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ABSTRACT 
 
Consensus forecasts by professionals are highly accurate, yet hide large heterogeneity. We develop a 

framework to extract the judgement component from survey forecasts and analyse the extent to which it 

contributes to respondents’ disagreement. For the average respondent, we find a substantial contribution 

of judgement about the current quarter, which often steers unconditional forecasts towards the realisation, 

thereby improving accuracy. We identify the structural components of judgement by exploiting stochastic 

volatility and give an economic interpretation to expected future shocks. For individual respondents, just 

over one-third of the disagreement is due to differences in the coefficients or models used, and the 

remainder is due to different assessments of future shocks; the latter mostly concerns the size of the 

shocks, while there is general agreement on their source. 

 

Keywords: Expectations Formation, Identification via Stochastic Volatility, Judgement, Survey of 

Professional Forecasters 

JEL Codes: C32, C33, C51, D84, E37 

 

 



1 Introduction

Forecasting economic variables is a complex task: even professional forecasters, who are

well-informed and skilled agents, often make mistakes. Nevertheless, their projections are

among the most accurate and highly regarded by policy makers and market participants.

The average forecast is the most widely reported quantity in each release of the Survey

of Professional Forecasters (SPF), although it masks a large degree of heterogeneity in the

responses. Where does this heterogeneity come from and what can it tell us about the

forecasting process of the respondents? While we cannot directly observe this process, we

can use publicly available information to begin to form an idea: Stark (2013) and ECB

(2019, 2024) provide insights from surveys conducted among panellists of the US and euro

area SPFs, respectively. Two main results are of interest for this paper: first, respondents rely

heavily on models, with time series (univariate or multivariate) or a combination of models

being the most common options; second, most of them apply a component of judgement to

their model results, including judgement about economic relationships (see also Andre et al.,

2022). We build on these two pieces of information to create a framework which allows us

to reverse-engineer the structural shocks expected by each professional forecaster at each

forecast horizon. In other words, we extract the combination of structural shocks that is

consistent with the forecast paths of all the variables considered and then analyse them in

an economically meaningful way.

To do this, we assume that each quarter SPF panellists run a generic vector autoregression

(VAR) model to produce forecasts of several macroeconomic variables between the current

quarter and four quarters ahead, and adjust their model results by adding a judgement

component in the form of conditions on future shocks. The rationale for these assumptions

lies partly in the surveys of panellists mentioned above, but mostly in the characteristics

of VAR models: flexible, general specifications that allow the nesting of simpler models

(univariate autoregressive process, random walk...) as well as some more complex ones

(time series representations of dynamic stochastic general equilibrium (DSGE) models). The

choice to model the judgement component, a well-established feature of survey forecasts,

as expected future shocks is in line with widely used econometric methods to construct

conditional forecasts, as described by Waggoner and Zha (1999) and, more recently, in terms

of structural scenarios, by Antoĺın-Dı́az et al. (2021).

Our methodology derives from these assumptions: for several macroeconomic aggregates,

we collect individual survey forecasts from US SPF respondents, from the current quarter to

four quarters ahead, and feed them together with the observed data into a Bayesian VAR.

We allow the volatilities of the shocks in the VAR to be time-varying and use this feature
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to identify the structural shocks. Identification refers to both current and expected future

shocks, meaning that we are able to decompose the entire path of each respondent’s forecast

in a structural way.

We consider results for the average SPF respondent as well as for individual panellists;

namely, we analyse impulse response functions (IRFs), historical shock decompositions (in-

cluding a decomposition between current shocks and judgement), and disagreement about

shock decompositions across individual respondents.

We include six variables in our main specification and label five of the six shocks, both by

relating them to shock series estimated in the literature and by observing IRFs dynamics.

These five shocks behave as, and correspond to, well-known macroeconomic disturbances:

unanticipated demand and supply, anticipated demand, cost-push, and financial shock.

For the average respondent, we find that a significant amount of judgement is built into

the forecasts and that it contributes to forecast accuracy, particularly at shorter horizons

and in times of economic turmoil. For individual models, we find that the majority of

disagreement among respondents is due to differences in judgement, with around 25-35%

of the total disagreement due to differences in coefficients. We find that while respondents

disagree on the size of the shocks affecting the variables, they tend to agree on which shock

has the largest impact, with the exception of forecasts of the term spread, whose variance is

attributed to both an anticipated demand shock and an interest rate shock. Our results help

to shed light on the expectation formation process of professional forecasters in an empirical

setting. Moreover, our framework can serve as a powerful tool for policymakers to identify,

in real time, the type of shocks that professionals expect to affect macroeconomic aggregates

and the extent to which they agree on the size and nature of these shocks.

Our paper relates to the large literature on expectation formation, as well as the stud-

ies analysing disagreement among forecasters and the ones proposing methods to combine

models and judgement.

The first strand includes a large number of papers investigating the rationality of expecta-

tions and their deviation from the full information paradigm. Seminal works include Mankiw

et al. (2003), Sims (2003), and Woodford (2013), with two papers by Coibion and Gorod-

nichenko (2012, 2015) offering important advances for the modelling of expectations with

information rigidities. A few of the later models include, for example, those with learning or

sticky information (Born et al., 2020; Farmer et al., 2021; Del Negro et al., 2022), inattentive

or heterogeneous forecasters (Dovern & Hartmann, 2017; Giacomini et al., 2020), and over-

reaction to news (Bordalo et al., 2020; Kohlhas & Walther, 2021). All of the above literature

introduces structural assumptions in order to model a specific non-FIRE mechanism. In this

paper, we take a different approach by not taking a specific stance on the microfoundations
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behind the processes of expectation formation, but by modelling expectations in a flexible,

reduced form. We then identify structural drivers of forecasts, rather than looking at what

types of irrational behavior are consistent with specific types of forecast revisions. In other

words, while we acknowledge that forecasters can be irrational and are certainly heteroge-

neous in their priors and judgements, we do not try to assign their responses to a particular

model, but simply use them to extract implied structural shocks.

Several papers have studied disagreement among forecasters, both from a purely empirical

perspective and from a more structural one. Examples of the former include Dovern (2015),

Andrade et al. (2016), and Clements (2022), while some of the latter are Ricco et al. (2016),

Born et al. (2020), Kuang et al. (2020), Falck et al. (2021), and Herbst and Winkler (2021).

We contribute to this literature by offering a deeper look into the structural interpretation of

disagreement through time: on which shocks do forecasters disagree the most, and in which

periods?

Survey forecasts have long been recognised as adding value to structural and empirical

models, and there is a large literature proposing ways of integrating models and surveys.

Two examples are Galvão et al. (2021) and Monti (2010). The former uses entropic tilting

to improve model forecasts, whereas the latter is more similar in spirit to our approach: the

author extracts from the consensus forecasts an estimate of the real signal, and interprets the

judgement component through the lens of a DSGE model. Other papers looking at the role of

judgement in model forecasts include Robertson et al. (2005), Manganelli (2009), Bańbura,

Brenna, et al. (2021), Bańbura, Leiva León, et al. (2021), and Ganics and Odendahl (2021).

We propose here a novel method of combining these two sources of information: survey

forecasts are used to inform a VAR model and estimate its parameters, together with the

observed data. Additionally, we exploit the multivariate and multi-horizon dimension of the

US SPF, by including forecasts for multiple variables and for horizons between nowcast and

one-year-ahead.

The rest of the paper is organised as follows. Section 2 describes the empirical framework

and identification method, Section 3 introduces the data and estimation procedure, Section 4

discusses results for the average forecaster and Section 5 for individuals. Section 6 concludes.

2 An empirical framework for survey forecasts

In this section, we describe the model structure that we assume for SPF respondents and

introduce our approach in accounting for judgement and disagreement among forecasters.
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We assume that forecasts are produced by SPF participants using a VAR model:

yt = c+ β1yt−1 + ...+ βpyt−p + A−1
0 et et ∼ N (0, In) (1)

where yt is a vector of N observables, c is a vector of constants, βi, i = 1, ..., p are N × N

matrices of lagged coefficients, p is the number of lags, A0 is a matrix of structural impact

coefficients and et is a vector of structural form disturbances. For simplicity, we omit the

constant and lags above one in the rest of the model description.

On the basis of a loss function of mean squared forecast error, the forecast implied by the

model for h periods ahead is:

yt+h|t = βhyt (2)

We call this an unconditional forecast, namely a forecast where future errors are zero on

average and the information set at time t is optimally used given the assumed loss function.

We know from observing the data (see Figure 1, which shows the disagreement calcu-

lated as the standard deviation of point forecasts across individuals) and the literature (e.g.

Mankiw, Reis, & Wolfers, 2003; Andrade, Crump, Eusepi, & Moench, 2016; Glas, 2020)

that (professional) forecasters often disagree on the exact value of the most likely outcome.

The presence of disagreement is not compatible with a forecast produced as in equation 2,

which, if coming from the same model, using the same available data, and assuming the

same priors, would return the same outcome for each forecaster. A first explanation for

disagreement could be that forecasters might run different models and have diverse priors

(Patton & Timmermann, 2010; Giacomini et al., 2020). Second, while they are likely to

observe the same information, being specialised economic agents (Farmer et al., 2021), they

might attribute varying importance to different pieces of information (Kohlhas & Walther,

2021). Third, as we argue in this paper, they could both use different models and adjust

their model forecasts based on different subjective views on the meaning of the information

received.

2.1 Intuition for the model with conditional forecasts

We model this latter possibility by claiming that each agent produces conditional forecasts

in which they assume that future shocks are not equal to zero, but instead reflect their beliefs

about future economic developments. It follows that the h periods ahead forecast is:

yt+h|t = βhyt︸︷︷︸
unconditional forecast

+A−1
0 et+h|t + βA−1

0 et+h−1|t + ...+ βh−1A−1
0 et+1|t︸ ︷︷ ︸

future assumptions

(3)
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Figure 1: Disagreement for Real GDP growth and CPI inflation
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Note: The figure shows the disagreement for real GDP growth and CPI inflation from the Fed SPF forecasts
at the 0 and 4 quarter horizons. Disagreement is calculated as the standard deviation of the individual point
forecasts, excluding the two smallest and largest values. Shaded bars are recessions as defined by the NBER.

where the first term is the unconditional (or model-based) forecast, and the other terms are

the dynamic effects of future assumptions, et+h|t, hereafter “judgement”. Judgement reflects

the forecaster’s opinion about the most likely scenario for the path of certain variables or

shocks.

Our motivation for this specification reflects three main aspects. First, the fact that ex-

perts produce their forecasts by collecting available information and running models (Stark,

2013), but they can also rely on their past experience and complement their answers with

a judgement component (see findings of Croushore & Stark, 2019; ECB, 2019; Andre et al.,

2022). Second, while we cannot deduce the exact model used by the panellists, our specifica-

tion represents a parsimonious and general method of modelling forecasts, capable of nesting

different cases: simpler univariate models, different VAR specifications, VAR representations

of DSGE models, etc. The parsimony stems from the fact that we do not need to introduce

additional coefficients or constrain relationships, but simply recover those coefficients that

best fit each respondent’s forecasts for all h horizons. Third, this specification is consistent

with the econometric methods that forecasters and policymakers can use to supplement their

statistical models when making conditional forecasts in real life.
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Waggoner and Zha (1999) developed the main formal contribution on how to construct

scenarios for conditional forecasts. Their approach was then improved to give the statisti-

cian many options for analysing alternative scenarios or expressing her beliefs about future

economic developments.1 All conditional forecasting methods are based on the idea of con-

straining future shocks within a VAR framework.

We assume that the judgement is distributed independently of the information set inherent

in our assumed model specification, yt, as well as the realised shocks, et+j:

E
(
et+h|t|yt−s, s ≥ 0

)
= 0N×1

E
(
et+h|te

′
t+j|yt−s, s ≥ 0

)
= 0N ∀h, j

E
(
et+h|te

′
t+j|t|yt−s, s ≥ 0

)
=

IN ∀h = j

0N ∀h ̸= s
(4)

This assumption stems partly from computational convenience and partly from our primary

interest in estimating structural (realised and future) shocks, which by definition must be

independent.

2.2 Baseline model with conditional forecasts

In this paper, we want to “reverse-engineer” the most likely combination of shocks assumed

by the SPF respondents by estimating a specification that takes into account the structural

dynamics of forecasts imposed in the VAR.2 In the following, we rewrite the model in compact

form and extend it to include time-varying volatility in structural shocks.

Yt+h|t = C +BYt+h−1|t−1 + F
(
Ih+1 ⊗ A−1

0

)
Λtϵt+h|t (5)

ϵt+h|t ∼ N (0N(h+1)×1, IN(h+1))

As above, we define N as the number of variables and h as the number of forecast horizons.

In the system, there are N(h + 1) structural shocks that explain the forecast structure,

collected in the vector ϵt+h|t.

ϵ′t+h|t =
[
e′t+h|t e′t+h−1|t ... e′t+1|t e′t

]′
(6)

1Several papers explored different ways of imposing subjectivity, e.g. “hard” versus “soft” conditions to
reflect the uncertainty surrounding the assumptions. Antoĺın-Dı́az et al. (2021) drew attention to the need to
distinguish between assumptions arising from structural and reduced-form shocks in order to provide more
interpretable scenarios. The latest contribution and overview on this topic is provided by Chan et al. (2023).

2In the case of no conditional forecasts, i.e. h = 0, the model specification collapses to a standard
structural VAR.
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The state vector, Yt+h|t, is of size N(h+p) and collects conditional forecasts (yt+h|t), nowcasts

(yt+1|t), data (yt) and lags (yt−p+1):

Y ′
t+h|t =

[
y′t+h|t y′t+h−1|t ... y′t+1|t y′t ... y′t−p+1

]′
(7)

In order to construct the matrices C, B and F so they conform to the state space represen-

tation, we first define B∗,h:

B∗,h = Bh
∗ where B∗

Nm×Nm
=

 β
N×Np

0N×N(m−p)

IN(m−1) 0N(m−1)×N

 (8)

where m is the maximum between the forecast horizons, h + 1, and the chosen lag length,

p. The matrices then capture the dynamic responses in the following way:

B =

[
0N(h+1)×Nh B

[1:N(h+1),1:Np]
∗,h+1

0N(p−1)×Nh IN(p−1)×Np

]
(9)

F =

[
IN(h+1)×N B

[1:N(h+1):,1:N ]
∗,1 B

[1:N(h+1),1:N ]
∗,2 ... B

[1:N(h+1),1:N ]
∗,h

0N(p−1)×N 0N(p−1)×N 0N(p−1)×N ... 0N(p−1)×N

]

where superscript values in square brackets represent corresponding rows and columns ex-

tracted from the matrix. The constant collects the deterministic component over forecast

horizons in a companion form:

C ′ =
[
c′∗,h ... c′∗,0 0′N(p−1)×1

]′
where c∗,h

N×1

=
h∑

j=0

B
[1:N,:]
∗,j

 c
N×1

0N(m−1)×1

 (10)

Λt collects expected and current scaling factors for the stochastic volatility:

Λt = diag(eλ1,t+h|t , ..., eλN,t+h|t , eλ1,t+h−1|t , ..., eλN,t+h−1|t , ..., eλ1,t , ..., eλN,t) (11)

We run the model described above for the average forecaster and for each individual

respondent. By estimating the above specification, we obtain coefficients and structural

shocks that are consistent with the full term structure of forecasts up to the h we consider.

