DIGITALES ARCHIV

ZBW – Leibniz-Informationszentrum Wirtschaft ZBW – Leibniz Information Centre for Economics

Cortés Ángel, Ariana Paolo; Eratalay, Mustafa Hakan

Book

Deep diving into the S&P 350 Europe Index network and its reaction to COVID-19

Provided in Cooperation with: University of Tartu

Reference: Cortés Ángel, Ariana Paolo/Eratalay, Mustafa Hakan (2021). Deep diving into the S&P 350 Europe Index network and its reaction to COVID-19. Tartu : The University of Tartu FEBA. https://majandus.ut.ee/sites/default/files/mtk/dokumendid/febawb134.pdf.

This Version is available at: http://hdl.handle.net/11159/6545

Kontakt/Contact

ZBW – Leibniz-Informationszentrum Wirtschaft/Leibniz Information Centre for Economics Düsternbrooker Weg 120 24105 Kiel (Germany) E-Mail: *rights[at]zbw.eu* https://www.zbw.eu/

Standard-Nutzungsbedingungen:

Dieses Dokument darf zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden. Sie dürfen dieses Dokument nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, aufführen, vertreiben oder anderweitig nutzen. Sofern für das Dokument eine Open-Content-Lizenz verwendet wurde, so gelten abweichend von diesen Nutzungsbedingungen die in der Lizenz gewährten Nutzungsrechte.

https://savearchive.zbw.eu/termsofuse

Terms of use:

This document may be saved and copied for your personal and scholarly purposes. You are not to copy it for public or commercial purposes, to exhibit the document in public, to perform, distribute or otherwise use the document in public. If the document is made available under a Creative Commons Licence you may exercise further usage rights as specified in the licence.

Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre for Economics University of Tartu Faculty of Social Sciences School of Economics and Business Administration

Deep Diving into the S&P 350 Europe Index Network and Its Reaction to COVID-19

Ariana Paola Cortés Ángel Mustafa Hakan Eratalay

Tartu, 2021

ISSN-L 1406-5967 ISSN 1736-8995 ISBN 978-9985-4-1285-5 (pdf) The University of Tartu FEBA https://majandus.ut.ee/en/research/workingpapers

Deep Diving into the S&P Europe 350 Index Network and Its Reaction to COVID-19

Ariana Paola Cortés Ángel^{[1][2]}, Mustafa Hakan Eratalay^[2]

Abstract: In this paper, we analyse the dynamic partial correlation network of the constituent stocks of S&P Europe 350. We focus on global parameters such as radius, which is rarely used in financial networks literature, and also the diameter and distance parameters. The first two parameters are useful for deducing the force that economic instability should exert to trigger a cascade effect on the network. With these global parameters, we hone the boundaries of the strength that a shock should exert to trigger a cascade effect. In addition, we analysed the homophilic profiles, which is quite new in financial networks literature. We found highly homophilic relationships among companies, considering firms by country and industry. We also calculate the local parameters such as degree, closeness, betweenness, eigenvector, and harmonic centralities to gauge the importance of the companies regarding different aspects, such as the strength of the relationships with their neighbourhood and their location in the network. Finally, we analysed a network substructure by introducing the skeleton concept of a dynamic network. This subnetwork allowed us to study the stability of relations among constituents and detect a significant increase in these stable connections during the Covid-19 pandemic.

Keywords: Financial Networks, Centralities, Homophily, Multivariate GARCH, Networks Connectivity, Gaussian graphical model, Covid-19 **JEL Clasification:** C32, C58, G15.

^[1]Corresponding author: ariana.paola.cortes.angel@ut.ee.

^[2]Department of Economics, University of Tartu, Narva Mnt. 18, 51009, Tartu, Estonia.

The financial support of the GrowInPro project (Horizon 2020, grant agreement No. 822781) is gratefully acknowledged. We are very grateful to Luca Alfieri for very useful comments and suggestions.

1 Introduction

The global financial crisis of 2007-2008 encouraged researchers to adopt an interdisciplinary approach to studying the systemic risk in the financial sector to understand and model it. Caccioli, Barucca, and Kobayashi (2018) delve into this topic, developing a survey that focuses mainly on network analysis. The interest in understanding the topology of financial networks was born to realise its possible reaction when impacted by economic shocks and the possible consequences that these shocks entail.

This paper aims to analyse the topology of the network derived from the interrelationships between the stocks that constitute the S&P Europe 350 index, considering adjusted closing prices from January 2016 to September 2020. This index contains 350 blue-chip companies from 16 developed European countries. These companies can be considered as "too big to fail" and are likely to have the most resilient connections that would survive a crisis. We especially want to know which firms are the most central in a dynamic network setup, how the connectedness of the graph evolves under the influence of the pandemic shock, and determine if the network links follow a homophilic behaviour. To capture the effect of the trends in the world economy on these stock prices, we use the Morgan Stanley Capital International World (MSCI World) index as the common factor.

In general, the network analysis on financial networks has primarily focused on the study of over a handful of graph parameters, like diameter, average path length, and various centrality measures (Anufriev and Panchenko, 2015, Diebold and Yılmaz, 2014, and Kuzubaş, Ömercikoğlu, and Saltoğlu, 2014 to mention some). Two main topics studied in a network are connectivity and centrality. To study different vertex characteristics, we study three centralities (degree, closeness, and betweenness). Regarding connectivity, we focus on two types: network connectivity; that is, its number of edges, and local connectivity of a node, meaning its number of adjacent neighbours.

We use the consistent dynamic conditional correlation model (cDCC-GARCH), and the multivariate model presented by Aielli (2013). Following the same theoretical approach as in Eratalay and Vladimirov (2020) and Anufriev and Panchenko (2015), we obtain the partial correlation network by applying the Gaussian Graphical Model algorithm (GGM). Then we obtain global and local measurements of the network to identify which companies are most sensitive to external changes give the system's structure; for this, we will rely on Demirer et al. (2018), and Kuzubaş, Ömercikoğlu, and Saltoğlu (2014) for the betweenness and closeness centralities.

In addition to the diameter and average path length, we calculate the radius of the partial correlation network; with these complementary measures, we can enhance our understanding of the topology of the network given the following: assuming that a shock has a single node as an entry point from which it will spread throughout the network, the diameter and radius can be interpreted as the minimum force a shock should have to ensure its propagation all over the network in two different scenarios: the diameter, when the entry point is unknown, and the radius, when the entry point can be selected. On the other hand, the average path length shows the average force needed for shock transmission between any pair of vertices.

We perform a homophilic profile, where we measure the tendency of the edges of the network to create bonds with similar nodes; we found a direct relationship between the partial correlations and the proportion of homophilic edges, which helps us get a clearer perspective of the underlying network structure. Homophily is a novel approach since, regardless of being a well-known topic in social sciences, it has been barely mentioned in the financial networks literature, such as Elliott, Hazell, and Georg (2020), and Barigozzi and Brownlees (2019) where it is referred to as similarity. Moreover, based on the daily network pictures, we capture the system's dynamics by introducing the concept of the skeleton of a dynamic network, which may be used as a forecast enhancing tool or interpreted as a shock strength measure. Thanks to the analysis of this new substructure, we found that during the Covid-19 pandemic there was an increase in the number of stable relationships.

To sum up, we studied two kinds of parameters: global (radius, diameter, average distance) and local (degree, closeness, harmonic, betweenness, and eigenvector centralities). Moreover, we developed a homophilic profile by industry and country; we introduce the definition of the skeleton of a dynamic network, which results from collecting the resilient edges over time. This paper focuses on the methodology to obtain and analyse some of the most representative global and local centrality measures of a network, allowing us to map the topology of the network under study. These measures could serve as input in systemic risk studies and could be complemented with more information such as the risk profile of each firm and its balance sheet, among others.

