 30.4921 

Jarque-Bera (JB) 24713.2700# 
Note: # indicates rejection of the null-hypothesis (of normality) under the JB test. 
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Table 2. Forecasting results 

h 
Statistic 1 2 3 4 5 6 7 8 9 10 

iG-TIS 
RRMSE 0.7003 1.3480 1.7427 1.6048 1.4559 1.4479 1.4434 1.4037 1.3605 1.3192 
MSE-F 270.8432# -163.1503 -268.9252 -237.4301 -196.9561 -194.2591 -192.6219 -180.0249 -165.5998 -150.9824 

iG-TVS 
RRMSE 0.5625 0.5633 0.5689 0.7254 0.9685 1.0381 1.0578 1.0830 1.1117 1.1412 
MSE-F 492.4172# 490.0416# 478.2494# 238.4334# 20.4671# -23.0445 -34.2491 -47.9750 -62.7867 -77.2013 

shs-TIS 
RRMSE 0.6959 0.6894 0.6831 0.6795 0.6759 0.6713 0.6786 0.8430 1.0174 1.0825 
MSE-F 244.7133# 251.9037# 258.8971# 262.7277# 266.5705# 271.7611# 262.3495# 102.9868# -9.45279 -41.9915 

shs-TVS 
RRMSE 0.734062 0.736679 0.729994 0.736067 1.007012 1.094443 1.106447 1.119258 1.144001 1.173872 
MSE-F 229.3253# 225.904# 233.391# 225.9005# -4.37974 -54.1924 -60.3215 -66.7009 -78.6718 -92.4258 

dhs-TIS 
RRMSE 0.881025 0.838889 0.837808 0.848144 0.859475 0.957686 1.058072 1.095848 1.121139 1.139997 
MSE-F 87.23704# 123.8743# 124.6726# 115.126# 104.9678# 28.32181# -35.126 -55.8902 -68.9357 -78.2268 

dhs-TVS 
RRMSE 0.824578 0.817224 0.818736 0.822771 0.966918 1.07755 1.107303 1.126669 1.14256 1.159384 
MSE-F 137.431# 144.2573# 142.5782# 138.5051# 21.96497# -46.1322 -62.0192 -71.8416 -79.6048 -87.5701 

Note: The entries correspond to the Relative Mean Square Error (RMSE) which is the MSE of the unrestricted model of the inter-quantile range (IQR) measuring real gold log-
returns volatility including all the moments of real gold log-returns relative to that of the restricted model which incorporates only the lags of the IQR of real gold log-returns 
volatility for a specific forecast horizon (h). The MSE-F statistic tests whether the MSE of the unrestricted model of the inter-quantile range (IQR) of real gold log-returns 
volatility is statistically lower than that of the restricted model for a specific h; # indicates significance of the MSE-F test statistic at the 1% level with a critical value of 3.7830. 