Despite the large amount of information included in the estimation (for each variable, data,

and forecasts from horizon 0 to horizon h), the number of parameters does not increase

with the number of horizons. The additional information provided by the forecasts allows

us to estimate the parameters of the model more precisely while maintaining a parsimonious
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specification. To further verify this result, we perform a Monte Carlo simulation, available

in Appendix D. The exercise with fully observed forecasts over five periods confirms that the

posterior standard deviation for the parameters of the model is a factor of 2.15 smaller than

estimates using the model without additional forecast information.

To better appreciate the structural nature of the model, note that in our application we

study up to 6 variables with a forecasting horizon of 5 periods, resulting in a state vector of

size 36. For the 4 lag specification, the coefficient matrix, β and the vector of constants c

contain 150 elements to be estimated, in line with a small VAR system. Alternatively, if we

did not impose the forecast structure, the VAR would become large with a coefficient vector

of length 5220. In this case, one would have to resort to Bayesian shrinkage, alternative

model specifications, or other computational methods for the estimation (see, for example

Bańbura et al., 2010; Carriero et al., 2016; Carriero et al., 2022).

The representation described in equation 5 may appear rather cumbersome. In particu-

lar, conformable matrices are non-linear functions of the underlying parameters, in order to

capture dynamic effects. Dealing with non-linear parameters can lead to inefficiencies in es-

timation using Bayesian methods, as the conditional distribution may become non-standard.

However, our specification is flexible enough to avoid these problems. By constructing condi-

tional forecasts within the VAR framework, we can take advantage of the iterative procedure,

which results in linear parameters:

yt+h|t = c+ βyt+h−1|t + A−1
0 Λt+h|tet+h|t

As a result, the conditional distributions become standard. We discuss this point in more

detail in Appendix B.

Controlling for the full term structure of forecasts also alleviates concerns about invert-

ibility. The assumption of invertibility is related to the informational sufficiency of the VAR

system to successfully recover the underlying structural shocks (Lippi & Reichlin, 1994;

Fernández-Villaverde et al., 2007; Leeper et al., 2013; Forni & Gambetti, 2014; Forni et al.,

2019). In a small VAR setting, the usual remedy is to extend the system either to include

forward-looking variables, such as stock market prices, or information encapsulated in some

latent factors, or, as we do, to capture agents’ expectations by including survey variables.

2.3 Identification of structural shocks

Our choice to introduce stochastic volatility into the specification helps to address the com-

mon VAR problem of identifying structural shocks. We want to be able to interpret the

shocks we extract from the observed forecasts in economic terms. Exploiting the time varia-
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tion in the volatility of shocks to identify structural shocks is an established technique (dating

back to Rigobon, 2003), which has gained popularity in macroeconomic settings in recent

years. Lewis (2021) generalises the method to identification via time-varying volatility. For

the present analysis, we rely on a recent contribution by Bertsche and Braun (2022) and an

extension to a Bayesian setting by Chan et al. (2021), and set the law of motion of stochastic

volatility to:3

log σi,t ≡ λi,t = ρiλi,t−1 + ui,t ui,t ∼ N (0, σ2
u,i) (12)

The setting assumes that log-volatilities follow an independent autoregressive process with

a long-run mean restricted to be zero. Under this specification and assuming that ρi ̸= 0

and |ρi| < 1, Bertsche and Braun (2022) suggest that the structural A0 is full and identified

up to sign changes and column permutations.

To complete our model specification, we need to define the law of motion for the expected

volatility. For the sake of simplicity, we assume that the expected volatility follows an

unconditional path, that is, λi,t+j|t = ρjiλi,t or ui,t+j|t = 0, ∀j = 0, ..., h, implying that

respondents do not assume any conditionality about future uncertainty.4 This assumption

allows us to simplify the number of latent variables to one per each observable.

Identification through heteroskedasticity offers some advantages in addressing the ques-

tions of our study. First, stochastic volatility is considered an intrinsic feature of macroe-

conomic data and accounting for it greatly improves forecasting performance (see Cogley

& Sargent, 2005; Primiceri, 2005; Clark, 2011; D’Agostino et al., 2013; Clark & Ravazzolo,

2015, to name a few). We believe that respondents are exploiting this feature when conduct-

ing their forecasts, considering that the forecast uncertainty, as inferred from probability

distributions in surveys, tends to vary over time and across individuals (Boero et al., 2015;

Glas, 2020). In addition, enriching the VAR setting with stochastic volatility seems a vi-

able solution to capture extreme economic developments in light of the COVID pandemic

(Carriero et al., 2021; Lenza & Primiceri, 2022). Second, contrary to many “traditional”

identification methods (such as zero, sign and long-run restrictions), this one does not call for

imposing ex-ante or external information on structural coefficients; instead, it limits identifi-

cation to the statistical features of structural shocks. This aspect is particularly relevant for

us, as we want to interpret forecasts produced by economic agents who may have imposed

3To complement the estimation of the structural impact, the study of Chan et al. (2021) focuses on the
feature of variable order-invariance in stochastic volatility VARs, that was previously neglected due to the
imposed triangular parameterisation of the covariance.

4The restriction is set for pure convenience and can be easily relaxed to allow for conditionality, though
at the cost of reducing computational efficiency and introducing complexity regarding expected volatilities.
We do not explore the relaxation of this assumption in this paper.
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different identification constraints (if any) on their models. The use of this methodology

means that we do not have to assume a specific identification strategy of the agents, but

only exploit the information contained in the observed forecasts.

2.3.1 External instruments and labelling of structural shocks

The downside of identification through heteroskedasticity is that structural shocks are not

automatically given economic meaning, but need to be labelled post-estimation. Several pa-

pers propose solutions to this issue, such as Lütkepohl et al. (2021) who test for traditional

restrictions that become overidentifying in the presence of heteroskedasticity, or Brunner-

meier et al. (2021), who label shocks based on the signs of impulse responses. Here, we label

shocks both based on impulse responses and exploiting structural shocks from the literature,

similarly to Bertsche and Braun (2022) and Schlaak et al. (2023). More specifically, we relate

external shocks from other papers (that may have been estimated from a model, collected

using high-frequency information, or otherwise constructed using narrative evidence) to our

structural shocks and check whether the latter can be valid instruments for the former. If

both standard conditions for instrumental variables (relevance and exogeneity) are satisfied,

we can label our shocks to reflect the structural interpretation of the external shock series.

We assume observed external shocks wt are linearly related to shock estimates, ε̂t =

[exp(λ̂1,t)ê1,t, ..., exp(λ̂N,t)êN,t], as arising from our model with heteroskedasticity identifica-

tion:

wt = τ + ψε̂t + ot ot ∼ N (0, σ2
o) ε̂t ∼ p(εt,Σε,t) (13)

where p(m, v) and N(m, v) present arbitrary and normal distributions with mean m and

variance v; ot is an i.i.d. measurement error. We account for the estimation errors in our

structural shocks by explicitly modelling them using the posterior distribution p(εt,Σε,t)

from our VAR results.5 εt is the vector containing smoothed posterior mean estimates of the

shock series; Σε,t is a diagonal matrix containing heteroskedasticity estimates.

One can infer the structural interpretation of smoothed shocks, εt, by observing whether

they satisfy the two conditions for a valid instrument. In the frequentist framework, the

conditions are relevance, i.e. ψk ̸= 0, and exogeneity ψi = 0 for all i ̸= k. To choose the

candidate’s shock, we select the one with the largest correlation in absolute value and for

which the zero value is not in the 90% credible set of coefficient ψi. In addition to ensuring

that the candidate shock is relevant, we also explore whether the instrument is exogenous to

5If the estimation errors are not accounted for, estimates are biased in line with the classical implication
from models with errors in independent variables.
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other structural shocks on the basis of a Bayesian model comparison via a likelihood-ratio

test. Section F in the Appendix provides an in-depth description and technical details of the

procedure.

We relate our shocks to more than 100 proxies collected from over 40 studies; we summarise

sources in Table H.1 in the Appendix.

3 Data and estimation

In this section, we describe the data used and the estimation procedure.

3.1 Data

We use data from the US SPF and Real-Time Data Set for Macroeconomists (RTDSM),

both provided by the Federal Reserve Bank of Philadelphia.

The SPF is a quarterly survey of experts conducted each quarter since 1968 (since 1990

by the Philadelphia Fed). Respondents to the survey include forecasting firms, financial

institutions, and research centres, among others.6 These are asked to provide point and

probability forecasts for a set of macroeconomic variables for several horizons. For our

analysis, we use point forecasts between horizon zero (nowcast) and four (one year ahead).

At the time of filling out the survey, the panellists have access to the Bureau of Economic

Analysis’s advance report of the national income and product accounts, which contains the

first estimate for the GDP of the previous quarter. After the first data release, forecasters

have about one week to send their responses to the Philadelphia Fed, which elaborates and

publishes them (for more details on the survey timing, see Croushore & Stark, 2019).

Forecasts for most variables used in this study are given initially in levels. Still, where

needed, we transform them into differences or log-differences, mainly for two reasons: first,

to reduce the effect of revisions and second, to account for the various rebasing of data series

that occurred throughout the sample.7 We use real-time data to ensure they resemble the

information set available to respondents at each point in time. Revisions mainly concern

GDP and its components; inflation measures are usually revised to a smaller extent (primarily

due to seasonal adjustment) while interest rates, yields and spreads are observed metrics,

hence not affected by revisions.

6While responses are anonymised, a partial list of respondents is available in each survey’s report, see
Survey of Professional Forecasters.

7As highlighted by Howrey (1996) and later by Croushore and Stark (2001), forecasts of the rate of growth
of real GNP are less affected by data revisions than forecasts of the level.
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Table 1: Data and transformations

Data Series Transformation Available from Avg Periods Avg Resp.

Real GDP log-diff 1968:Q4 61 25 (29)
Investment10 log-diff 1981:Q3 57 23 (27)
Term Spread11 level 1992:Q1 52 22 (27)
AAA-10y spread level 1992:Q1 44 18 (23)
CPI Inflation log 1981:Q3 60 25 (29)
T-bill diff 1981:Q3 58 24 (28)

Note: The table summarises variables used in the baseline specification, their transformation and the
availability of individual responses. “Available from” is the date when forecast information became available
in the SPF dataset; “Avg Periods” indicates the average number of quarters in which each respondent
reported the forecast for a variable; “Avg Resp.” indicates the average number of respondents at each time
point in the sample, with the average from 1992q1 in brackets.

We collect two types of responses: individual and average across individual responses.8

Our main specification runs from 1984Q2 to 2022Q2, but we also investigate additional

samples for robustness. Since panellists have entered and exited the survey throughout the

years and do not provide responses in every survey, we need to deal with several missing

observations. As a starting point, we exclude all respondents who have responded to fewer

than thirty surveys for both GDP and CPI inflation over the period considered. We deal

with missing data for the remaining respondents using the Kalman smoother.

For the baseline specification, we estimate our model for 63 forecasters. Table 1 sum-

marises the variables used in the main specification, their transformations, the date when

forecast information became available in the SPF, the average number of periods for which

there are responses over the sample, and the average number of panellists who reported a

forecast for a given variable.9

8SPF also provides the median across responses. For robustness, we also estimate the baseline specification
using this alternative aggregate measure, and we find that the differences are negligible.

9Appendix Figure H.1 shows the number of respondents who provided their forecasts for a particular
variable over time. The figure shows that the number of respondents persistently increased in 1990 after the
takeover of the survey by the Philadelphia Fed from ASA/NBER.

11Note that the information on gross private domestic investment is not available in the survey in aggregate
form, but only for its components: real nonresidential fixed investment (RNRESIN), real residential fixed
investment (RRESINV) and real change in private inventories (RCBI). We sum the three series to obtain
aggregate investment.

11We define the term spread or the slope of the term structure of Treasury securities as the difference
between the nominal yield on a 10-year Treasury bond and the nominal rate on a 3-month Treasury bill
(SPR TBOND TBILL).
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3.2 Bayesian estimation and priors

For estimation, we use Bayesian inference because it is well suited to our specification,

including the large VAR system, the presence of latent variables and missing observations.

In a nutshell, our priors are mostly uninformative but proper. Below we describe them in

more detail.

vec(βavg) ∼ N (β0,Σβ(κ)) vec(βindiv) ∼ N (β̂avg, 3 · I)

For the coefficient vector, vec(β), we set a rather uninformative Minnesota prior in the

specification with average SPF forecasts (Litterman, 1986). Although we also experiment

with variations of Minnesota priors and different adaptive shrinkage levels à la Chan (2021),

we find that results are not very sensitive to them.12 For the estimation of individual

specifications, we apply a slight level of pooling by specifying the mean of the prior to

be the posterior mean estimate of the aggregate specification, in resemblance to panel VARs

(Zellner & Hong, 1992; Jarociński, 2010).13

∀i = 1, ..., N aavg,0,i,i ∼ N (σ̂−1
AR,i, 40) ∀i ̸= j aavg,0,i,j ∼ N (0, 40)

∀i, j aindiv,0,i,j ∼ N (âavg,0,i,j, 4)

The prior for the structural impact matrix, A0, is set such that the diagonal elements, a0,i,i,

are centered around the inverse of the residual standard deviation of independent AR(4)

processes. The off-diagonal elements, a0,i,j, are shrunk towards zero. In line with the priors

on the βs, the prior belief is that every variable follows an independent random walk. For

the estimation of individual specifications, the priors for the structural parameters aindiv,0,i,j

are the same across forecasters, to ensure comparability. We set the expected value equal

to the posterior mean estimate from the aggregate specification. The prior reduces the

parameter space, allowing to neglect permutations that arise when using heteroskedasticity

identification, an issue we return to in Section 5.1.