What remains of this work is structured as follows. In Section 2, we make a literature review of Network Analysis and Financial Networks. In Section 3, we describe the data under study. Later, in Section 4, we present the methodology implemented for Financial Econometrics and Network Analysis. In Section 5, we analyse the results, and in Section 6, we conclude.

2 Literature Review

By analysing centralities, central banks can identify Global Systemically Important Institutions (G-SIIs), which can help regulate them, as already suggested in several other studies. For instance, the work of Martinez-Jaramillo et al. (2014) bases a large part of its analysis on the topology of the interbank network, creating a measure of centrality composed of the closeness, betweenness, and the degree centralities (the latter being called strength). Kuzubaş, Ömercikoğlu, and Saltoğlu (2014) take as an example the Turkish crisis that occurred in 2000, and in addition to the degree, closeness, and betweenness centralities, they calculate the Bonacich centrality. These two studies describe the interbank network.

Several more articles develop the centralities, focusing mainly on degree and eigenvector, such as Millington and Niranjan (2020) and Anufriev and Panchenko (2015), or Iori and Mantegna (2018), where average distance is added to their analysis, and Billio et al. (2012), who calculate proximity and eigenvector.

2.1 Network Analysis

During the 1960s and 1970s, several mathematical and statistical tools started to be used by social scientists to get a better understanding of the structure and behaviour of social networks (Milgram, 1967, Zachary, 1977, Killworth and Bernard, 1978). While the statistical tools are used to obtain quantitative results, the mathematical devices borrowed from graph theory allow us to discover and visualise the underlying structure of the studied data.

In the late 20th century and the beginning of the 21st century, with the seminal works made by Albert, Jeong, and Barabási (1999), Faloutsos, Faloutsos, and Faloutsos (1999), and Watts and Strogatz (1998), among others, the above mention set of tools, combined with the growing availability of information to the general public and the increased computational power to analyse big data sets led to the creation of network theory as a discipline on its own. Since then, this type of research was applied to study a wide variety of topics, such as genomics, epidemics, cybersecurity, communication, financial markets, social interactions, linguistics and more (Lewis, 2011, Keeling and Eames, 2005, Solé et al., 2010).

The primary strength of network analysis lies in the fact that it incorporates a multidisciplinary approach that utilises a range of theories, from social sciences, such as economics to exact sciences, such as biology. A great amount of detail about this can be found in Jackson (2011), who suggests that all that is needed for this approach is to identify agents and the relationships that connect them. For instance, using the labour market to understand searching and matching models, or using social networks to analyse human behaviour.

2.2 Financial Networks

The financial network is one example of a complex system, where there are many actors (financial institutions, where mainly interbank connections have been studied) and an uncountable number of interrelations among them. Caccioli, Barucca, and Kobayashi (2018) delve into systemic risk, utilizing network analysis as their primary tool.

The application of network theory to financial networks has shown that high connectivity can produce one of two effects when a disruption to the system occurs – absorption (Allen and Gale, 2000, Freixas, Parigi, and Rochet, 2000) or contagion (Gai and Kapadia, 2010, Elliott, Golub, and Jackson, 2014). If the disruption to the system is minor and within a certain threshold, the connectivity of the network helps to alleviate the shock, which can be interpreted as absorption. However, if the disruption exceeds the threshold, instead of softening the impact, the interconnections augment the spread of it, as shown in Acemoglu, Ozdaglar, and Tahbaz-Salehi (2015).

The relationships in a network can be direct or indirect. One example of a direct network is the interbank market, where the relationship is the trade of currency executed directly by the banks Allen and Babus (2009).

In our case, the relationship is indirect and describes how the behaviour of one company can lead to the behaviour of others in response; as an example, we can imagine that there is a waltz, where the couples are the firms, there are several couples, they may or may not know each other, but they all dance considering the movements of the other couples.

We derive this relationship from the partial correlation matrix. This method has been widely applied and modified; to mention some Eratalay and Vladimirov (2020), Kenett et al. (2010), Anufriev and Panchenko (2015) and Iori and Mantegna (2018) write a compendium of several studies and their different applications, some of them using this same approach, all with the idea of understanding how a network reacts to disruption in greater depth.

Many studies of financial systemic risk based on network theory developed since 2007, consider a worldwide assortment of components, such as in Diebold and Yilmaz (2009), which assesses equity stocks of developed and emerging countries, or Anufriev and Panchenko (2015), considering the Australian market or Diebold and Yilmaz (2015) among US and European contexts.

3 Data

We use the constituent stocks of the S&P Europe 350 index, which is made up of 350 blue-chip companies from 16 different developed European countries. This index provides us with a significant sample of the European stock market, which is why we take it as the basis for this study, which mainly focuses on the methodology of the study of financial networks.

The S&P Europe 350 index components, along with their market capitalizations and tickers, were directly provided by Standard and Poors, with figures from December 2019. We use the provided data to gather the daily adjusted closure price history from January 2014 to October 2020 from Yahoo Finance. We also used the returns from the Morgan Stanley Capital International (MSCI World) for which we collected the data for the same dates and from the same source.

From the raw data received, we synchronised the time periods and removed the series for which there were fewer observations. Also, if a company had preferred and common stocks, we removed the preferred stocks from our list to avoid contamination of the results with the evident strong correlation. After these adjustments, we had the price data of 331 firms from S&P Europe 350. We considered the time period from January 2016 to September 2020 for stocks in the S&P Europe 350 and for the MSCI World index, which gave us 1,202 price observations for each series.

For all firms, we calculated their log-returns and after that we treated the data with a generalised Hampel filter. Using a 20-day moving window, on average 0.42% of the data was identified as outliers, which were replaced by the local medians in the corresponding window. ^[3] Details about this method can be found in Pearson et al. (2015). From this point forward, we use this outlier filtered return data.

The COVID pandemic started to become evident in Europe by the end of February 2020, Plümper and Neumayer (2020), we can observe in Figure 1 a significant increase in the index volatility being a consistent reaction to the pandemic shock. Given that our sample has 331 firms with 1,201 observations each, we use box plots to summarise the descriptive statistics. From Figure 2, we can notice that the returns lie around zero; with a standard deviation of around two. On average, returns are slightly negatively skewed, but for some series the skewnesses are less than minus one, implying that their distributions are highly negatively skewed. The average kurtosis is around nine but with many outliers above 20, suggesting leptokurtic distributions for all series.

^[3]The maximum percentage of outliers was 1.8%, while the median was 0.41%. The percentage was above 1% for only four firms.

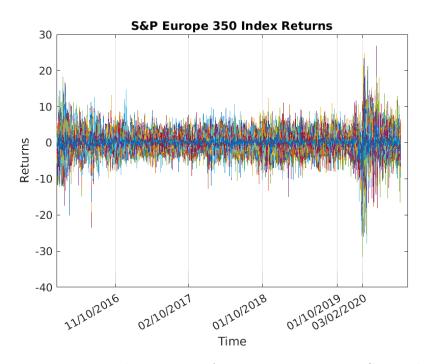


Figure 1: S&P Europe 350 Index Returns from January 2016 to September 2020. By the beginning of March 2020, we can notice a sudden increase in the volatility. *Source:* Authors' calculations.