σ2
u,i ∼ IG(3/2, Su,i) Su,i ∼ G(1.6/2, 1)

ρi ∼ N (0.9, 0.09)1(−1<ρ<1) λ1,i|ρi, σ2
u,i ∼ N

(
0,

σ2
u,i

1− ρ2i

)
12We set hyperparameters for the variance matrix Σβ(κ) such that κ1 that governs the shrinkage on

variables’ own lags is equal to unity, κ2, the shrinkage on other lags, is equal to unity and κ4 on intercepts is
equal to 100. In a hierarchical set-up à la Chan (2021), we find that an ‘aggressive’ cross-variable shrinkage
is prescribed, i.e. κ1 = 0.134 and κ2 = 0.004.

13Irrespective of the prior, the most significant amount of pooling for coefficients should arise from the
likelihood, as the same observed data but not forecasts are used across respondents.
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Priors for the parameters that govern the law of motion of the stochastic volatility, ρ and

σ2
u, are independent across different processes and conditionally conjugate. For the latter

parameter we use a non-standard hierarchical setup that allows for a ‘fatter’ tail for values

close to zero and which does not rule out homoskedasticity a priori.14 The prior for the

initial state of the log standard deviation, λ1, is hierarchical and set to the long-run values of

an AR(1) process with the mean value of zero and variance determined by hyper-parameters

ρi and σ
2
u,i.

Y0 ∼ N (Ȳ0, 5 · ΣY,0)

Priors for the initial conditions Y0 are centred around observed data prior to the estimation

period; the variance matrix is a scaled matrix, ΣY,0 which has on the diagonal the long-run

variances of independent AR(4) processes over the entire sample. For the estimation of

individual specifications, the priors for the initial conditions are the same across forecasters,

to ensure comparability.

We estimate the model using the Markov Chain Monte Carlo (MCMC) algorithm of Gibbs

sampling, with detailed explanations in Appendix B. The algorithm’s steps are similar to

previous efforts to estimate models with stochastic volatility (most notably Cogley & Sargent,

2005). However, we deviate by, first, relying on the recent contribution by Chan et al.

(2021) to account for the full parameterisation of the structural matrix and, second, by fully

modelling SPF forecasts within the assumed VAR specification - an addition that introduces

a few complexities that we leave for the Appendix. We apply heavy thinning by taking every

30th draw after the burn-in sample to ensure satisfactory mixing. In the end, we generate

106 draws, of which 7 × 105 are for burn-in, leaving 104 draws to approximate posterior

distributions.15

A possible issue stemming from the identification by heteroskedasticity is impaired infer-

ence. This method identifies structural parameters only up to sign and column permutations

and, thus, might confound statistical and economic interpretations. We test for the presence

of this concern by analysing the posterior densities of the structural matrix, A0, and testing

for multimodality. If we can reject it, the matrix A0 is identified, and inference is not im-

paired. We discuss in detail our proposed diagnostic in Appendix C. In a nutshell, we find

that we can reject multimodality and disregard the issue for our baseline model.

Lastly, as discussed in the previous subsection, individual information on the SPF fore-

14Our specification provides a computationally convenient prior adhering to remarks by Gelman (2006) and
Kastner and Frühwirth-Schnatter (2014) that a standard prior of inverse gamma tends to be over informative
a posteriori.

15MCMC convergence and efficiency are satisfactory, see inefficiency factors and Geweke (1992) conver-
gence diagnostic statistics, available in Appendix Figure E.1.
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cast can be scarce depending on the respondent. For that reason, we cast our model in a

state-space representation to interpolate series using the simulation smoother of Durbin and

Koopman (2002).

We use four lags in the VAR system.

4 Results for the average respondent

We first present results for the average respondent specification, mainly for two reasons: first,

the “average” or “consensus” forecast is the most widely reported quantity, hence the most

scrutinised; therefore, it is relevant to understand how this hypothetical respondent works.

Second, results for the average respondent are easier to interpret and a useful starting point

to then move to individual results. The labelling of shocks is done based on the impulse

responses of this first specification.

4.1 Impulse responses and shocks’ labelling

In this section, we describe impulse responses and label structural shocks. As mentioned,

our identification does not allow to map shocks into their economic meaning directly. We

approach this issue from two sides: first, we look at the correlation with external shocks, as

described in Section 2.3.1.16 Second, we analyse the signs and dynamics of impulse responses

and relate them to regularities arising from structural models. We interpret shocks rather

broadly, as is common in the VAR literature. Economies are subject to a myriad of shocks;

for that reason, we do not expect every shock in our analysis to have an exact underlying

structural foundation. Figure 2 depicts our baseline model’s impulse response functions.

Each column includes a shock and each row a variable, so each panel represents the response

of a variable to a shock, such that variables on the diagonal are normalised to increase by

one unit. The black line represents the posterior mean and the blue lines are the posterior

90% credible sets.

Unanticipated demand shock. The first shock (Shock 1 in the figure), causes a co-movement

between GDP, investment and prices, in line with a positive aggregate demand shock.17

The monetary authority responds to an increase in inflation by tightening - a feature that

distinguishes this shock from a monetary policy surprise. The delayed decrease in the term

16For brevity, we present selected results focused on a particular shock that satisfy both relevance and
exogeneity conditions. The full table, relating all estimated shocks to external proxies, is presented in the
Appendix with clarifying details, see Table H.1.

17A positive co-movement between output and prices is often used as a defining feature of an aggregate
demand shock, such as preference/taste shocks, for structural identification when using sign restrictions
(Canova & Paustian, 2011; Foroni et al., 2018; Furlanetto et al., 2019, for example).
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Figure 2: Impulse responses, average model
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Note: The figure shows impulse response functions for the baseline model. Each sub-panel shows the
response of a variable (in the rows) to a shock (in the columns), normalised to increase the variable on
the diagonal by one unit. The solid black line is the posterior mean as a point estimate and the blue lines
are the posterior 90% credible sets. The shocks’ numbering corresponds to: 1 - Unanticipated demand; 2 -
Unanticipated supply; 3 - Anticipated demand; 4- Financial; 5 - Cost-push; 6 - Interest rate.
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spread reflects dissipating demand effects, as expected short-term interest rates are lowered.

The boost in demand ensures more favourable financing conditions for firms - the credit

spread falls.

In relation to external instruments, we find that our unanticipated demand shock resem-

bles exogenous tax cuts, see Table 2. The time series of estimated shock is strongly correlated

to the exogenous tax shocks of Romer and Romer (2010), the unanticipated tax increases

of Mertens and Ravn (2012) and the personal income tax increases as described by Mertens

and Ravn (2013). To be a valid instrument, the external shock series has to be exogenous

to other shocks, ψi = 0 ∀i = 2, ..., 6. The posterior model probabilities, P (Mr|y), indicate
that the restricted model is preferred with almost certainty across all candidate shocks. The

same conclusion is upheld for the likelihood ratio test, the frequentist alternative for hy-

pothesis testing. Both findings provide rigorous evidence for the first shock representing

unanticipated demand shocks, such as tax decreases.

Table 2: External shocks related to unanticipated demand shock

RR10exo MR12unc MR2013TPI
ψ1 -0.024*** -0.02*** -0.023***
ψ2 0.001 0.001 0.001
ψ3 -0.019** -0.013* -0.016*
ψ4 -0.011 -0.006 -0.004
ψ5 -0.004 -0.005 -0.005
ψ6 -0.007 -0.002 -0.002
Candidate 1 1 1
P (Mr|y) 1 1 1
log10BF 7.964 8.827 8.364
LRT 0.139 0.488 0.475

Note: The table presents the posterior mean of coefficients, ψi, obtained from regressing shocks from the
literature (column names) on our shock estimates, see equation 13. Asterisks denote different levels of high
probability density intervals when the zero value is not included ( ***=99%, **=95%, *=90%). “Candidate”
is the shock with the highest absolute correlation, “P (Mr|y)” is the posterior probability of the restricted
model (i.e. the model including only the most relevant shock) to be preferred, “log10BF” is the logarithm
of Bayes’ factor in favour of the restricted model, and “LRT” is the p-value from the likelihood ratio test.

Unanticipated supply shock. The second shock is more akin to an aggregate (positive)

supply disturbance: quantities (both GDP and investment) rise, while prices decrease. In-

terest rates are set higher to combat disinflation, so the treasury bills’ yield slowly decreases.

The term spread goes down, due to expected decreases in the short-term rates, but may as

well reflect the decrease in the term premium, as noted by Rudebusch and Swanson (2012)

for positive technology shocks. The credit spread somewhat rises, unusually for a standard

positive supply shock which normally would see a decrease in risk. Nevertheless, these dy-
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namics may also be reflective of a mechanism of the extensive margin of borrowers: given

an increase in total investments, more agents will borrow money, including both “good” and

“bad” borrowers, therefore causing an increase in credit spread (see, e.g., Justiniano et al.,

2011). When relating our shock series to previous vast research efforts on technology shocks,

we find rather mixed evidence, possibly reinforcing the conclusion of Ramey (2016) that

there is immense complexity and lack of consensus when identifying technology shocks.

Anticipated demand shock. The third shock stands for the anticipated demand shock. The

shock shares similarities with the unanticipated demand shock, such that GDP and inflation

rise. However, the overall dynamics of variables reflect an announced or anticipated demand

shock. The responses of aggregates are more delayed, with increases happening after a few

quarters. Meanwhile, the forward-looking variables react on impact, indicating an effect

on expectations. The term spread has an immediate positive response: long-term treasury

yield rises, indicating that future rises in short-term rates are expected to materialise. The

corporate spread drops on impact, reflecting more favourable credit conditions for firms

due to expected future demand. Another indicator of anticipation lies in the increase in

investments, relatively larger than the one in GDP, that could stem from an accumulation

of inventories and capital in view to fulfil the anticipated demand increase.

Financial shock. We define the fourth shock as a shock to financial conditions. As

indicated by an increase in the spread between AAA-rated corporate and 10-year govern-

ment bonds, the worsened financing conditions lead to a delayed decrease of slower-moving

variables, real GDP, investment and prices. A monetary easing accommodates the bust in

the economy, as the yield on treasury bills is adjusted downwards. The term spread con-

temporaneously decreases, likely due to an expected monetary policy easing in response to

the financial shock, but reverts once the economy recovers. The impulse responses for this

shock closely resemble those labelled by Brunnermeier et al. (2021) as a “non-bank financial

shock”, a shock to the excess bond premia by Gilchrist and Zakraǰsek (2012) and credit

supply shocks of Bassett et al. (2014). Indeed, we find that our series for this structural

shock are correlated to innovations of the latter two studies, see Table 3.18

The shock has an alternative structural rationale to portray uncertainty shocks, as sug-

gested by Bloom (2009). An exogenous variation in possible worse future outcomes encour-

ages households and firms to postpone consumption and investment, which may possibly

have macroeconomic effects. The dynamics of our impulse responses align with these mech-

anisms, whereas our structural shocks correlate with those found in Bloom’s study.

18The historical decomposition also confirms our narrative, see Figure H.6 in the Appendix. Particularly
the contribution of a financial shock to the corporate spread spikes at periods of the “dot-com” bubble in
the 2000s and the Great Financial Crisis in 2007 - instances of tight financial conditions.
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Table 3: External shocks related to financial shock

BCDZ14 GZ12 NB09 NB09FMT NB09MMT
ψ1 -0.003 -0.005 -0.006 0.002 -0.001
ψ2 0.001 0 0.001 -0.001 -0.001
ψ3 -0.001 0.006 0.014* 0 0
ψ4 0.038** 0.09*** 0.064*** 0.013** 0.016***
ψ5 0.006 -0.004 -0.001 -0.001 0
ψ6 0.007 0.01 -0.004 0.002 0.002
Candidate 4 4 4 4 4
P (Mr|y) 1 1 1 1 1
log10BF 9.035 9.013 8.731 11.506 11.473
LRT 0.775 0.39 0.249 0.781 0.665

See note for table 2.

Cost-push shock. The fifth innovation represents a cost-push shock - a shock that arises

due to unwarranted aggregate variation in production input prices, such as commodity prices.

An exogenous increase in commodity prices leads to a contemporaneous pass-through onto

consumer prices and diminishing economic activity. Note that our interpretation may be

hindered by the fact that the VAR specification does not incorporate any commodity price

index, as well as the dynamic responses for these shocks are not dissimilar from the one we

named “supply” (with an inverted sign), with a negative co-movement between GDP and

CPI inflation. Despite that, we find that our shock series are valid instruments to oil supply

news shocks by Känzig (2021), “pure” oil price expectation shocks by Baumeister (2023),

oil price shocks by Hamilton (2003) an instrument constructed by Caldara et al. (2019), see

Table 4.19

We also confirm that the implied contributions of these shocks to historical variations of

consumer price inflation fit the historical narrative of notable events related to drastic oil

price developments, including the recent increase in input prices arising due to disruptions

in global value chains and the Ukraine/Russia war (see Figure H.5 in the Appendix).

Interest rate shock. Finally, the last shock takes the name from the variable it affects the

most, namely the T-bill rate. Around 50% of short-run variation in the T-bill is allocated to

this variable.20 This shock has a large positive impact on the T-bill and a negative impact

on the AAA spread. The term spread reacts negatively with a delay. Real variables move

consistently with a demand-side shock: higher GDP and investment, together with higher

19Differently to other proxies in the table, the sign of coefficient for the instrument by Caldara et al. (2019)
is negative one. This happens because authors construct the instrument as leading to a disruption of oil
supply, therefore representing shocks of an opposite sign.

20Figure H.4 in the Appendix summarises results for the forecast variance decomposition across all variables
and shocks.
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Table 4: External shocks related to cost-push shock

DK21s HAM03b BH2022E CCI19inst
ψ1 -0.003 0.001 0 0.006
ψ2 -0.002 -0.004* -0.002 0.001
ψ3 -0.005 0.001 0.004 -0.003
ψ4 -0.001 0.014 -0.009 0.009
ψ5 0.013*** 0.013*** 0.018*** -0.01**
ψ6 0.011 0.001 0.005 0.009
Candidate 5 5 5 5
P (Mr|y) 1 1 1 1
log10BF 8.553 8.746 9.084 8.766
LRT 0.443 0.509 0.815 0.712

See note for table 2.