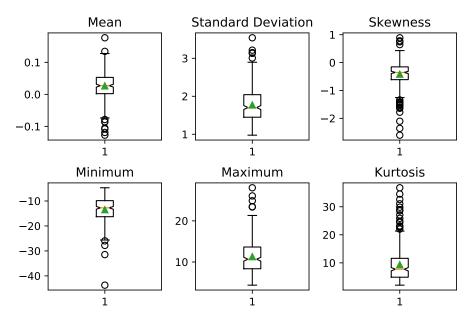


Figure 2: Descriptive statistics of the S&P Europe 350 index returns from January 2016 to September 2020 *Source:* Authors' calculations.

4 Methodology

The methodology will be divided in two main parts, the econometric approach and the network theory approach.

4.1 Econometrical Analysis

The econometric analysis will be based mainly on the work of Eratalay and Vladimirov (2020). Instead of the unobservable factor in their model, we consider the Morgan Stanley Capital International World (MSCI World) index as a common observable factor. ^[4] We include the common observable factor, which otherwise would bring about spurious connections in the network. (See a discussion in Barigozzi and Brownlees, 2019 and Eratalay and Vladimirov, 2020). We chose MSCI World as an indicator of the general trend in the behaviour of developed economies worldwide.

A return series r_t can be modelled as:

$$r_t = \mathbb{E}_t(r_t \mid I_{t-1}) + \sqrt{\mathbb{V}ar_t(r_t \mid I_{t-1})}\varepsilon_t$$
(1)

where $E_t(r_t|I_{t-1})$ is the conditional mean, $Var_t(r_t|I_{t-1})$ is the conditional variance, and the ε_t is the standardised disturbance such that $\varepsilon_t \sim N(0, 1)$. The conditional mean and the conditional variance are functions of the information up to t - 1, denoted by I_{t-1} .

4.1.1 Conditional mean

For modelling the return vector, we will use a vector autoregressive model, VAR(1).

$$r_t = \mu + \mathbf{\Phi} r_{t-1} + \mathbf{\Theta} r_{t-1}^M + \eta_t \tag{2}$$

where μ is a $n \times 1$ column vector representing the intercept; $\mathbf{\Phi}$ and $\mathbf{\Theta}$ are $n \times n$ matrices of parameters of the returns lagged one period from S&P Europe 350 stock returns and the MSCI World index, respectively. In particular $\mathbf{\Theta}$ is a diagonal matrix. For each series i, $\eta_{t,i}$ is the error term represented by a random process with mean zero and variance $h_{t,i}$, such that $\eta_{t,i} = \sqrt{h_{t,i}} \varepsilon_{t,i}$, and $\varepsilon_{t,i}$ are the standardised errors.

^[4]Given the cross-sectional size of our data, the model with an unobservable factor would be very parameter intensive and infeasible.

4.1.2 Conditional variance

Let us denote the conditional mean and the conditional variance of series i as $\mu_{t,i}$ and $h_{t,i}$, respectively. Therefore, the error term $\eta_{t,i}$ can be expressed as:

$$\eta_{t,i} = r_{t,i} - \mu_{t,i} = \sqrt{h_{t,i}} \varepsilon_{t,i}, \text{ where } \eta_{t,i} \sim N(0, h_{t,i})$$
(3)

For each time series i the conditional variance of the error term can be represented as a GARCH(1,1):

$$h_{t+1,i} = \omega_i + \alpha_i (r_{t,i} - \mu_{t,i})^2 + \beta h_{t,i}$$

= $\omega_i + \alpha_i h_{t,i} \varepsilon_{t,i}^2 + \beta_i h_{t,i}$
= $\omega_i + \alpha_i \eta_i^2 + \beta_i h_{t,i}$ (4)

where the parameters $\omega_i > 0$, $\alpha_i \ge 0$, $\beta_i \ge 0$ and $\alpha_i + \beta_i < 1$, hence each $h_{t,i}$ process is stationary.

In the matrix representation, we can write that $r_t \mid I_{t-1} \sim N(\mu_t, \mathbf{H_t})$, and $\varepsilon_t \sim N(0, \mathbf{I}_n)$, with $\mathbf{H}_t = \mathbb{V}ar(r_t \mid I_{t-1}) = \mathbb{V}ar(\eta_t \mid I_{t-1})$ and $r_t = \mu_t + \mathbf{H_t}^{1/2}\varepsilon_t$. Here $\mathbf{H_t}$ is the conditional variance-covariance matrix and it can be decomposed as as:

$$\mathbf{H}_t = \mathbf{D}_t \mathbf{R}_t \mathbf{D}_t \tag{5}$$

$$\mathbf{D}_t = \operatorname{diag}\{\sqrt{h_{t,i}}\}\tag{6}$$

where \mathbf{H}_t depends on \mathbf{R}_t , the conditional correlation matrix, and \mathbf{D}_t , a diagonal matrix of the standard deviations.

4.1.3 Dynamic conditional correlations

In this section we discuss \mathbf{R}_t , the matrix of conditional correlations. Each of its elements is in the interval [-1, 1] and, according to (5), \mathbf{R}_t should be positive definite in order for \mathbf{H}_t to be positive definite as well.

We follow the consistent dynamic conditional correlation (cDCC) model of Aielli (2013):

$$\mathbf{R}_t = \mathbf{Q}_t^{*-1} \mathbf{Q}_t \mathbf{Q}_t^{*-1} \tag{7}$$

$$\mathbf{Q}_{t}^{*-1} = \begin{bmatrix} 1/\sqrt{q_{11t}} & 0 & \dots & 0\\ 0 & 1/\sqrt{q_{22t}} & \dots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \dots & 1/\sqrt{q_{nnt}} \end{bmatrix}$$
(8)

$$\mathbf{Q}_{t} = (1 - \theta - \kappa)\bar{\mathbf{Q}} + \theta\{\mathbf{Q}_{t-1}^{*}\varepsilon_{t-1}\varepsilon_{t-1}^{\prime}\mathbf{Q}_{t-1}^{*}\} + \kappa\mathbf{Q}_{t-1}$$
(9)

where using $\varepsilon_t^* = \mathbf{Q}_t^* \varepsilon_t$ and $\varepsilon_t^{*'} = \varepsilon_t' \mathbf{Q}_t^*$, we can simplify the previous equation:

$$\mathbf{Q}_{t} = (1 - \theta - \kappa)\bar{\mathbf{Q}} + \theta\{\varepsilon_{t-1}^{*}\varepsilon_{t-1}^{*'}\} + \kappa\mathbf{Q}_{t-1}$$
(10)

$$\bar{\mathbf{Q}} = \mathbb{C}ov(\varepsilon_t^* \varepsilon_t^{*'}) = \mathbb{E}(\varepsilon_t^* \varepsilon_t^{*'})$$
(11)

Where $\kappa \geq 0$ and $\theta \geq 0$ are scalars ensuring $\kappa + \theta < 1$, and $\bar{\mathbf{Q}}$ represents the unconditional covariance of the standardised disturbances, also known as the long-run covariance matrix, and for this work it will be replaced by the sample covariance of the residuals ε_t^* . This is called the variance targeting approach. (See Engle, 2002 for details.)

The estimation for the conditional mean, conditional variance and conditional correlation parameters is realised using the three-step estimation following the Eratalay and Vladimirov (2020) path. The resulting quasi-maximum likelihood estimators are consistent and asymptotically normal.^[5]

4.2 Network Analysis

Once we have the conditional correlation matrix, we compute the partial correlation matrix using the GGM algorithm. From this partial correlation matrix, we construct our network, where each vertex will represent a firm, and the strength of the correlation between them will be represented by edges.

It should be noted that the range of partial correlations is [-1, 1]; that is, there are negative and positive values, leading to data distortion or data loss in some instances (e.g., when adding values). For this reason, we take into account the following cases throughout this work:

• Net data, the original partial correlation values, positive and negative.

^[5]Discussion and examples of such three step estimation can also be found in Bauwens, Laurent, and Rombouts (2006), Carnero and Eratalay (2014), Almeida, Hotta, and Ruiz (2018).

- Absolute data; that is, the absolute value of original partial correlation.
- Positive data; that is, only positive values within the partial correlation.

In addition, each partial correlation matrix will also be a symmetric arrangement, and it will correspond to the adjacency matrix of its respective network. We will consider an edge in all the cases except when $a_{ij} = 0$, which means that there is not a linear interdependence among i and j.

Formally, a graph or network, denoted by G, is an ordered pair of disjoint sets (V(G), E(G)), where V(G) is a non-empty set of vertices or nodes, and E(G) is the set of edges or links, where each edge is an unordered pair of distinct vertices $\{i, j\}$ simply denoted as $ij^{[6]}$. Whenever two nodes i and j form a link ij, it is said that they are adjacent with each other, and that they are neighbors.

The simplest parameters of a network G are its number of vertices, called the *order* of G and denoted by N, and its number of edges, called the *size* of G and denoted by m(G).

The most usual way to visually represent a graph is a diagram where each node is represented by a point or small circle and an edge is represented by a line that connects its end-vertices without crossing over any other vertex. Any unweighted graph of N vertices can be represented by a $N \times N$ matrix **A**, called its *adjacency matrix*, where the entry a_{ij} of **A** is equal to 1 if there is an edge between the nodes i and j, or otherwise $a_{ij} = 0$.

When modelling some practical problems, we could assign a real number w(ij) to every link ij, representing its $weight^{[7]}$. In such a case, graph G together with the collection of weights on its edges is called a *weighted graph*, and we can add this extra information into the adjacency matrix of G, so instead of 0's and 1's we have that $a_{ij} = w(ij)$. This allows us to present in the adjacency matrix not only the existence of a relation between the end vertices of a link, but also take into account some characteristic that allows us to quantitatively differentiate between links, depending on the context.

In fact there is a one-to-one correspondence between symmetric matrices and weighted graphs, which allows us to define a network from any such matrix. In our case, the partial correlation matrices will play the role of the adjacency matrices in our graphs, where its values represent how close the co-movement of two firms are after controlling for the correlations with other firms, and how similar their behaviour over time^[8].

^[6]Although edges that go from one vertex to itself (called *loops*) can be defined, they have no useful interpretation within the scope of this study.

^[7]For instance, such values could represent the cost of communicating or the distance between two locations, or the flow capacity in a transportation network, or the strength of the relationship between the elements etc.

^[8]Notice that, since the adjacency matrix is symmetrical, we cannot infer any causality within the network. Rather it presents the contemporaneous reactions of stock returns to different financial or economic shocks.

This way, the weight w(ij) of the link ij will be equal to the partial correlation between the two corresponding firms.

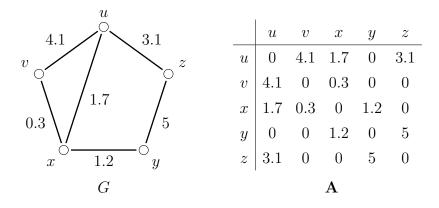


Figure 3: Weighted graph G and its adjacency matrix \mathbf{A}

In addition, in any network, a *path* between vertices i and j is a sequence of distinct vertices x_0, x_1, \ldots, x_k , where $i = x_0$ and $j = x_k$, such that x_i and x_{i+1} form an edge in the network. For unweighted graphs the integer k represents the *length* of such a path; that is, the number of edges contained in the path, while for weighted networks the length of the path is the sum of the weight of its edges. Any shortest path connecting i and j is called a *geodesic* and its length is called the *distance* between its end vertices, denoted by d(i, j). In other words, the distance between two vertices is the minimum length that separates one node from the other. If there is no path connecting two nodes, the distance between them is defined as infinite.

Before continuing, we first need to highlight an important aspect of a *distance* metric. Distance is a value that represents how closely related two objects are in the following way: the lower the value, the closer those objects are^[9]. In contrast, the higher the partial correlation between two firms, the more related they are. Therefore, it is necessary to reverse the order of the partial correlations so the respective new values can be handled like a proper distance metric (Opsahl, Agneessens, and Skvoretz, 2010), where lower values correspond to closeness. For this reason, we will use the inverse of the weight for each link whenever we calculate lengths and distances; in other words, a new weight $w^*(ij) = [w(ij)]^{-1}$ is assigned to each edge when computing any distance-related measure in the network.

From here, three relevant graph parameters are directly derived. First, the *average path* length of graph G, denoted by $\overline{d}(G)$, is defined as the average distance between every pair

^[9]To get into the mathematical theory behind metric spaces, please see Willard (2012).

of nodes in the network; that is,

$$\overline{d}(G) = \frac{1}{\binom{N}{2}} \sum_{i \neq j} d(i, j).$$
(12)

Second, the *radius* of G is the minimum length k such that there is a node whose distance to any other node is at most k, and is denoted by rad(G). And, finally the *diameter* of G, denoted by diam(G), is the maximum distance between any two nodes in the graph. Clearly $rad(G) \leq diam(G)$ and $\overline{d}(G) \leq diam(G)^{[10]}$ hold.

The radius and diameter tell us the minimum and maximum distance respectively that we expect to cover from one random node to reach all the other nodes. In other words, they help us set boundaries that measure the distance a shock should transit to propagate over the entire network despite its starting point.

It is worth mentioning that there are some graphs on which a proper distance can not be defined. When defining a distance on a network we are implicitly looking at an optimization problem where we want to find the shortest or cheapest way to move between any pair of nodes. We are guaranteed to find a solution to this problem and define a distance provided that all weights assigned to the edges are positive.

Unfortunately, when dealing with negative weights, this task cannot be fulfilled whenever there is a *negative cycle*, which is a sequence of distinct vertices $C = x_1, x_2, \ldots, x_k$ such that every pair of consecutive nodes form an edge and x_1x_k is also an edge, and w(C) < 0. In such a case, the minimization problem has no solution since any path connected to this negative cycle can become cheaper and cheaper by walking inside the negative cycle and looping indefinitely. On the bright side, despite the fact that some algorithms (like Dijkstra's) are not designed to handle negative weights and fall into an infinite loop, there are some that can determine if there is any negative cycle, namely Bellman-Ford's algorithm (Wu and Chao, 2004).

4.3 Centralities

Centrality measures are tools that allow us to quantify the importance or influence that a vertex has over the network as a whole or in a locally delimited region.

For unweighted graphs, the *degree centrality* of vertex *i*, denoted by $C_D(i)$, is the number of neighbours that such a node has, while for weighted graphs the degree centrality of *i* is the sum of the weights of all the edges incident to $i^{[11]}$:

^[10]The radius and average path length cannot be related to an inequality, since there are graphs whose radius is greater than, or less than, or equal to the average path length. See Figure 8.

^[11]Graph theorists refer to the degree centrality in unweighted graphs simply as *degree*, and in weighted graphs as the *weight* of the vertex.

$$C_D(i) = \sum_j w(ij). \tag{13}$$

This measure evaluates how strong the local connectivity or influence of each node individually is.