CPI inflation, although investment starts to decrease only after one year. We are cautious

about providing a structural interpretation for this shock, as we believe it may represent a

convoluted response of multiple innovations. It resembles yet another demand shock in our

system, which reflects the reallocation of demand from investment onto other components

of GDP. We also find that the shock series relates to monetary policy shocks as identified

by Jarociński and Karadi (2020) and Miranda-Agrippino and Ricco (2021), although the

impulse responses are at odds with the conventional dynamics for monetary surprises.21

Figure I.1 in the Appendix shows impulse responses from alternative specifications: ex-

cluding the COVID period, beginning the sample in 1976, or using median SPF responses

as opposed to the average across individuals, or the specification with two lags.22 While

most results are qualitatively and quantitatively similar to the baseline model, one notable

difference is in the impulse responses for the sub-sample excluding the COVID-19 pandemic.

This specification features a stronger treasury bill response to an unanticipated demand

shock, accompanied by a larger term spread and a more muted reaction of CPI. This dif-

ference probably reflects the monetary policy stance during the pandemic, which was less

accommodative than in the previous part of the sample, given the extraordinary drop in

GDP.

21We suspect that these puzzling results may be due to the lack of variation arising from monetary surprises,
which are considered to reflect only a small share of business-cycle variation (Ramey, 2016). Identification
using heteroskedasticity may fail to distinguish this shock without any additional source of information,
unlike in the studies exploiting high-frequency information.

22Specification with two lags is suggested by various information criteria, e.g. Akaike or Schwarz, and
likelihood ratio tests.
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4.2 Historical shock decomposition

In this section, we look at historical shock decomposition for nowcasts and one-year-ahead

forecasts, visible in figures 3 and 4, for real GDP growth and CPI inflation, respectively.23

In a conventional VAR setting, the historical decomposition corresponds to a vector moving-

average process divided into a deterministic component (DC in the legend) and stochastic

structural contributions:24

yt =

(
t−1∑
j=0

βj

)
c+ βty0︸ ︷︷ ︸

deterministic comp.

+
t∑

j=0

βjA−1
0 εt−j︸ ︷︷ ︸

stochastic comp.

(14)

For the sake of brevity and clarity, we use structural shocks scaled by the stochastic volatility

in the rest of the paper, so that elements of vector εt+h|t are εi,t+h|t = exp(λi,t+h|t)ei,t+h|t.

Our specification and its use of both forecasts and data allow us to decompose forecasts into

contributions of observed shocks, referring to the history of innovations, and expected shocks,

which reflect judgement about the current (unknown) quarter and future shocks:25

yt+h|t =

unconditional forecast︷ ︸︸ ︷(
t−1∑
j=0

βj+h

)
c+ βt+hy0︸ ︷︷ ︸

deterministic comp.

+
t∑

j=0

βj+hA−1
0 εt−j︸ ︷︷ ︸

stochastic comp.

+

judgement︷ ︸︸ ︷
βh−1A−1

0 εt+1|t︸ ︷︷ ︸
nowcast judg.

+
h∑

l=2

βh−lA−1
0 εt+l|t︸ ︷︷ ︸

future judg.

(15)

The panels on the left of the two figures show the decomposition of each forecast (in deviation

from its long-run mean) into each structural shock, named in the legend with the same

numbering of Figure 2.26 These are sums of observed and future shocks. The panels on

the right show the decomposition of each forecast into initial conditions, observed shocks,

judgement about the current quarter or nowcast, and judgement about future shocks.

Looking at the left panels, results suggest that unanticipated demand shocks were the

main drivers of the forecast for real GDP during the periods of the Great Financial Crisis

(GFC) and the COVID-19 pandemic. However, there is one notable difference between the

23Figures H.7 and H.8 in the Appendix present results for all variables in the VAR system.
24Figure H.6 in the Appendix shows “traditional” historical shock decompositions of data.
25Note that our concept of nowcast is slightly different than the conventional one: we define nowcast as

the forecast for quarter t+ 1, given information up to quarter t. Any information at higher than quarterly
frequency will be included in the judgement component of the nowcast: this arises from the fact that we do
not employ mixed-frequency estimation techniques to capture nowcasting rigorously but, instead, we rely on
a simplification allowing us to distinguish SPF nowcasts and forecasts.

26Shock decompositions are built by simulating the model multiple times, each time setting one of the
shocks equal to zero.
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Figure 3: Historical shock decomposition and judgement decomposition of Real GDP q-o-q
growth rate
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Note: The left panels show the historical shock decomposition for the nowcast and one-year-ahead forecast in
terms of deviation from its long-run mean.The shocks’ numbering corresponds to: 1 - Unanticipated demand;
2 - Unanticipated supply; 3 - Anticipated demand; 4- Financial; 5 - Cost-push; 6 - Interest rate. The right
panels show the decomposition of the nowcast and one-year-ahead forecast into deterministic conditions,
observed shocks, judgement about nowcasts and judgement about expected shocks in future horizons. We
use the posterior mean of the historical decomposition as our point estimate. Shaded areas represent NBER
recession periods.
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Figure 4: Historical shock decomposition and judgement decomposition of CPI inflation
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See note for Figure 3 above.
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two instances: for the GFC, forecasters expected the growth to be hindered for a few years,

whereas the pandemic bust was considered to be temporary, with a sharp rebound forecast

in the upcoming four quarters. Inflation in the past two years was thought to be affected by

cost-push shocks caused by supply-side bottlenecks and the war in Ukraine. These shocks

also had a negative effect on the forecast for GDP.

The right panels can tell us yet another story: to what extent have forecasters adjusted

their model forecasts by adding non-zero future shocks, and how did these expected shocks

affect overall forecasts? A first point to note is that forecasters exercise their subjective

views about the economy widely: a non-negligible share of observed predictions is due to

judgement.

We distinguish here between judgement added in the current quarter, or judgement about

nowcasts (pink bars) and judgement about future shocks, or referring to the following quar-

ters (blue bars). In addition to subjective assumptions, judgement about nowcasts can

incorporate all information which becomes available during the survey quarter up to the

day of its submission. In our system, this applies to financial yields that are observed daily.

However, nowcasts can also reflect external information beyond variables in the system, for

example, industrial production, energy prices, electricity consumption etc. - indicators that

are observed more timely. We find that the contribution of judgement about current macroe-

conomic developments can be sizeable; particularly, a large piece of variation of nowcasts is

explained by this component.

When nowcasts are compared to the realisation for that quarter (dashed purple line),

we observe that this type of judgement correctly anticipates the realised value.27 Figure

5 presents percentage gains in terms of root mean squared errors (RMSE) for SPF fore-

casts versus unconditional forecasts, where the latter are defined as the first two terms of

equation (15). RMSEs for nowcasts are consistently smaller with judgement than without

it. This holds across all variables and different samples. The most significant contributions

appear in recession periods, suggesting that VAR predictions without additional information

would have greatly failed to predict the current economic stance. In contrast, professional

forecasters do “get it right”.

The contribution of nowcast judgement is smaller for four-step-ahead forecasts, by con-

struction, as a result of stationary autoregressive dynamics in our VAR system. However,

the higher horizon forecasts do include a non-negligible component of expected future shocks

(blue bars) in addition to the prescriptions by the VAR model. In contrast to nowcasts, the

27We define realisation the value recorded in the SPF, often reflecting the first-release value. We also find
qualitatively and quantitatively similar estimates when using realisations revised five months after the initial
value or currently observed values.
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Figure 5: Forecast performance gains of SPF versus unconditional forecasts
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Note: The figure shows the percentage gains in terms of root mean squared error (RMSE) for the SPF
forecasts compared to model-consistent unconditional forecasts: 100(1 − RMSESPF /RMSEUC). The top
panel shows the evaluation for nowcasts, while the bottom panel shows the evaluation for four-step-ahead
forecasts. The different colours show results using different sub-periods for the forecast error: “Full” is the
full sample; “Post-1992” is the sample from 1992q1; “Excl. NBER recess.” is the sample excluding NBER
recessions. In the Appendix, Figure H.10 includes results for all forecast horizons.

overall contribution of judgement does not lead to an improvement in the four-step-ahead

horizon accuracy: differences in RMSEs between SPF and unconditional forecasts are negli-

gible (see the bottom panel of Figure 5).

In this section, we confirm the well-known result that SPF performs better than model-

consistent unconditional forecasts at shorter horizons. In our framework, this higher accuracy

is mainly due to subjective judgement, which we find to be pervasive at each horizon and

which is a source of disagreement among respondents. In the next section, we analyse this

disagreement further: we estimate our model for individual respondents to understand the

extent to which different structural sources of judgement can rationalise the disagreement.

5 Results for individual respondents

In this section we present the results of estimating our model specification for each forecaster

in order to analyse the underlying drivers of disagreement across respondents.

Recall the specification of a conditional forecast for each individual i:

yt+h|t,i =

(
h−1∑
j=0

βj
i

)
ci + βh

i yt + A−1
0,i εt+h|t,i + βiA

−1
0,i εt+h−1|t,i + ...+ βh−1

i A−1
0,i εt+1|t,i (16)
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The equation highlights different sources that explain the heterogeneity of forecasts across

respondents. In our setting, the dispersion may arise from different judgement about current

and future economic developments, as reflected in the structural assumptions εt+1|t,i for each

forecaster. It is also plausible to expect that agents use different models or priors for the

underlying structural parameters, ci, A0,i and βi. As a result, even though agents observe

the same information, as summarised in yt, they can still produce very different prescriptions

about the future. The SPF also records respondents’ expected revisions to past data, which

we take into account when estimating individual specifications. While this is yet another

source of disagreement, expected revisions are rarely recorded and account for a negligible

proportion of total disagreement.

Before presenting the results in more detail, we briefly discuss the issue of shock permu-

tation, a feature of identification through heteroskedasticity.

5.1 Permutations and cross-sectional comparison

As mentioned in subsection 2.3, identification through heteroskedasticity allows us to identify

the structural A0 matrix up to sign changes and column permutation (Lewis, 2021; Bertsche

& Braun, 2022). This can become an issue when multiple models need to be compared, as is

the case for our individual estimations. As we run a separate estimation for each respondent,

we need to ensure that the order of the shocks is the same.

To do this, we first normalise the parameter space by imposing weakly informative priors

on the matrix of structural coefficients, A0, as mentioned in Section 3.2. Following Hamilton

et al. (2007), we find that the prior ensures parameter identification and reliable inference by

selecting the appropriate neighborhood of the posterior mode. In addition, the prior allows

permutations to be neglected when comparing results between individual forecasters.

Second, we use a rigorous classification procedure to ensure that the comparison is robust.

We rely on the idea that current structural shocks across respondents should reflect similar

information, since they are determined by the same observed data. Therefore, the structural

shocks associated with the observed data should have a common structure across agents,

where each structural shock for an agent should be explained by only one factor. If we can

determine to which factor the shock is most related, we can label that shock as similar across

agents and determine the ordering. In addition, by observing whether the correlation with

the factor is positive or negative, we can also determine the sign of the permutation. For a

description of the exact procedure used to reorder shocks consistently across agents, we refer

the reader to Section G in the Appendix.
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5.2 Heterogeneity of parameters

Figure 6 shows impulse response functions across individuals, which give an indication about

the heterogeneity of structural parameters. The black line is the cross-sectional median of

the individual posterior estimates, while the dark and light grey areas represent the 68%

and 90% percentile bands, respectively. The red line is the posterior mean coming from

the average model. Individual impulse responses are roughly similar to average ones; the

dynamics follow the same patterns, in line with the structural narrative we provided for each

shock in Section 4.1.

The percentile bands are quite wide. Our reading of the result is that there is evidence

of differences in structural parameters across respondents. It is plausible to expect that

forecasters use different tools, information and methods (which may change over time) to

produce forecasts, leading to differences in the dynamics of the responses. As explained in

Section 2, we have to make some assumptions when specifying our model for the individual

respondent, both about the exact specification and the observed information set. While

these assumptions could bias our results towards relatively homogeneous dynamics, as they

somehow restrict respondents’ heterogeneity, we find that this is not the case when looking

at the cross-section of respondents.

Nevertheless, we are cautious about interpreting these results as definitive, but rather as

indicative. The data in the SPF are subject to attrition and sometimes infrequent responses

from forecasters: the last two columns of Table 1 give an indication of the number of obser-

vations, i.e., the average number of quarters in which each respondent reported the forecast

for a variable and the average number of respondents at each point in the sample. While

we deal with these issues rigorously by using interpolation within estimation, differences in

sample size between individuals still introduce additional noise that can affect the structural

parameters.

5.3 Analysis of disagreement

What is the relative role of each structural shock in explaining overall disagreement across

respondents? We answer this question by analysing the cross-sectional dispersion across re-

spondents, decomposed into items reflecting structural components of the forecaster’s judge-

ment and heterogeneity arising from different model coefficients. We calculate disagreement

as the standard deviation of the individual point forecasts. We exclude the two smallest and

largest values to minimise the effect of outliers, however, our results change only slightly

when we consider all respondents, or we exclude only the smallest and largest value.

Based on equation 16, we deconstruct structural assumptions into contributions associated
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Figure 6: Impulse responses, individual models
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Note: The figure shows impulse response functions for the individual models. Each sub-panel shows the
response of a variable (in the rows) to a shock (in the columns), normalised to increase the variable on the
diagonal by one standard deviation. The dark and light grey areas are the 68% and 90% percentile bands,
respectively. The shocks’ numbering corresponds to: 1 - Unanticipated demand; 2 - Unanticipated supply;
3 - Anticipated demand; 4- Financial; 5 - Cost-push; 6 - Interest rate.
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with each structural shock, εt+j|t,i,l, l = 1, ..., N :

yt+h|t,i =

(
h−1∑
j=0

βj
i

)
ci + βh

i yt +
h∑

j=1

ψh−j,i,1εt+j|t,i,1 + ...+
h∑

j=1

ψh−j,i,Nεt+j|t,i,N (17)

where the coefficient in front of each structural shock assumption at each future horizon

j = 1, ..., h represents the impulse response to structural shocks, such that ψh−j,i,q is the q
th

column of matrix βh−j
i A−1

0,i . Note that all parameters in the equation represent posterior mean

estimates, whereas, for shocks, we use a smoothed posterior mean as our point estimates.