The *Closeness centrality* of a node is defined as the inverse of the sum of its distances to all other nodes in the network; that is:

$$C_C(i) = \left[\sum_{j \neq i} d(i, j)\right]^{-1} = \frac{1}{\sum_{j \neq i} d(i, j)}.$$
 (14)

Since this value is at most equal to $\frac{1}{N-1}$, then the normalised closeness centrality of the node i is

$$C_C^*(i) = (N-1)C_C(i).$$
(15)

On the same note, the *harmonic centrality* of a vertex is defined as

$$C_H(i) = \sum_{j \neq i} \frac{1}{d(i,j)},$$
 (16)

where 1/d(i, j) = 0 if the distance between *i* and *j* is infinite. The normalized harmonic centrality of a node is

$$C_H^*(i) = \frac{1}{N-1} C_H(i).$$
(17)

Both closeness and harmonic centralities measure how close a node is to all remaining nodes and have quite similar behaviour. The main difference between them is that closeness centrality is not defined for disconnected graphs while harmonic centrality is. Both normalised versions lie in the real interval [0, 1], where the closer these values are to 1, the closer the respective vertex is to the others.

Alternatively, the *betweenness centrality* of a node is defined as

$$C_B(i) = \sum_{s \neq i \neq t} \frac{\sigma_{st}(i)}{\sigma_{st}},\tag{18}$$

where σ_{st} denotes the number of distinct geodesics from s to t, and $\sigma_{st}(i)$ is the number of

those geodesics that contain node *i*. The normalized betweenness centrality of a node is

$$C_B^*(i) = \frac{2}{(N-1)(N-2)} C_B(i).$$
(19)

In this case, we measure the importance of node i given its location within the topology of the network. In a sense, we are quantifying how essential i is to the connectivity of any pair of the remaining nodes *i.e.* if i acts (or not) as a bridge that connects the other members of the graph.

Given the adjacency matrix of the network, \mathbf{A} , and its largest eigenvalue, λ , the *eigen*vector centrality of vertex *i*, denoted as $C_E(i)$, is the *i*-th entry of the eigenvector \mathbf{x} , which is the unique solution to equation

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$$

such that x has only positive entries and $xx^{\top} = 1$. Hence $C_E(i) = x_i$, where $\mathbf{x}^{\top} = (x_1 \ x_2 \ \cdots \ x_N)$. According to eigenvector centrality, a node is important in the network if its neighbours are important.

4.4 Homophily

When analysing a network, one can wonder if certain attributes of the vertices, or their combination, play a role in the existence of edges or the lack thereof within the network. For instance, in social networks, friendships generally tend to be established between people with similar characteristics (gender, age, beliefs, spoken language, etc). By contrast, couples are prone to form between persons of the opposite gender on a dance floor. We can detect such behaviour by measuring what is called *homophily*: to assess if there is a bias (in favour or against) on the number of links between nodes with similar characteristics.

To measure any network's bias in the distribution of edges towards one or more regions, we have to compare the relative number of edges inside such regions against the whole graph. Given the network G, and X_1, X_2, \ldots, X_k disjoint subsets of vertices with size n_1, n_2, \ldots, n_k respectively, we first compute the maximum possible number of edges such that both of its ends are in the same subset X_i , which is $\binom{n_i}{2}$ for each i. Then, we sum all of these values and divide the result by the maximum number of edges of the whole network; that is, $\binom{N}{2}$, this quotient is called the *baseline homophily ratio* of the network G and is denoted by $hr^*(G)$, in other words:

 $^{^{[11]}}$ The existence of such a solution is guaranteed by the Perron–Frobenius Theorem, see Horn and Johnson (2012)

$$hr^*(G) = \binom{N}{2}^{-1} \sum_{i=1}^k \binom{n_i}{2} = \sum_{i=1}^k \frac{n_i(n_i-1)}{N(N-1)}.$$
 (20)

Later, we compute the homophily ratio of network G, denoted by hr(G), which is the quotient of the total number of edges in the network whose ends are both in the same subset X_i to the total number of edges in the network; that is:

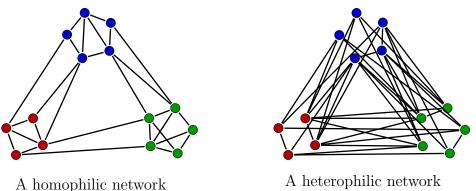
$$hr(G) = \sum_{i=1}^{k} \frac{m_i}{m(G)},$$
 (21)

where m_i is the number of links with both ends in X_i .

When a network is constructed in such a way that each link has the same probability of forming despite the attributes of its end vertices, it is fair to expect that both ratios would be pretty close ^[12]. So, whenever the homophily ratio is significantly greater than its baseline, then G is called *homophilic*, and when it is significantly lower it is said that G is *heterophilic*^[13]. For example, in Figure 4 we can see two networks with opposite homophilic behaviour. In both cases, the subsets of vertices considered are the same and coloured red, blue, and green, respectively, so the baseline homophily is equal to 2/7 = 0.29 for the two networks. On the other hand, the homophily ratios are 5/7 = 0.71 and 3/19 = 0.16 for the left and right networks, respectively. In other words, for the network on the left side, the nodes tend to create links within the groups, while in the network on the right side, this tendency occurs between nodes of different groups.

^[12]Clearly both will differ, so a statistical significance test is often used to quantify how significant their difference is. In our case, we will not use such a test since we will focus on how the difference of the homophily ratios is related to the strength of the relations of the network by considering a sequence of increasing cut-offs to the weight of the edges.

^[13]Sometimes referred as *inversed homophily* (Easley and Kleinberg (2010)).



A heterophilic network

Figure 4: Examples of homophilic and heterophilic networks. In both cases three subsets of vertices are considered and marked with different colors.

4.5**Network Skeleton**

To better understand and analyse a complex system, we often use different networks to represent the state of the system at different points in time, so at the end, we have a collection of networks that enable us to study the evolution of the system over time. Taking that into account, we define *dynamic network* as an ordered sequence of networks defined over the same set of vertices^[14]. When working with weighted networks, we can interpret the weight of each link in a given moment as the strength of the relationship it represents at that particular point in time, and no matter how strong, some of these relations tend to appear and disappear over time. In contrast, another critical aspect to consider about any link is its resilience which does not consider its weight; instead, we are looking for edges whose presence is constant over time, leading us to the following definitions.

^[14]In general, the number of vertices is not set from the beginning since vertices can pop in and out of existence depending on the analysed phenomenon; in our case, the set is fixed as we consider the same collection of firms for the whole period under study.

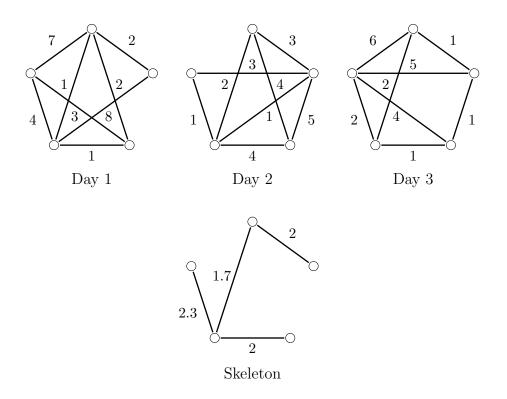


Figure 5: Skeleton of a dynamic network.

In a dynamic network, an edge is *resilient* if it appears in the network at every point during the studied period; that is, in every network of the sequence. The set containing all resilient edges and their corresponding vertices forming a network is called the *skeleton* of its respective dynamic network. When dealing with weighted networks, we define the weight of each edge in the skeleton as the mean of the corresponding weights in the dynamic network sequence. Figure 5 shows a dynamic network sequence labelled by day, and the respective network skeleton. The weights of the edges are calculated as explained above.

5 Results and Analysis

From the cDCC-GARCH model, and after applying the GGM, we obtained partial correlation matrices related to 1,201 days. From here, we can construct 1,201 individual networks, one per day; this grants us a broader scope for depicting the behaviour of the dynamic network over time. In addition, we analysed the period around the Covid-19 pandemic, where we considered four stages, Sans-Covid, Pre-Covid, During-Covid and Post-Covid. The corresponding periods are from January 2016 to October 2019, November 2019 to February 2020, March to June 2020, and July to September 2020, which throughout this paper we will refer to as Sans, Pre, Dur, and Post, respectively.

For a better visualization, understanding and interpretation of each network, we set the

partial correlations between (-0.0558,0.0558) equal to zero. The cutoff value 0.0558 corresponds to a 10% confidence level in a Fisher's test for the significance of partial correlations. (See Fisher et al., 1924).

While calculating the distances in the network, we encountered negative cycles when using the net data, which makes it impossible to measure distances. To avoid these negative cycles, it is necessary to consider only positive and absolute weights for calculating any distance-related parameter (radius, diameter, average distance, betweenness, closeness, and harmonic centralities).

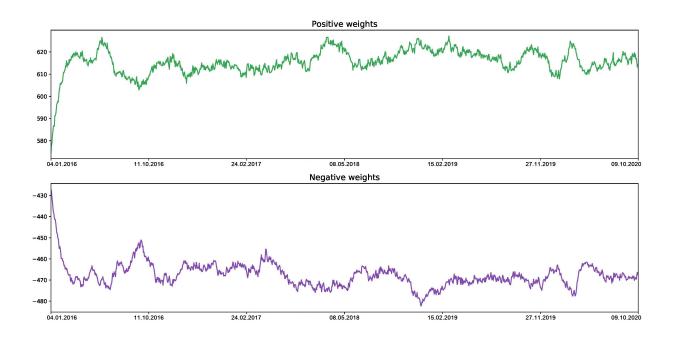


Figure 6: Weights of Positive and Negative Edges. Source: Authors' calculations.

5.1 Global Measures

A first glimpse into the network structure can be made by analysing the number of edges and their weights (Table 1). Over the 1,201 days, the mean number of edges in the network was 13,227 and always stayed between 22.6% and 24.7% of the total possible edges (54,615).

	Mean	Minimum	Maximum
Positive edges	7245.7	6818	7397
Negative edges	5981.8	5547	6145
Total edges	13227.5	12365	13504
Normalised total edges	0.242	0.226	0.247
Positive weights	615.6	574.6	627.2
Negative weights	-467.7	-482.3	-427.1
Total (absolute) weights	1083.3	1001.7	1107.7
% Positive edges	54.8	54.2	55.341
% Positive weight	56.8	56.4	57.443

Table 1:	Edge	weight	and	edge	count
----------	------	--------	-----	------	-------

Notes: Number of edges and their aggregated weight by type, positive and negative. *Source:* Authors' calculations.

It is worth noticing that the number of positive weighted edges against the total is remarkably stable since it remained around the 54.7% during the whole period, deviating by no more than 0.57%, which implies that the numbers of negative and positive edges are closely related. This relation extends to their weights, where positive edges represent 56.8% with a maximum deviation of 0.62%. The negative and positive edges almost behave like a mirror of each other, as shown in Figure 6 where we plotted the aggregate weights against time.

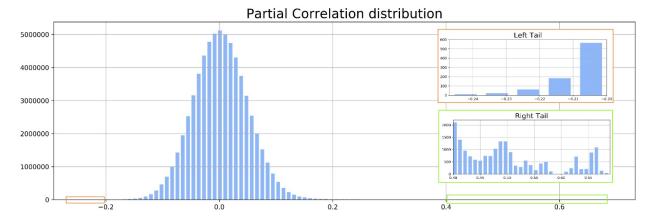


Figure 7: Partial correlation distribution. On the right side, we can see subfigures showing a zoom of the tails distribution. Above, the left tail, where the maximum negative value is -0.24; and below, the right tail, with the maximum positive value of 0.68 *Source:* Authors' calculations.

In Figure 7, we can observe that almost half of the relations in each network are negative; in fact, the maximum magnitude is -0.24. The proportion of negative weights affects the net weights since they counterweight the strength of instability phenomena. Moreover, Figure 9 shows how the positive weights and the absolute value of the weights have similar behaviour, just transferred to a different scale.

On the other hand, we can observe that before the beginning of the Pre period there is a meaningful shortage in the average path length. However, this decline was gradual since May 2018 and reached its lowest value in February 2019. Again, in the Dur period, there is a sudden increase followed by a sudden decay in the length of the shortest path, as shown in Figures 10 and 11. This behaviour suggests that although there was no increase in connectedness, there was an inconstancy alternation in the intensity of existing relationships. In the network of positive values, we do not find a visible change in the behaviour of the radius and diameter over time. In the network of absolute values, specifically the radius, a more pronounced peak is perceived just inside the Dur dates.

On average, the positive and absolute networks have average distance, radius, and diameter of 16.7, 20.8, and 25.8, and 18.5, 23.3, and 29.2, respectively. We notice in Table 2 that the radius is greater than the average distance in every case. This is important given that the radius is the minimum distance that needs to be travelled from a particular vertex to cover the network. Therefore, for this network, we need the radius and diameter to determine boundaries. In addition to the average distance, these parameters give us a broader description of the network's topology.

Network	Parameter	Mean	Min.	Max.
Pos	$\overline{d}(G)$	18.53	18.36	21.66
	$\operatorname{rad}(G)$	23.33	22.29	27.53
	$\operatorname{diam}(G)$	29.22	27.97	37.17
Abs	$\overline{d}(G)$	16.65	16.51	18.9
	$\operatorname{rad}(G)$	20.83	19.69	24.30
	$\operatorname{diam}(G)$	25.79	24.74	30.73

Table 2:Global Measures

Notes: Positive and absolute network global parameters for 2016-2020. *Source:* Authors' calculations.

	Industry		Cou	intry
Centrality	Max.	Code	Max.	Code
C_E^{abs}	0.061	BLD	0.058	ES
C_E^+	0.060	BVG	0.059	\mathbf{ES}
C_D^{net}	1.273	THQ	1.146	\mathbf{PT}
C_D^{abs}	7.278	REX	6.932	\mathbf{ES}
C_D^+	4.070	THQ	3.977	\mathbf{ES}
C_C^{abs}	0.062	ALU	0.061	CH
C_C^+	0.057	COM	0.055	\mathbf{ES}
C_H^{abs}	21.98	SEM	21.34	\mathbf{ES}
C_H^+	20.24	SEM	19.34	\mathbf{ES}
C_B^{abs}	0.005	FRP	0.004	\mathbf{FI}
C_B^+	0.006	FRP	0.004	BE

Table 3: Top 1 centralities, by industry and country

Notes: Top 1 average centralities by industry and country from 2016-2020. *Source:* Authors' calculations.

5.2 Local Measures

To analyse the centralities of the dynamic networks (with positive and absolute weights), we took as a basis the average centrality per day of the degree, closeness, harmonic, betweenness, and eigenvector^[15] centralities. In the case of degree centrality, we also calculated the net value.

We considered the mean of each centrality measure by industry, obtaining eleven centrality measures for each industry. The highest of each of the centrality measures constitutes the top 1 highest centrality measures by industry. We used an equal treatment to calculate the top 1 highest centrality measures by country. Of the top 1 with highest centralities by industry, shown in Table 3, we noticed that three industries stand out: the Computers & Peripherals and Office Electronics (THQ) for net and positive degree centralities; the Semiconductors & Semiconductor Equipment (SEM) in both harmonic centralities; and Paper & Forest Products industries (FRP) in both betweenness centralities.