In order to isolate the impact on disagreement of differences in coefficients (or models)

versus differences in expected future shocks (or judgement), we further develop equation 17

as follows, by adding and subtracting terms:

yt+h|t,i =

(
h−1∑
j=0

βj
i

)
ci + βh

i yt +
N∑
k=1

(
h∑

j=1

ψh−j,i,1ε̄t+j|t,k

)
︸ ︷︷ ︸

ỹh,t,i(different coefficients)

+
N∑
k=1

(
h∑

j=1

ψ̄h−j,1εt+j|t,i,k

)
︸ ︷︷ ︸
ε̃
(1,...,N)
h,t,i (different expected shocks)

+
N∑
k=1

(
h∑

j=1

(ψh−j,i,1 − ψ̄h−j,1)(εt+j|t,i,k − ε̄t+j|t,k)

)
︸ ︷︷ ︸

ξh,t,i (“remainder” term)

−
N∑
k=1

(
h∑

j=1

ψ̄h−j,1ε̄t+j|t,k

) (18)

Where terms with subscript “i” refer to the individual respondent and terms with a bar

refer to the average one, with the coefficients in ψ̄ coming from the posterior mean estimates

of the average model. We define disagreement as the cross-sectional variance across respon-

dents and, following Herbst and Winkler (2021), decompose it into empirical cross-sectional

covariances for each component of equation 1828:

V̂i(yt+h|t,i) = Ĉovi(yt+h|t,i, ỹh,t,i) + Ĉovi(yt+h|t,i, ε̃
(1)
h,t,i) + ...

+Ĉovi(yt+h|t,i, ε̃
(N)
h,t,i) + Ĉovi(yt+h|t,i, ξh,t,i)

(19)

We present the cross-sectional dispersion across forecasters as the empirical standard

deviation, as it is a standard way to display disagreement in the literature. Therefore, we

divide both sides of equation 19 by the standard deviation of yt+h|t.

Figure 7 presents historical decompositions of disagreement about the one-year-ahead

forecasts for all variables. Light grey bars represent disagreement arising from differences

in coefficients among respondents; color bars represent disagreement about the contribution

28Note that the last term of equation 18 drops out when taking covariances, since it is constant across
respondents.
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Figure 7: Historical decomposition of one-year-ahead disagreement
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Note: The figure shows the historical decomposition of the one-year-ahead disagreement, calculated as the
standard deviation of the individual point forecasts, excluding the two smallest and largest values. The
shocks’ numbering corresponds to: 1 - Unanticipated demand; 2 - Unanticipated supply; 3 - Anticipated
demand; 4- Financial; 5 - Cost-push; 6 - Interest rate. Shaded areas represent NBER recession periods.
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of each shock, expressed as the covariance between contribution and variable, as explained

above; finally, dark grey bars are the “remainder” term as defined in equation 18.

A first point to note is that disagreement for each variable comes mostly from differences

in judgement, as opposed to heterogeneity in model coefficients. More precisely, the latter

contributes to between 25% and 35% of total disagreement, depending on the variable.

Second, recessions are periods when disagreement spikes for some variables, with the COVID

pandemic an unprecedented example in our sample for GDP, investment, and the AAA

spread. Disagreement about CPI inflation increases during COVID, too, to a lesser extent

than in the period following the GFC. Term spread and T-bill have less discernible patterns

of disagreement, with the one of the latter decreasing markedly in the aftermath of the GFC,

then rising again to about half the pre-crisis levels.

Third, forecasters seem to agree on which shock contributes the most to a variable and

mostly disagree on its size: this is particularly striking for GDP and CPI, where most dis-

agreement is attributed to unanticipated demand and cost-push shock (1 and 5), respectively.

Other variables incorporate disagreement about multiple shocks, namely: for investment,

supply and to a smaller extent unanticipated demand (2 and 1); for the term spread, antic-

ipated demand and interest rate, to a smaller extent the financial shock (3,6 and 4); for the

AAA-spread, mostly the financial shock (4); for the T-bill, mostly the interest rate shock

(6). The unanticipated demand shock is incorporated in most variables’ disagreements dur-

ing the COVID pandemic: forecasters agreed this shock would affect GDP, investment and

CPI inflation in the first quarter of 2021.

The fact that respondents, for the most part, agree on the type of shock affecting the

volatility of each variable may be surprising but can be rationalised by looking at another

exercise, namely the one-year-ahead forecast error variance decomposition for the average

respondent. In the Appendix, we present the decomposition in the upper panel of Figure H.4.

The figure confirms the importance of predominantly one shock for each variable forecast’s

variance, with the exception of the term spread. Our intuition for this finding is that the

underlying model specifications across forecasters, on average, agree that the short-term

forecast variation of one variable is mainly driven by one structural force. As a consequence,

disagreement about expected developments is also guided by one structural innovation. To

fix ideas, one can establish an analytical correspondence between disagreement and forecast

variance decomposition on the basis of our framework with no coefficient heterogeneity. In

such a model, all the variation in a specific forecast would come from the variation in the

shocks. Equation 19 without heterogeneity in coefficients asymptotically reflects a standard

forecast error variance decomposition.

A final, less crucial, point concerns the composition of the dataset on which disagreement
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is calculated. Because of missing observations in the survey, in our estimation we interpolate

data and forecasts via the simulation smoother. This allows to “fill in the gaps” whenever

a respondent did not return the survey for some or all the variables. Without additional

forecast information, the procedure of smoothing presumes zero expected future shocks,

in other words, assumes the respondent is performing an unconditional forecast. So the

smoother recovers an unconditional forecast in case there is no forecast information available,

neither across different horizons nor variables. Alternatively, if the forecast information is

available for some variables, the smoother ensures that some combination of judgement

generates conditional forecasts. Since the interpolated forecasts are unconditional (i.e. have

zero judgement), taking them into account when calculating disagreement would give more

weight to coefficients and less weight to judgement in an artificial way. For this reason, we

deem it more correct to focus on disagreement based only on observed forecasts without

including the smoothed observations (see Figure 7). For comparison, Figure H.9 in the

Appendix shows results using interpolated data. While the main messages are robust when

using the alternative method, there are specific periods where disagreement about coefficients

spikes, for example, for the term spread and the T-bill during the 2001 crisis.

6 Conclusions

We develop a novel framework to structurally interpret the term structure of professional fore-

casts and to analyse their heterogeneity. The framework allows forecasts to be incorporated

into a VAR model in a parsimonious way, i.e. without increasing the number of parame-

ters to be estimated, and it can account for heterogeneity across respondents due to both

different model coefficients and different expected future shocks. In our main specification,

we consider a six-variable VAR model and identify five shocks through stochastic volatility.

The shocks are identified post-estimation, both by looking at the impulse responses and by

analysing their correlation with standard shocks in the literature. We discuss the importance

of these shocks for the SPF forecasts at the average and individual level. For the average

respondent, we find a substantial contribution of judgement about the current quarter, which

often biases unconditional forecasts towards the realisation, thereby improving accuracy. We

decompose the individual forecast variance into a component due to differences in coefficients

(or models) and components due to differences in judgement about each structural shock.

We find that the former has a relatively lower importance, accounting for about one third

of the standard deviation in observed forecasts, while the remaining disagreement is due to

different subjective future shocks. Respondents tend to agree on the most relevant shock

for the forecast of a variable and disagree mainly on its magnitude. Our findings help to
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shed light on the expectation formation process of professional forecasters in an empirical

setting. Moreover, our framework can serve as a powerful tool for policymakers to identify

in real time which shocks professionals expect to affect macroeconomic aggregates and to

what extent they agree on the size and nature of these shocks.
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Online Appendix

A A toy model in companion form

For explanatory purposes, below is the full companion form of a “toy” model with two

variables (y and π), one forecast horizon and one lag..
yt+1|t

πt+1|t

yt

πt

 =


c1

c2

0

0

+


ϕ11 ϕ12 0 0

ϕ21 ϕ22 0 0

1 0 0 0

0 1 0 0



yt|t−1

πt|t−1

yt−1

πt−1

 (A.1)

+


1 0 ϕ11 ϕ12

0 1 ϕ21 ϕ22

0 0 1 0

0 0 0 1



λ1ε

y
t+1|t

λ2ε
π
t+1|t

λ1ε
y
t|t

λ2ε
π
t|t

 (A.2)

Where ϕ11 = A−1
0 β11.

B Estimation algorithm

In this section, we summarise the steps necessary to estimate the model. As mentioned in the

main text, we rely on Bayesian inference, requiring Gibbs sampling across different param-

eters and latent variables to approximate marginal posterior distributions. The algorithm

is in line with previous efforts to estimate models with stochastic volatility (most notably

Cogley & Sargent, 2005). However, we deviate by first, relying on a recent contribution

by Chan et al. (2021) to account for the full parameterisation of the structural matrix and

second, by fully modelling SPF forecasts within the assumed VAR specification - an addition

that introduces a few complexities.

The aim of the algorithm is to obtain draws for parameters β29, A0, ρ, σ
2
u, Sσ2

u,i
, initial

conditions y0 and matrices of latent variables y = [Y1+h|1, ..., YT+h|T ] and λ = [λ1, ..., λT ].

Cycling through the following sampling steps provides the posterior estimates.

29For the sake of brevity, we include the constant, c, in the coefficient vector, β.
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B.1 Interpolating missing observations and drawing initial condi-

tions

p(y, y0|yobs, λ, β, A0, ȳ0, Vȳ0)

This is the interpolation step for missing data y, given observed data, yobs. The normality

of the conditional distribution is preserved given the parameters, other latent variables and

normally distributed priors for initial conditions. We cast our model in a state-space rep-

resentation, see equation 5, such that the interpolated series can then be sampled following

the simulation smoother of Durbin and Koopman (2002) and Jarociński (2015).30

B.2 Drawing coefficients

p(β|y, y0, λ, A0)

We assume that agents produce conditional forecasts according to the following specifica-

tion:

yt+h|t = (1 + β + ...+ βh−1)c+ βhyt + A−1
0 Λt+h|tet+h|t + βA−1

0 Λt+h−1|tet+h−1|t

+...+ βh−1A−1
0 Λt+1|tet+1|t (B.1)

We describe the one lag case, to give an intuition of how we construct the algorithm. This

can easily be extended to a case with more than one lag by writing the expression in com-

panion form. Note that coefficients appear in a non-linear form: they both scale the current

information set and capture the dynamic effects of judgment or shocks expected in future

horizons. For this reason, the conditional distribution of coefficients for this specification

does not have a well-known form from which one can easily draw. To obtain draws, one

could rely on the random-walk Metropolis-Hastings algorithm with a Gaussian as the im-

portance distribution. However, this comes at the cost of lower sampling efficiency. Instead,

we acknowledge that under our assumptions of independent judgement (see equation 4), the

above specification adheres to the iterative dynamics that are usual for VAR frameworks.

This assumption allows us to cast our specification in the following form:

yt+h|t = c+ βyt+h−1|t + A−1
0 Λt+h|tet+h|t, (B.2)

30We also tried to use the novel approach proposed by Chan et al. (2023), but it did not lead to any
efficiency gains in our application.
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Given the assumption of independence, we can iterate the previous equation backwards:

yt+h−1|t = c+ βyt+h−2|t + A−1
0 Λt+h−1|tet+h−1|t,

...

yt+1|t = c+ βyt + A−1
0 Λt+1|tet+1|t

Compared to equation B.1, equation B.2 (and subsequent ones) have nothing in the in-

formation set to predict further horizons, conditional on the forecasts of shorter horizons.

Furthermore, the coefficients enter in the linear form. Both points allow the likelihood to be

expressed in a standard way with a known form for the conditional distribution of coefficients.

We preserve these relationships across forecast horizons, in addition to the autoregressive

process of the observed data in a VAR system by an adequate construction of matrices

representing dependent and independent variables.

Y ′ =
[
yt+h|t yt+h−1|t ... yt+1|t yt

]′
X ′ =

[
yt+h−1|t yt+h−2|t ... yt yt−1

]′
(B.3)

For the Gibbs step, standard sampling techniques for Bayesian VAR regressions can be used.

In this case, we prefer to use the algorithm developed by Chan et al. (2021) and adapted

from Carriero et al. (2019), Carriero et al. (2022) for the case where the structural coefficient

matrix A0 is full. This algorithm samples the reduced form parameters ‘row by row’, reducing

computational complexity and increasing efficiency.

B.3 Drawing the structural impact matrix

p(A0|y, y0, λ, Ā0, VĀ0
)

To draw the impact matrix A0, we apply the algorithm of Chan et al. (2021) for our

case with conditional forecasts in the vector autoregression model. To briefly summarise the

derivation, note that the matrix of forecast errors, U , is expressed as:

U = F1(Ih+1 ⊗ A−1
0 )E (B.4)

where U is Nh∗ × T matrix of forecast errors; F1 = F [1:Nh∗,:] and where h∗ ≡ h + 1 for the

sake of brevity. Note that Chan et al. (2021) propose to take the draws of A0 row by row,

so we rearrange the equation to align the conditional distribution:

U∗ai = vec(E ′[i:N :Nh∗]) (B.5)
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where subscripts and superscripts i denote the row and column of a matrix. Superscript

[i : N : Nh∗] stands for every Nth column of the matrix starting from column i. The matrix

U∗ represents the rearrangement of U ′F ′−1
1 s.t.

U∗ =


(U ′F ′−1

1 )1 ... (U ′F ′−1
1 )N

(U ′F ′−1
1 )N+1 ... (U ′F ′−1

1 )2N

... ... ...

(U ′F ′−1
1 )N(h∗−1)+1 ... (U ′F ′−1

1 )h
∗N

 (B.6)

The vector vec(E ′i:N :Nh∗
) follows a normal distribution with mean zero and variance-covariance

matrix of dimensions Th∗ × Th∗ s.t.

diag(e2λ1,i , ..., e2λT,i , e2λ2|1,i , ..., e2λT+1|T,i , e2λm−1|1,i , ..., e2λT+m|T,i) (B.7)

It can be shown that the conditional of p(ai|a−i, y, y0, λ, Ā0, VĀ0
) is a non-standard distribu-

tion but can be efficiently drawn from using the algorithm suggested by Villani (2009) as a

combination of draws from Gaussian and absolute normal distributions. We refer the reader

to Chan et al. (2021) for more details.

B.4 Drawing the log-volatilities

p(λ|y, y0, A0, λ̄1, Vλ̄1
, ρ, σ2

u)

The algorithm to draw log-volatilities λ is rather standard apart from the fact that we have

to account for the expected volatility. The system of equations, respectively, observation and

transition equations, can be summarised as follows:

log(e2t+j|t,i + c̄) = 2λt+j|t,i + log(ϵt+j|t,i) ∀j = 0, ..., h (B.8)

λt+1,i = ρiλt,i + ut+1,i (B.9)

where c̄ is an offset constant to robustify the estimation due to possible computational errors.

For the sake of simplicity, we assume that the expected volatility follows an unconditional

path, s.t. λt+j|t,i = ρjiλj,i or ut+j|t,i = 0, ∀j = 1, ..., h. This allows us to simplify the system

to one latent variable and h+ 1 observations.

log(e2t+j|t,i + c̄) = 2ρjiλt,i + log(ϵt+j|t,i) ∀j = 0, ..., h (B.10)

λt+1,i = ρiλt,i + ut+1,i (B.11)

To draw latent log-volatilities, we combine the auxiliary mixture sampler of Kim et al.
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(1998) with the precision sampler of Chan and Jeliazkov (2009), ensuring high pace and

little computational burden.