In the case of the top 1 by country, in Table 3, Spain excels for seven centrality measures $(C_E^{abs}, C_E^+, C_D^{abs}, C_D^{pos}, C_C^+, C_H^{abs} \text{ and } C_H^+)$, representing 7/11 of the firms with the highest centralities.

^[15]The obtained net partial correlation matrices with cut-off are not positive definite for all periods, and the obtained eigenvector centralities present positive and negative values, which does not allow us to rank the firms according to their influence on the network.

Considering the positive and absolute networks, from the Top 20 of the highest centralities^[16], only the sixth and seventh firms, respectively, transmitted simultaneously positive and negative effects, please see Table 4. And from this only three, STERV.HE, CABK.MC and SSE.L, appear in the eleven tables simultaneously.

		Co	ode	%Mkt.					
	Tickers	Ind.	Ctry.	Cap	C_C	C_H	C_E	C_B	C_D
Abs	CFR.SW	TEX	CH	0.395	0.067	23.896	0.073	0.01	8.583
	BBVA.MC	BNK	\mathbf{ES}	0.359	0.066	23.213	0.069	0.007	8.277
	CABK.MC	BNK	\mathbf{ES}	0.181	0.066	23.422	0.071	0.01	8.606
	SSE.L	ELC	GB	0.19	0.066	22.985	0.074	0.007	8.700
	UPM.HE	FRP	\mathbf{FI}	0.178	0.065	23.179	0.067	0.008	7.963
	STERV.HE	FRP	\mathbf{FI}	0.086	0.065	23.182	0.072	0.008	8.689
	TUI1.DE	TRT	DE	0.072	0.064	22.513	0.072	0.006	8.696
	HNR1.DE	INS	DE	0.225	0.064	22.484	0.066	0.006	7.886
	DGE.L	BVG	GB	1.052	0.064	22.549	0.069	0.006	8.272
Pos	BBVA.MC	BNK	ES	0.359	0.06	21.361	0.069	0.01	4.6415
	STERV.HE	FRP	\mathbf{FI}	0.086	0.06	21.394	0.075	0.012	5.120
	CABK.MC	BNK	\mathbf{ES}	0.181	0.06	21.112	0.074	0.011	5.082
	CFR.SW	TEX	CH	0.395	0.06	21.306	0.071	0.01	4.778
	SSE.L	ELC	GB	0.19	0.059	20.891	0.076	0.01	5.080
	INVE-B.ST	FBN	SE	0.24	0.058	20.363	0.07	0.009	4.799
	HNR1.DE	INS	DE	0.225	0.058	20.536	0.067	0.008	4.541

 Table 4: Simultaneous effects of centralities in the Top 20

Notes: Most relevant centralities simultaneously for positive and absolute values, respectively. Source: Authors' calculations.

Taking into account the market capitalization by industry, the twelve most capitalised industries represent 59.8% and constitute 45.9% of the firms (Table 26). On the other hand considering it by country, United Kingdom, France, Switzerland, and Germany represent 70.7% of market capitalization and host 62.2% of the firms (Table 30). We can notice that in both partitions, the countries or industries with the highest centralities are not precisely the most capitalised.

On the other hand, when analysing the network's connectedness again by its constituents, the United Kingdom's connections remained unaffected in their number and their strength by the effect of the pandemic. France and Germany have a slight increase in number and

^[16]The comprehensive Top 20 highest centralities are in Tables: 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, and 25.

strength of connections in the Pre and Dur periods. Austria was the country which strengthened its relations the most, although it has only one connection. We present these results in Table 31.

In addition, we observe in Table 31 that all but two countries, Ireland and Luxembourg, have a standardised number of edges greater than the average per day for the whole network, 24.2%. This is a clear indication of homophilic behaviour. Therefore, we reviewed the number of connections between industries, please see Table 32. We took 12 firms, representing 50% of the index constituents, and we noticed the same behaviour.

5.3 Homophily

To generate the homophily profile, we established an increasing sequence of cut-offs to obtain the links that represent the stronger relations between firms. It is worth mentioning that those cut-offs are applied to the absolute value of the edge weight. For instance, two links with weight 0.4 and -0.4 represent equally strong relations, but not of the same kind. Since to calculate the homophilic ratio and profile, we only take into account the magnitude of the links, regarding the homophilic representation, the net and absolute networks are the same, regardless of the subsets of nodes considered. Moreover, we know that the partial correlations are in the interval [-0.24, 0.68]; therefore, the positive network will also be the same as the net and absolute ones for values greater than |-0.24|. Also, we studied homophily over two distinct partitions of the vertex set of the network: by country and by industry. In both cases, we calculated the homophily ratio for the 1,201 days of period.

Dividing the firms by country, we obtain a homophily baseline of 0.125 and the homophily ratio of the networks exhibited in Table 5. It is clear not only that each homophily index exceeds the baseline, but the homophily index is higher in each network, under stronger edges. Hence, once we reach a cut-off of 0.45, every existing link is between firms belonging to the same country for every daily network.

		${ m Net/Abs}$			Pos	
Cut-	Mean	Min	Max	Mean	Min	Max
$offs^{[17]}$						
0.05	0.149	0.145	0.153	0.192	0.187	0.197
0.1	0.214	0.201	0.229	0.290	0.271	0.308
0.15	0.469	0.433	0.512	0.528	0.486	0.568
0.2	0.670	0.621	0.718	0.674	0.626	0.723
0.25	0.745	0.703	0.779	0.745	0.703	0.779
0.3	0.755	0.714	0.816	0.755	0.714	0.816
0.35	0.814	0.778	0.852	0.814	0.778	0.852
0.4	0.947	0.857	1.0	0.947	0.857	1.0
0.45	1.0	1.0	1.0	1.0	1.0	1.0

Table 5: Homophily ratios by country.

Notes: The mean, minimum and maximum for the whole period of 1,201 days are presented for the net/absolute data on the left, and positive data on the right. *Source:* Authors' calculations.

Considering the division of firms by the respective industry, we have a baseline homophily equal to 0.028 and, as in the previous case, all homophily ratios are above the baseline, and again, as the strength of the links we consider increases, the homophily increases as well, reaching full homophily with a cut-off of 0.55 in every daily skeleton.

As a result, we found that the stronger relations tend to be established between firms that belong to the same country and industry. This finding can also be observed visually in Figures 12 and 13, where most of these strong connections are within sectors or within countries ^[18].

^[17]Recall that by using Fisher's transformation we applied a cut-off of 0.558 since the beginning, then the first cut-off for tables 5 and 6 correspond to all the edges in the studied networks.

^[18]A cut-off value equal to 0.3 was applied in these networks, i.e., only links between firms whose partial correlation was greater than or equal to 0.3 were drawn. In each figure, there are networks for the Pre, Dur, and Post periods where the colour of a node corresponds to the country or industry that it belongs to, respectively.

		Net/A	bs		Pos	
Cut-	Mean	Min	Max	Mean	Min	Max
$offs^{[19]}$						
0.05	0.051	0.049	0.053	0.083	0.079	0.087
0.1	0.141	0.131	0.160	0.217	0.204	0.242
0.15	0.554	0.519	0.611	0.633	0.584	0.683
0.2	0.843	0.802	0.876	0.848	0.809	0.876
0.25	0.869	0.831	0.897	0.869	0.831	0.897
0.3	0.892	0.846	0.929	0.892	0.846	0.929
0.35	0.888	0.875	0.900	0.888	0.875	0.900
0.4	0.904	0.800	0.944	0.904	0.800	0.944
0.45	0.905	0.889	0.917	0.905	0.889	0.917
0.5	0.945	0.833	1.0	0.945	0.833	1.0
0.55	1.0	1.0	1.0	1.0	1.0	1.0

Table 6: Homophily ratios by industry.