B.5 Drawing the variance for AR process of log-volatilities

p(σ2
u|λ, ρ, vσ̄2

u
, Sσ2

u
)

Since we assume that log-volatilities, λt, are conditionally independent, elements of σ2
u

can be drawn one-by-one from the conditional:

p(σ2
u,i|λi, ρi, v ¯σ2

u,i
, Sσ2

u,i
) ∼ IG

(
v ¯σ2

u,i
+
T

2
, Si

)
(B.12)

Si = Sσ2
u,i

+ 0.5
T∑
t=1

(λi,t − ρiλi,t−1)
2 (B.13)

B.6 Drawing the hierarchical parameter for the variance

p(Sσ2
u
|σ2

u, vσ̄2
u
, θ1, θ2)

The conditional distribution is of known-form, whereas individual elements are indepen-

dent.

p(Sσ2
u,i
|σ2

u,i, vσ̄2
u
, θ1, θ2) ∼ G

(
θ1 + v ¯σ2

u,i
, θ2 + (σ2

u,i)
−1
)

(B.14)

B.7 Drawing the autoregressive coefficient for AR process of log-

volatilities

p(ρ|λ, σ2
u, ρ̄, Vρ̄)

This is a nonstandard conditional distribution. We follow Chan and Hsiao (2014) to

implement an independence-chain Metropolis Hastings with a proposal distribution of the

following form:

p(ρ|λ, σ2
u) ∼ 1(−1<ρ<1)N (ρ̃, Vρ̃) (B.15)

Vρ̃i =

(
1

Vρ̄i
+

∑
λ2i,t−1

σ2
u,i

)−1

ρ̃i =

(∑
λi,tλi,t−1

σ2
u,i

+
ρ̄i
Vρ̄i

)
Vρ̃i (B.16)

The candidate draw, ρ∗i , is accepted with the probability min(1, g(ρ∗i )/g(ρ
j−1
i ), where g(ρi) =

(1− ρ2i )
0.5 exp(− 1

2σ2
u,i
(1− ρ2i )λ

2
1,i). Otherwise, the previous draw is kept, ρ∗i = ρj−1

i .
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C Permutations and multi-modality

Identification by heteroskedasticity raises some problems. The result of Bertsche and Braun

(2022) derivations when using stochastic volatility to identify the structural matrix A0 is that

the matrix is only identified up to sign changes and column permutations. As a result, it can

be difficult to apply statistical inference and assess the uncertainty associated with point

estimates. In this paper, we contribute to the identification literature by exploring and

testing the multimodality of the posterior distributions to detect identification problems.

In particular, we show that the results for our baseline specification are not subject to

identification problems and therefore provide valid statistical inference.

Waggoner and Zha (2003) provide one of the early illustrations related to local identifica-

tion. They show that inadequate sign normalisation for structural VARs identified using re-

cursive restrictions “may confound various statistical and economic interpretations”. Within

our estimation algorithm, which relies on Gibbs sampling, the problem can arise within differ-

ent draws of the structural matrix A0. Different draws may correspond to different orderings

or signs of shocks, even for the correctly specified structural model. Permutations refer to

observationally equivalent models so that under different permutations of structural parame-

ters, the likelihood is equivalent, leading to multimodality of posterior distributions. For this

reason, different Markov Chain Monte Carlo (MCMC) chains may explore different modes

associated with different economic interpretations, invalidating statistical inference.

A possible solution for our setting is to follow Jarocinski (2021), which normalises all draws

by selecting an appropriate permutation that is “close” to the posterior mode. Note that this

only works because the identification strategy to explore non-Gaussianity in their study, or

heteroskedasticity as in ours, ensures that each draw can be mapped into a single structural

model with the same plausible economic meaning. For the alternative identification schemes,

such as exploring equality restrictions, distinct structural economic interpretations may be

embedded in different modes. Bacchiocchi and Kitagawa (2022) suggest that one should not

normalise draws but instead explore and present results with the multimodality associated

with the admissible structural parameters.

Figure C.1 plots kernel densities and selected moments using posterior draws for each

parameter in the structural parameter matrix A−1
0 . Equivalently, every parameter presents

the response of the variable to a structural shock on impulse. In the upper panel, we sum-

marise the posterior distribution for our baseline specification. The visual inspection of

kernel densities does not indicate multimodality, i.e., draws are not permuted. We robus-

tify our conclusion by applying statistical tests for multimodality. In particular, we test

for the null hypothesis that the marginal distribution of each parameter in the structural

A6



matrix is unimodal against the alternative of multimodality. We follow the proposed testing

procedures, powerful to detect the multimodality by Ameijeiras-Alonso et al. (2019) (ACR)

and Cheng and Hall (1998) (CH). Values above each subplot present p-values for the null

hypothesis. All values except one confirm unimodality for conventional significance levels.

Additionally, we explore a multimodality test by Siffer et al. (2018) (FUT) that presents a

unique test detecting multimodality in a multivariate setting. The authors use the rule-of-

thumb threshold that if the test statistic is higher than one the test indicates unimodality.

Once more, we cannot reject the null of unimodality. All test statistics and p-values for

different tests are presented in Table C.1.

To contrast results for the baseline, we also explore whether our procedure can detect

when the local identification would invalidate statistical inference. We find this to hold for

the specification in which we include information only on forecasts up to two periods ahead

and exclude further horizons. We suspect the implausibility of statistical inference by plot-

ting impulse response functions, see C.2, which are excessively wide and not well-behaved. In

the lower panel of Figure C.1, kernel densities present some cases of multimodality, whereas

different statistical tests reject the null of unimodality in a few instances. A plausible ra-

tionale for observing multimodality could be the fact that when including fewer horizons,

the model includes less information. Thus, the posterior distribution is wider than in the

baseline specification and the MCMC can more easily ‘wander’ into posterior distributions

associated with different admissible structural parameters.

To conclude this section, we want to reiterate that our procedure for testing for multi-

modality aims to determine whether posterior draws correspond to one unique structural

model and do not hinder statistical inference. Notably, the procedure does not prevent or

normalise draws but only indicates that the inference might be invalid. A more extensive

discussion of this procedure may deserve a separate study.
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Figure C.1: Posterior densities of A−1
0 and multimodality
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(a) Baseline
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(b) Forecasts till h = 2

Note: The figure plots kernel densities and selected moments using posterior draws for each parameter in
the structural parameter matrix A−1

0 . The top panel shows estimates for the baseline specification with the
full-term structure of forecasts, while the bottom panel shows the specification, including forecasts up to two
periods ahead. The bandwidth parameter for the kernel density is chosen according to Sheather and Jones
(1991). The values above the plot represent p-values for the null hypothesis of unimodality: ‘ACR’ stands
for the test of Ameijeiras-Alonso et al. (2019); ‘CH’ for Cheng and Hall (1998).
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Table C.1: External shocks related to unanticipated demand shock

A−1
0 FUT ACR CH HH

(1,1) 1.452 0.408 0.443 1
(2,1) 1.515 0.595 0.663 1
(3,1) 1.511 0.664 0.722 1
(4,1) 1.476 0.683 0.676 1
(5,1) 1.484 0.731 0.792 1
(6,1) 1.481 0.065* 0.047** 0.926
(1,2) 1.657 0.761 0.848 1
(2,2) 1.474 0.397 0.306 0.998
(3,2) 1.497 0.413 0.461 1
(4,2) 1.53 0.971 0.989 1
(5,2) 1.457 0.602 0.671 1
(6,2) 1.52 0.22 0.27 0.996
(1,3) 1.505 0.759 0.802 1
(2,3) 1.482 0.571 0.596 1
(3,3) 1.458 0.548 0.655 1
(4,3) 1.53 0.216 0.281 0.998
(5,3) 1.51 0.368 0.368 0.999
(6,3) 1.485 0.584 0.593 1
(1,4) 1.443 0.361 0.282 0.993
(2,4) 1.502 0.847 0.886 1
(3,4) 1.484 0.592 0.622 1
(4,4) 1.473 0.741 0.793 1
(5,4) 1.471 0.531 0.56 1
(6,4) 1.485 0.967 0.985 1
(1,5) 1.471 0.908 0.925 1
(2,5) 1.481 0.169 0.209 0.996
(3,5) 1.501 0.655 0.678 1
(4,5) 1.484 0.631 0.688 1
(5,5) 1.465 0.106 0.141 0.989
(6,5) 1.473 0.99 0.99 1
(1,6) 1.487 0.642 0.662 1
(2,6) 1.477 0.449 0.47 1
(3,6) 1.477 0.196 0.22 0.995
(4,6) 1.491 0.807 0.794 1
(5,6) 1.5 0.87 0.909 1
(6,6) 1.458 0.111 0.115 0.977
Joint 40.1

(a) Baseline

A−1
0 FUT ACR CH HH

(1,1) 1.573 0.451 0.496 1
(2,1) 1.506 0.267 0.291 0.997
(3,1) 1.539 0.103 0.127 0.975
(4,1) 1.498 0.426 0.51 1
(5,1) 1.58 0.126 0.151 0.988
(6,1) 1.508 0.22 0.327 0.996
(1,2) 1.648 0*** 0*** 0.077*
(2,2) 1.643 0*** 0*** 0.132
(3,2) 1.611 0.639 0.708 1
(4,2) 2.547 0.028** 0.041** 0.907
(5,2) 2.193 0*** 0*** 0.249
(6,2) 2.449 0*** 0*** 0.357
(1,3) 1.552 0.916 0.935 1
(2,3) 0.797 0*** 0*** 0***
(3,3) 0.286 0*** 0*** 0***
(4,3) 0.131 0*** 0*** 0***
(5,3) 1.53 0.582 0.68 1
(6,3) 1.551 0.04** 0.027** 0.9
(1,4) 1.547 0.89 0.926 1
(2,4) 1.517 0.919 0.912 1
(3,4) 1.46 0.029** 0.022** 0.912
(4,4) 1.617 0.318 0.394 1
(5,4) 1.525 0.395 0.392 1
(6,4) 1.61 0.095* 0.087* 0.981
(1,5) 1.543 0.636 0.685 1
(2,5) 1.543 0.965 0.978 1
(3,5) 1.538 0.952 0.951 1
(4,5) 1.557 0.031** 0.045** 0.941
(5,5) 1.504 0.332 0.345 1
(6,5) 1.551 0.343 0.406 1
(1,6) 1.521 0.508 0.596 1
(2,6) 1.518 0.408 0.449 0.998
(3,6) 1.513 0.257 0.264 0.998
(4,6) 1.529 0.088* 0.106 0.986
(5,6) 1.574 0.653 0.673 1
(6,6) 1.46 0.881 0.918 1
Joint 0.233

(b) Forecasts till h = 2

Note: The table presents test statistics and p-values for different multimodality tests for the marginal and
joint posterior distributions of the structural matrix A−1

0 . Columns corresponds to different tests: the test
statistic of Siffer et al. (2018) (FUT); p-values for the test statistic of Ameijeiras-Alonso et al. (2019) (ACR),
Cheng and Hall (1998) (CH) and Hartigan and Hartigan (1985). Asterisks denote different significance levels
(***=99%, **=95%, *=90%).

A9



Figure C.2: Impulse responses, average model with h = 2
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Note: The figure shows impulse response functions for the model including forecasts for up to two periods
ahead. Each sub-panel shows the response of a variable (in the rows) to a shock (in the columns), normalised
to increase the variable on the diagonal by one unit. The solid black line is the posterior mean as a point
estimate, and the blue lines are the posterior 90% credible sets.

A10



D Efficiency gains: Monte Carlo exercise

We conduct a Monte Carlo exercise to measure the extent to which our model including

the term structure of conditional forecasts provides more efficient estimates than the model

without. For this purpose, we generate S = 1000 simulations following our model’s data

generating process (DGP), as mentioned in Section 2. To mimic our application with SPF

information, we generate forecasts for 5 periods ahead (h = 5) and use a VAR system with

four lags (p = 4). The underlying parameters are different in every simulation. Coefficients,

β, are obtained as follows:31 the constants are drawn independently from a uniform dis-

tribution with boundaries -10 and 10, U(−10, 10); coefficients for own first lags are from

U(0, 1); off-diagonal elements are from U(−0.2, 0.2); elements for other lags, j > 1, are from

an independent normal distribution with mean 0 and standard deviation 0.1/j. The matrix

of structural parameters, A0, is obtained by taking independent draws from U(0.5, 1.5), for

diagonal elements and N (0, 1) for the off-diagonal ones. Stochastic volatility processes are

calibrated such that ρi are drawn from U(0.8, 0.98) and σ2
u,i are from U(0.02, 0.2). For every

simulation, we estimate our model, denoted FHZV AR, that includes the term structure of

conditional forecasts and the V AR specification without any forecasts. The specification for

priors in both models is aligned. We conduct this exercise for cases with different sample

sizes (T = 200 and T = 500) and several variables (N = 3 and N = 6). To investigate

the influence of missing data, we additionally conduct an experiment where around 50% of

forecast information are randomly missing (T = 200 50%).

We summarise efficiency gains by computing the ratio of posterior standard deviations

across models, averaged across simulations s: 1
S

∑
s (σV AR,s/σFHZV AR,s). A value above one

indicates that our proposed model provides more precise estimates. Figure D.1 presents

results for the specification with N = 3 in the upper panel and N = 6 in the lower panel.

The results are as follows. First, the inclusion of additional information in the conditional

forecasts leads to more accurate parameter estimates: for both the three-variable and the

six-variable model, the improvements are on average by a factor of 2.15. Second, the improve-

ment in precision is similar regardless of the sample size. The ratio of standard deviations is

comparable for the two sample sizes T = 200 and T = 500, apart from small discrepancies

that may result from a lower importance of priors in the larger sample. As expected, when

forecast information is missing the efficiency advantage of the model with forecasts decreases

to a factor of 1.58 on average. Finally, the increase in precision is evident for all parame-

ters, to varying degrees for different types. In particular, efficiency is most improved for the

coefficient parameters, β and the structural impact parameters in the A0 matrix.

31We follow the Monte Carlo study by Chan et al. (2021).
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Figure D.1: Efficiency gains
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Note: The figure shows the ratio of posterior standard deviations between models, averaged over Monte
Carlo simulations. Values above one indicate that the model with conditional forecasts is more efficient than
the one without. The top panel shows results for the specification with three endogenous variables (N = 3),
the bottom panel with N = 6. Bar charts show the specification with a sample size of 200 periods, while
diamonds are for a sample of 500 and white triangles for a sample of 200, but 50% of the forecast information
is missing. On the y-axis, different colours are used to indicate different types of parameters in the model.
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E MCMC convergence and efficiency

Figure E.1: Convergence and mixing statistics
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(b) No thinning

Note: The figure shows the inefficiency factors and convergence diagnostic statistics of Geweke (1992) for
different parameters of the model, shown in different colours. The statistics are computed using a single
chain and only the retained draws. The top panel shows information for the baseline specification with
thinning, while the bottom panel shows results without thinning. For the inefficiency factors, the dashed
black line is set at a value of 20, the threshold considered to ensure satisfactory MCMC mixing. For the
Geweke’s CD statistic, the dashed line is at the 10% significance level.
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F External instruments and labelling structural shocks

To provide a structural interpretation of the shocks, we relate shocks wt from the liter-

ature (which may have been estimated from a model, collected using high frequency in-

formation, or otherwise constructed using narrative evidence), to shock estimates, ε̂t =

[exp(ĥ1,t)ê1,t, ..., exp(ĥN,t)êN,t], from our model with heteroskedasticity identification:

wt = ψε̂t + ot ot ∼ N (0, σ2
o) (F.1)

ε̂t ∼ p(εt,Σε,t) (F.2)

where p(m, v) and N (m, v) represent an arbitrary and a normal distribution with mean m

and variance v; ot is an i.i.d. measurement error. We account for the estimation errors

in our structural shocks, ε̂t, by explicitly modelling them using the posterior distribution

p(εt,Σε,t) from the VAR results.32 εt is the mean estimate of the smoothed posterior of the

shock series; Σε,t is a diagonal matrix containing heteroskedasticity estimates. The latter

parameters are considered to be known in the specification to infer parameters ψ and σ2
o .

The specification has a natural explanation in terms of Bayesian updating. Estimates from

the VAR with stochastic volatility provide a posterior p(εt,Σε,t); instruments wt, however,

may or may not provide additional information about unobserved shocks ε̂t, which can be

summarised in a Bayesian updating framework:

p(ε̂t|wt, ψ, σ
2
o , εt,Σε,t) =

p(wt|ε̂t, ψ, σ2
o)p(ε̂t|εt,Σε,t)

p(wt)
(F.3)

Consequently, one can infer the structural interpretation of smoothed shocks, εt, by observing

whether they satisfy the two well-known conditions for a valid instrument. In the frequentist

framework, the conditions include relevance, i.e. ψk ̸= 0, and exogeneity (ψi = 0 for all

i ̸= k). In a related study Schlaak et al. (2023), the authors suggest testing for validity

using the likelihood-ratio test for the unrestricted and restricted models when equation F.1 is

directly incorporated into the VAR system. Instead, we propose a post-estimation procedure

for the test to provide a structural interpretation, similarly to Bertsche and Braun (2022),

but extended to a Bayesian setting.

The posterior kernel can be summarised as follows:

p(ψ, σo|wt) ∝ p(wt|ψ, σo, εt,Σε,t)p(ψ)p(σo) (F.4)

32If the estimation errors are not accounted for, estimates are biased in line with the classical implication
from models with errors in independent variables.
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The likelihood can be obtained after marginalising the latent state:

p(wt|ψ, σo, εt,Σε,t) =

∫
p(wt|ψ, σo, ε̂t)p(ε̂t|εt,Σε,t)dε̂t (F.5)

= Eε̂tp(wt|ψ, σo, ε̂t) (F.6)

≈ N(ψεt, σo + ψΣε,tψ
′) (F.7)

Therefore, the likelihood can be approximated using all draws from the posterior to obtain

the expected value through Monte Carlo integration; see equation F.6. This would consider

the posterior’s intricacies but may be computationally intensive. The alternative is to assume

that the normal distribution describes the posterior well, allowing for a convenient form of

the likelihood, see equation F.7. In our application, we find that approximation errors are

negligible.

Additionally, our specification includes a constant, τ , that was omitted from equation F.1

for the sake of brevity. We include it to capture a non-zero mean of the instrument. We find

that the assumption is innocuous.

Priors are set to be proper but relatively uninformative:

τ, ψ ∼ N (0k, 0.25 · Ik) σo ∼ IG(3, 3) (F.8)

We produce posterior draws using a single-block Metropolis-Hastings algorithm. Given the

small system, the procedure is efficient and converges relatively fast.

The procedure allows determining which candidate shock from the vector εt is correlated

with the suspected out-of-system shock wt. To choose the candidate’s shock, we select the

one with the largest correlation in absolute value, and for which the zero value is not in

the 90% credible set of coefficient ψi. In addition to ensuring that the candidate shock is

relevant, we also explore whether the instrument is exogenous to other structural shocks.

For that purpose, we compute the marginal likelihood following Chib and Jeliazkov (2001)

and conduct a Bayesian model comparison.

G Permutations and cross-sectional comparison

Identification using heteroskedasticity ensures that the structural impact matrix A0 is unique

only up to column permutations and sign changes (Lewis, 2021; Bertsche & Braun, 2022).

This presents some challenges when comparing different models. In our case, we want to

compare estimates from individual-level information. However, the distinct sequence of

draws from Gibbs sampling can lead to the posterior estimates of the structural impact
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matrix being permuted across respondents. For this reason, we introduce a procedure to

detect permutations, which allows the results to be transformed and leads to an adequate

cross-sectional comparison.

To identify permutations, we rely on the idea that current structural shocks should re-

flect rather similar information across respondents, since they are determined by the same

observed data. This contrasts with judgement shocks, which differ across forecasters and

lead to the observation of disagreement. For this reason, structural shocks associated with

observed data should have a common factor structure across agents, where each structural

shock for an agent should be explained by only one factor.33 If we can determine to which

factor the shock is most related, we can label that shock as similar across agents and de-

termine the ordering. In addition, by observing whether the correlation with the factor is

positive or negative, we can also determine the sign of the permutation.

In order to do this, we estimate a static factor model for structural shocks concatenated

across agents:

Êt = WZt +Ot Ot ∼ N (0, σ2
oI) (G.1)

where Êt presents the stacked N number of estimated current structural errors across K

number of agents and for the aggregate specification at time t:

[
ê′agg,1,t|t, ..., ê

′
agg,N,t|t, ê

′
1,1,t|t, ..., ê

′
1,N,t|t, ê

′
2,1,t|t, ..., ê

′
2,N,t|t, ê

′
3,1,t|t, ..., , ê

′
K,N,t|t

]′
(G.2)

W represents the factor loadings of size N(K + 1)× l, where l is the number of factors. Zt

is a vector of length l that represents latent factors. Ot is a vector of measurement errors,

arising either due to sampling errors, as structural shocks are estimated, or idiosyncratic

differences in shocks.

We estimate the factor model using the EM algorithm to account for missing observations

across respondents due to different sample sizes. For the estimation, we use the same number

of factors as the number of variables (l = N). We find factors to robustly explain around

87% of the variation in structural errors. The result confirms that current structural errors

share a common component among respondents due to the same observed data. After the

estimation, we apply the specific rotation to interpret each factor as a common structural

shock. Particularly, we constrain the loading matrix, W , such that only one factor explains

33Our conjecture does not exclude the possibility that expected shocks or judgment have a common factor
structure across respondents, which could theoretically be explained by a common signal received (Herbst
& Winkler, 2021; Fisher et al., n.d.). Instead, we expect the common factor to be “stronger” or to explain
a larger proportion of the variation in the structural shocks associated with the observed data.
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most of the variation in one aggregate structural shock:

W =

[
IN

W̄

]
(G.3)

We also find that results are robust to alternative rotations: e.g. “Quartimax” rotation, that

ensures only one factor explains most of the variation in one estimated structural shock.

Then we label structural shocks for each individual by determining which factors explain

most of the variation. More particularly, we select the factor that loads the most onto the

shock q, s.t. wq,max = max(w2
q,1, w

2
q,2, ..., w

2
q,N). The sign is determined by obtaining the sign

of the loading corresponding to the selected factor, sign(wq,max).

We find the procedure is robust across different specifications or sampling chains. As a

result, the routine allows us to determine column and sign permutations, which we apply

to provide an adequate comparison of impulse responses in Section 5.2 and estimate the

decomposition of disagreement among respondents in Section 5.3.

For the sake of further robustness, we also explore a different way of identifying the

rotations. We look for which individual estimated shock j for individual i is most explained

by the shocks from the aggregate specification by running the following regression line:

êi,j,t|t = β1êagg,1,t|t + ...+ βN êagg,N,t|t + oi,j,t (G.4)

Then we determine permutations by aligning each individual shock with an aggregate compo-

nent whose coefficient, β, is the largest in absolute value. Since all shocks in our permutation

procedures are normalised to having a variance of unity, selecting the largest coefficient is

equivalent to selecting the factor explaining most of the variation. The sign of the permu-

tation is also set by the coefficient: sign(β). We find that this alternative routine provides

almost identical results to our chosen factor procedure explained above.
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H Additional results

Figure H.1: Number of respondents over time
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Note: The figure shows the number of respondents over time that provided their forecasts for a given
variable. Different lines in each panel correspond to different forecast horizons.
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Figure H.2: Estimated stochastic volatility
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Note: The figure shows the posterior mean of stochastic volatility over the sample for each structural
shock. Each panel corresponds to a different shock: 1 - Unanticipated demand; 2 - Unanticipated supply; 3
- Anticipated demand; 4- Financial; 5 - Cost-push; 6 - Interest rate.
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Figure H.3: Disagreement across respondents
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at the 0 and 4 quarters horizons. Disagreement is calculated as the standard deviation of point forecasts
across individuals, excluding the two smallest and largest values. Shaded bars are recessions as defined by
the NBER.
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Figure H.4: Forecast error variance decomposition
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Note: The top panel shows the forecast error variance decomposition for the one-year-ahead forecasts. The
bottom panel shows the unconditional forecast error variance decomposition. The numbers in the legend
correspond to the following shocks: 1 - Unanticipated demand; 2 - Unanticipated supply; 3 - Anticipated
demand; 4- Financial; 5 - Cost-push; 6 - Interest rate.
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Figure H.5: Historical decomposition of CPI inflation and Oil supply events
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Note: The figure shows the historical shock decomposition for the q-o-q CPI inflation rate. The vertical
lines indicate relevant events for the oil market, taken from Känzig (2021). The numbers in the legend
correspond to the following shocks: 1 - Unanticipated demand; 2 - Unanticipated supply; 3 - Anticipated
demand; 4- Financial; 5 - Cost-push; 6 - Interest rate.

A22



Figure H.6: Historical shock decomposition for the observed data
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Note: The figure shows the historical shock decomposition for the observed data in deviation from its
long-run mean. We use the posterior mean of the historical decomposition as our point estimate. The
shaded areas are NBER recessions. The numbers in the legend correspond to the following shocks: 1 -
Unanticipated demand; 2 - Unanticipated supply; 3 - Anticipated demand; 4- Financial; 5 - Cost-push; 6 -
Interest rate.
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Figure H.7: Historical shock and judgement decompositions of nowcasts
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Note: The left panels show the historical shock decomposition for nowcasts in deviation from their long-
run mean. The numbers in the legend correspond to the following shocks: 1 - Unanticipated demand; 2
- Unanticipated supply; 3 - Anticipated demand; 4- Financial; 5 - Cost-push; 6 - Interest rate. The right
panels show a decomposition of the nowcasts into deterministic conditions, current shocks, judgement about
nowcasts and judgement about other horizons. We use the posterior mean of the historical decomposition
as our point estimate. The shaded areas are NBER recessions.
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Figure H.7: Historical shock and judgement decompositions of nowcasts - continued
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See note for Figure H.7 above.
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Figure H.8: Historical shock and judgement decompositions of one-year-ahead forecasts
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Note: The left panels show the historical shock decomposition for the one-year-ahead forecasts in deviation
from their long-run mean. The numbers in the legend correspond to the following shocks: 1 - Unantici-
pated demand; 2 - Unanticipated supply; 3 - Anticipated demand; 4- Financial; 5 - Cost-push; 6 - Interest
rate. The right panels show a decomposition of the forecasts into deterministic conditions, current shocks,
judgement about nowcasts and judgement about other horizons. We use the posterior mean of the historical
decomposition as our point estimate. The shaded areas are NBER recessions.
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Figure H.8: Historical shock and judgement decompositions of one-year-ahead forecasts -
continued
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See note for Figure H.8 above.
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Figure H.9: Historical decomposition of one-year-ahead disagreement from interpolated data
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Note: The figure shows the historical decomposition of the one-year-ahead disagreement from interpolated
data. The numbers in the legend correspond to the following shocks: 1 - Unanticipated demand; 2 -
Unanticipated supply; 3 - Anticipated demand; 4- Financial; 5 - Cost-push; 6 - Interest rate. The shaded
areas are NBER recessions.
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Table H.1: Relation of external shock proxies to estimated structural shocks

Mnemonic Source Type ψ1 ψ2 ψ3 ψ4 ψ5 ψ6 Cand. LRT

LPR20DMASS7 Lagerborg et al. (2022) CONF 3

LPR20MASSFAT7VEGAS Lagerborg et al. (2022) CONF 5

LPR20MASSFATM Lagerborg et al. (2022) CONF 5

LPR20MASSFATMMORE7 Lagerborg et al. (2022) CONF - 4

LPR20MASSVIC7 Lagerborg et al. (2022) CONF - 4

BH2019D Baumeister and Hamilton (2019) D +++ ++ 1 *

BCDZ14 Bassett et al. (2014) F ++ 4

BCDZ14b Bassett et al. (2014) F + 4

GZ12 Gilchrist and Zakraǰsek (2012) F +++ 4

BZP17 Ramey (2016) and Zeev and Pappa (2017) G + ++ 6

FP10 Fisher and Peters (2010) G 2

R11 Ramey (2011) G ++ 5

R11scaled Ramey (2011) and Caldara and Kamps (2017) G 1

RZ18 Ramey and Zubairy (2017) G ++ 5

RZ18scaled Ramey and Zubairy (2017) G 5

BBE05 Bernanke et al. (2005) M +++ 6

BC13 Barakchian and Crowe (2013) M + - - - - 3 ***

BRW19 Bu et al. (2020) M +++ 2

BRW19u Bu et al. (2020) M +++ 2

CH19MCGCS Caldara and Herbst (2019) M 5

CH19MHF Caldara and Herbst (2019) M 6

CH19MRR Caldara and Herbst (2019) M 6

CH19MRRCS Caldara and Herbst (2019) M 4

CH19MRRCSOLD Caldara and Herbst (2019) M 4

DJL23AP Lewis (2019) M 1 *

DJL23FF Lewis (2019) M +++ 6 *

DJL23FG Lewis (2019) M 3

DJL23FI Lewis (2019) M ++ 6

GK15ED2TC Gertler and Karadi (2015) and Ramey (2016) M + +++ 6

GK15ED2VR Gertler and Karadi (2015) and Ramey (2016) M - - +++ 6

GK15ED2ramey Gertler and Karadi (2015) and Ramey (2016) M - - 3

GK15ED3TC Gertler and Karadi (2015) and Ramey (2016) M +++ 6

Continued on next page
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Table H.1 – continued

Mnemonic Source Type ψ1 ψ2 ψ3 ψ4 ψ5 ψ6 Cand. LRT

GK15ED4TC Gertler and Karadi (2015) and Ramey (2016) M ++ 6

GK15FF1VR Gertler and Karadi (2015) and Ramey (2016) M - +++ 6

GK15FF1ramey Gertler and Karadi (2015) and Ramey (2016) M - + 6

GK15FF4TC Gertler and Karadi (2015) and Ramey (2016) M +++ 6

GK15FF4VR Gertler and Karadi (2015) and Ramey (2016) M + - - +++ 6 **

GK15FF4ramey Gertler and Karadi (2015) and Ramey (2016) M 6

GK15MP1TC Gertler and Karadi (2015) and Ramey (2016) M - - +++ 6

GK15MP1VR Gertler and Karadi (2015) and Ramey (2016) M - - +++ 6

JK20CBImedian Jarociński and Karadi (2020) M - - - - - ++ +++ 6 ***

JK20CBImedianm Jarociński and Karadi (2020) M - - - - - ++ +++ 6 ***

JK20CBIpm Jarociński and Karadi (2020) M +++ 6

JK20CBIpmm Jarociński and Karadi (2020) M +++ 6

JK20MPmedian Jarociński and Karadi (2020) M + - - +++ 6 *

JK20MPmedianm Jarociński and Karadi (2020) M + - - +++ 6 *

JK20MPpm Jarociński and Karadi (2020) M - - - +++ 6 ***

JK20MPpmm Jarociński and Karadi (2020) M - - - +++ 6 ***

MAR16IV1 Miranda-Agrippino and Ricco (2021) M ++ 6

MAR16IV5 Miranda-Agrippino and Ricco (2021) M 6

MAR2021CBINFO Miranda-Agrippino and Ricco (2021) M +++ ++ +++ +++ 1 ***

MAR2021FF4 Miranda-Agrippino and Ricco (2021) M - - + 3

MAR2021MPI Miranda-Agrippino and Ricco (2021) M ++ 6

MJ2023u1 Jarocinski (2021) M - - - +++ 6

MJ2023u2 Jarocinski (2021) M - 6

MJ2023u3 Jarocinski (2021) M +++ + ++ - - - - - 1 ***

MJ2023u4 Jarocinski (2021) M - - ++ 5

RR0483 Romer and Romer (2004) and Ramey (2016) M - - - +++ 6 *

RR0483b Romer and Romer (2004) and Ramey (2016) M - - - +++ 6 *

RR04full Romer and Romer (2004) and Wieland (2021) M - - +++ 6 *

RR04orig Romer and Romer (2004) and Wieland (2021) M - - - 4 **

RR04origreg Romer and Romer (2004) and Wieland (2021) M - - ++ 6 *

RR04ramey Romer and Romer (2004) and Ramey (2016) M - - +++ 6 *

RRDUMMY23 Romer and Romer (2023) M 4

RRDUMMYORIG23 Romer and Romer (2023) M 4
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Table H.1 – continued

Mnemonic Source Type ψ1 ψ2 ψ3 ψ4 ψ5 ψ6 Cand. LRT

ACD20ShockC Angeletos et al. (2020) MBC +++ 1 *

ACD20ShockDP Angeletos et al. (2020) MBC +++ ++ 5

ACD20ShockH Angeletos et al. (2020) MBC +++ +++ ++ 1 ***

ACD20ShockI Angeletos et al. (2020) MBC +++ +++ ++ - +++ 1 ***

ACD20ShockR Angeletos et al. (2020) MBC + +++ +++ 6 ***

ACD20ShockSW Angeletos et al. (2020) MBC - - - 1

ACD20ShockTFP Angeletos et al. (2020) MBC - - 2

ACD20ShockU Angeletos et al. (2020) MBC - - - - - - - - + - - 1 ***

ACD20ShockY Angeletos et al. (2020) MBC +++ ++ ++ - - - +++ 1 ***

ACD20ShockYSH Angeletos et al. (2020) MBC +++ - - - 1 **

BH2022E Baumeister (2023) OIL +++ 5

BH2022S Baumeister (2023) OIL - +++ ++ 5 ***

HAM03a Hamilton (2003) and Caldara and Kamps (2017) OIL ++ 5

HAM03b Hamilton (2003) OIL - +++ 5

BH2019OILD Baumeister and Hamilton (2019) OILD - - ++ ++ 5 **

CCI19oild Caldara et al. (2019) OILD - ++ 6

BH2019OILI Baumeister and Hamilton (2019) OILI + ++ 5

BH2019OILS Baumeister and Hamilton (2019) OILS + - - - 5 *

BH2019OILS2 Baumeister and Hamilton (2019) OILS - - - 5

CCI19inst Caldara et al. (2019) OILS - - 5

CCI19oils Caldara et al. (2019) OILS - - - 5

DK21nw Känzig (2021) OILS - - - +++ ++ 5 ***

DK21nwprecovid Känzig (2021) OILS - - +++ ++ 5 **

DK21s Känzig (2021) OILS +++ 5

DK21sprecovid Känzig (2021) OILS +++ 5

LK08a Kilian (2008) OILS + 4

LK08b Kilian (2008) OILS + 1

LK08o Kilian (2008) OILS + 1

LK09 Kilian (2009) OILS + 6

LPW12 Leeper et al. (2013) and Caldara and Kamps (2017) TAX 1

LPW122 Leeper et al. (2013) and Ramey (2016) TAX 3

MR12news Mertens and Ravn (2012) TAX - - - - - - 4 *

MR12unc Mertens and Ravn (2013) TAX - - - - 1
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Table H.1 – continued

Mnemonic Source Type ψ1 ψ2 ψ3 ψ4 ψ5 ψ6 Cand. LRT

MR12unc2 Mertens and Ravn (2013) TAX - - - - 1

MR2013TCI Mertens and Ravn (2019) TAX - 1

MR2013TPI Mertens and Ravn (2019) TAX - - - - 1

MR2013mCI Mertens and Ravn (2019) TAX - 1

MR2013mPI Mertens and Ravn (2019) TAX - - - - - 1 *

RR10endo Romer and Romer (2010) and Ramey (2016) TAX ++ + - - - 4 ***

RR10exo Romer and Romer (2010) and Ramey (2016) TAX - - - - - 1

BFK06 Basu et al. (2006) TECH +++ - 1

BFK06dtfp Basu et al. (2006) TECH +++ - - - +++ 1 ***

BFK06dtfpC Basu et al. (2006) TECH +++ + - - - - +++ 1 ***

BFK06dtfpCutil Basu et al. (2006) TECH +++ - + 1 *

BFK06dtfpI Basu et al. (2006) TECH +++ - +++ 1 ***

BFK06dtfpIutil Basu et al. (2006) TECH - - - 2

BFK06dtfputil Basu et al. (2006) TECH - - 2

BP14 Beaudry and Portier (2014) TECH ++ - - - - - 1 **

BP14tfpnewslr Beaudry and Portier (2014) and Ramey (2016) TECH + - - - - - - 4 ***

BP14tfpnewssr Beaudry and Portier (2014) and Ramey (2016) TECH - - - - - - 3 ***

BS11 Barsky and Sims (2011) TECH - - 5

BZK15ist Ben Zeev and Khan (2015) and Ramey (2016) TECH + +++ 5 *

BZK15istnews Ben Zeev and Khan (2015) and Ramey (2016) TECH +++ - - - 5 **

BZK15tfp Ben Zeev and Khan (2015) and Ramey (2016) TECH +++ - - ++ 1 *

DV22PI Cascaldi-Garcia and Vukotić (2022) TECH + ++ 4

DV22PNS Cascaldi-Garcia and Vukotić (2022) TECH ++ 1

DV22PNSE Cascaldi-Garcia and Vukotić (2022) TECH ++ 1

FORD14 Francis et al. (2014) TECH +++ - - - 2 ***

JPT11ist Justiniano et al. (2011) and Ramey (2016) TECH +++ 5

JPT11mei Justiniano et al. (2011) and Ramey (2016) TECH +++ +++ ++ + +++ 2 ***

JPT11tfp Justiniano et al. (2011) and Ramey (2016) TECH - ++ - - - 5

KO13news07l Kurmann and Otrok (2017) TECH - - - ++ - - - 2 ***

KO13news07s Kurmann and Otrok (2017) TECH - - - +++ - - - - 3 ***

KO13news16l Kurmann and Otrok (2017) TECH + - - - 4 **

KO13news16s Kurmann and Otrok (2017) TECH ++ - - +++ - - - 2 ***

KO13slope07l Kurmann and Otrok (2017) TECH - - - +++ 3 ***
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Table H.1 – continued

Mnemonic Source Type ψ1 ψ2 ψ3 ψ4 ψ5 ψ6 Cand. LRT

KO13slope07s Kurmann and Otrok (2017) TECH - +++ - - - 3 ***

KO13slope16l Kurmann and Otrok (2017) TECH - - - +++ 3 ***

KO13slope16s Kurmann and Otrok (2017) TECH - +++ - - - 3 ***

KS21meanBS Kurmann and Sims (2021) TECH - - - - - - 2 **

KS21meanU Kurmann and Sims (2021) TECH - - - - - - 5 ***

KS21medBS Kurmann and Sims (2021) TECH - - - - - - 2 **

KS21medU Kurmann and Sims (2021) TECH - - - - - - 5 ***

MN15istp Ramey (2016) and Miyamoto and Nguyen (2020) TECH 1

MN15istpn4 Ramey (2016) and Miyamoto and Nguyen (2020) TECH 5

MN15istpn8 Ramey (2016) and Miyamoto and Nguyen (2020) TECH 2

MN15ists Ramey (2016) and Miyamoto and Nguyen (2020) TECH ++ + 1 *

MN15istsn4 Ramey (2016) and Miyamoto and Nguyen (2020) TECH 4

MN15istsn8 Ramey (2016) and Miyamoto and Nguyen (2020) TECH - - 3

MN15tfpp Ramey (2016) and Miyamoto and Nguyen (2020) TECH ++ 6

MN15tfppn4 Ramey (2016) and Miyamoto and Nguyen (2020) TECH 4

MN15tfppn8 Ramey (2016) and Miyamoto and Nguyen (2020) TECH - - + + 5

MN15tfps Ramey (2016) and Miyamoto and Nguyen (2020) TECH +++ + - - 1 *

MN15tfpsn4 Ramey (2016) and Miyamoto and Nguyen (2020) TECH 4

MN15tfpsn8 Ramey (2016) and Miyamoto and Nguyen (2020) TECH - - +++ + 5

SW07prod Smets and Wouters (2007) TECH 3

BBD16 Baker et al. (2016) UNC - - +++ ++ - - 4 **

NB09 Bloom (2009) UNC + +++ 4

NB09FMT Bloom (2009) UNC ++ 4

NB09MMT Bloom (2009) UNC +++ 4

Note: The table presents the shock series, sourced from the literature, that we use to label our structural shocks, as described in section 2.3.1. Each row
depicts a different shock series sourced from a specific study (column “Source”), to which we assign a mnemonic for the sake of brevity (column “Mnemonic”).
In some instances, different estimates in one study attempt to capture the same structural innovation but differ due to assumptions about sample size,
underlying information etc. Column “Shock type” assigns each shock to a different class: “CONF” stands for confidence shocks; “F” - Financial; “G” -
government spending; “M” - monetary; “MBC” - main business cycle à la (Angeletos et al., 2020); “OIL” - oil; “OILD” - oil demand; “OILI” - oil inventory;
“OILS” - oil supply; “TAX” - tax policy; “TECH” - technology; “UNC” - uncertainty. The columns of ψi indicate the sign of the posterior mean of coefficients
obtained by regressing shocks from the literature on our shock estimates. The number of signs denotes different levels of high probability density intervals
that do not include the zero value ( +++ (- - -)=99%, ++(- -)=95%, +(-)=90%). “Cand” is the shock with the highest absolute correlation and “LRT” is
the significance level of the p-value from the likelihood ratio test.
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Figure H.10: Forecast performance gains of SPF versus unconditional forecasts
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Note: The figure shows percentage gains in terms of root mean squared forecast errors (RMSFE) for the
SPF forecasts compared to model-consistent unconditional forecasts: 100(1−RMSESPF /RMSEUC). The
five panels represent different forecast horizons, while the coloured bars represent results using different sub-
periods of forecast errors: “Full” is the full sample; “Post-1992” is the sample from 1992q1; “Excl. NBER
recess.” is the sample without NBER recessions; “Pre-Covid” is the sample until 2019q4.
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I Alternative specifications

Figure I.1: Impulse responses for alternative specifications
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Note: The figure shows impulse response functions for the baseline model and alternative specifications:
“baseline” stands for the baseline specification; “1976q1-2022q2” is the specification with the longer sample;
“1984q2-2019q4” excludes the pandemic period; “Median” uses median SPF responses; “p=2” uses two lags.
Each sub-panel shows the response of a variable (in the rows) to a shock (in the columns). The shocks’
numbering corresponds to: 1 - Unanticipated demand; 2 - Unanticipated supply; 3 - Anticipated demand; 4-
Financial; 5 - Cost-push; 6 - Interest rate. The grey areas are the posterior 90% credible sets for the baseline
specification, while the lines are the posterior means for the baseline and alternative specifications.
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Figure I.2: Estimated stochastic volatility for alternative specifications
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Note: The figure shows the estimated stochastic volatility for each structural shock. Lines in different colours
represent alternative specifications: “baseline” stands for the baseline specification; “1976q1-2022q2” is the
specification with the longer sample; “1984q2-2019q4” excludes the pandemic period; “Median” uses median
SPF responses; “p=2” uses two lags. Each panel corresponds to a different shock: 1 - Unanticipated demand;
2 - Unanticipated supply; 3 - Anticipated demand; 4- Financial; 5 - Cost-push; 6 - Interest rate.
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