Notes: The mean, minimum and maximum for the whole period of 1,201 days are presented for the net/absolute data on the left, and positive data on the right. *Source:* Authors' calculations.

5.4 Skeleton

We consider the skeletons of each data type encompassing the whole time frame. We also construct the skeletons for each of the Covid related periods (Whole, Sans, Pre, Dur, and Post) to examine if there is another piece of evidence about the impact of the pandemic onto the topology of the network.

		Whole	Sans	Pre	Dur	Post
Net	Count	13227.5	13223.3	13273.8	13211.9	13255.9
INEL	Weight	147.8	147.9	146.7	147.4	148.3
Abs	Count	13227.5	13223.3	13273.8	13211.9	13255.9
AUS	Weight	1083.3	1083.1	1086.0	1081.7	1085.1
Pos	Count	7245.7	7245.2	7257.8	7230.5	7260.1
FOS	Weight	615.6	615.5	616.4	614.6	616.7

Table 7: Daily Networks – Edge Statistics

Notes: Average by Covid related periods. Source: Authors' calculations.

When looking into the daily networks' average statistics (Table 7), we notice no particular change in its number of edges or its added weight.

Since the Pre and Dur periods include precisely 84 days, we divided the Sans period

into 84-day intervals (from March 2016 to February 2020). We compute the mean, standard deviation, minimum, and maximum of the first twelve uniformly divided periods, and by comparing these against the values of the Dur skeleton (Table 8), we can see that the measures of the Dur period are above the maximum or below the observed minimum for the previous periods. In fact, the edge count and weight of the Dur period are higher than the corresponding maximum of the other periods. In contrast, all its other measures are lower than the respective minimum, with only one exception, the diameter of the absolute data.

		Ma	rch 2016 to	o Februa	ry 2020	
		Mean	Std Dev	Min	Max	Dur
	Edges					
Net	Count	6716.00	217.47	6349	7155	8160
	Weight	130.33	2.74	125.17	135.27	140.00
	W/C	0.019	0.001	0.018	0.020	0.017
	Count	6716.00	217.47	6349	7155	8160
Abs	Weight	649.01	18.38	619.82	687.20	756.96
	W/C	0.097	0.001	0.096	0.098	0.093
	Count	3864.83	111.39	3668	4063	4650
Pos	Weight	389.67	9.33	374.17	407.04	448.48
	W/C	0.101	0.001	0.100	0.102	0.096
	Distance					
	$\overline{d}(G)$	17.37	0.10	17.14	17.50	17.07
Abs	$\operatorname{rad}(G)$	21.71	0.30	21.08	22.03	21.03
	$\operatorname{diam}(G)$	27.59	0.34	26.96	28.12	27.66
Pos	$\overline{d}(G)$	19.47	0.12	19.23	19.63	19.07
	$\operatorname{rad}(G)$	24.43	0.42	23.92	25.05	23.74
	$\operatorname{diam}(G)$	31.37	0.73	30.53	33.45	29.62

 Table 8:
 84-Day
 Skeletons - Global
 Measures

Notes: We show the edge count, edge weight, and ratio (weight over count), average distance, radius, and diameter for each corresponding network kind. We have the mean, standard deviation, minimum and maximum for the first twelve 84-day skeletons in the first four columns. At the same time, the last column shows the respective values for the last period, Dur, which goes from March to June 2020. *Source:* Authors' calculations.

So, even when there is no remarkable change in the edge count and weight of the overall network (Table 7), it is noteworthy that the number of resilient edges in the Dur period is

over 14% higher than the maximum in the previous 84-Day Skeleton's intervals (Table 8). This finding implies that the number of relations did not substantially change, but their stability increased.

While studying the centralities of the skeletons corresponding to the Covid periods, we observe two types of behaviour. On the one hand, rankings of degree and eigenvector centralities did not maintain much stability, while closeness, harmonic, and betweenness were pretty stable during all periods.

	Ticker	Total	Sans	Pre	Dur	Post
N T - 4	BN.PA	1.93	1.93	1.76	2.38	1.98
\mathbf{Net}	SU.PA	1.59	1.68	1.83	1.76	2.14
	CABK.MC	3.96	4.04	6.04	7.17	6.30
Abs	CFR.SW	3.38	3.47	5.52	6.45	6.02
	SSE.L	3.32	3.49	5.35	6.83	6.72
	CABK.MC	2.60	2.68	3.77	4.45	3.96
Pos	STERV.HE	2.47	2.55	3.41	3.65	3.64
	SSE.L	2.16	2.16	3.48	4.31	4.41
	ATCO-A.ST	2.06	2.14	3.24	3.59	3.57

Table 9: Simultaneous Top 20 (Degree Centrality)

Notes: Simultaneous Degree Centrality of the Top 20 firms for every period for net, absolute and positive data. *Source:* Authors' calculations.

	Ticker	Total	Sans	Pre	Dur	Post
	CABK.MC	0.101	0.099	0.081	0.083	0.071
Abs	CFR.SW	0.098	0.095	0.079	0.079	0.075
	SSE.L	0.092	0.092	0.079	0.084	0.081
	DGE.L	0.085	0.085	0.073	0.072	0.073
	ATL.MI	0.084	0.084	0.077	0.088	0.078
Pos	BBVA.MC	0.113	0.11	0.076	0.079	0.076
POS	CABK.MC	0.109	0.107	0.085	0.089	0.076
	DGE.L	0.099	0.098	0.074	0.072	0.071
	CFR.SW	0.097	0.091	0.079	0.074	0.072
	ATCO-A.ST	0.091	0.089	0.076	0.072	0.073

Table 10: Simultaneous Top 20 (Eigenvector Centrality)

Notes: Simultaneous Eigenvector Centrality of the Top 20 firms for every period for absolute and positive data. *Source:* Authors' calculations.

As we can see in Table 9, no firm simultaneously appears in the top 20 of the three types of data. When we consider the top 30 rankings, one firm accomplishes the simultaneous occurrence, namely, CABK.MC, whose net degree centralities are 1.24, 1.32, 1.5, 1.74, and 1.62 for the Total, Sans, Pre, Dur and Post periods, respectively.

In contrast, when considering all types of data available for the eigenvector centrality, three firms appear simultaneously in the top 20 rankings, CABK.MC, CFR.SW, and DGE.L.

We should notice that CABK.MC appears simultaneously in the degree and eigenvector centrality (positive and absolute networks), which means that it is one of the most influential firms in the skeleton network.

Table 11: Simulaneous Top 10 (Closeness Centrality)								
	Ticker	Total	Sans	Pre	Dur	Post		
	CFR.SW	0.061	0.061	0.065	0.066	0.065		
	BBVA.MC	0.061	0.061	0.064	0.065	0.065		
Abs	CABK.MC	0.060	0.060	0.064	0.066	0.065		
AUS	SSE.L	0.059	0.060	0.063	0.065	0.064		
	UHR.SW	0.059	0.059	0.063	0.063	0.063		
	GLE.PA	0.059	0.059	0.063	0.064	0.064		
	BBVA.MC	0.055	0.055	0.058	0.060	0.059		
	CABK.MC	0.054	0.054	0.058	0.059	0.058		
	STERV.HE	0.053	0.053	0.058	0.058	0.057		
\mathbf{Pos}	CSGN.SW	0.053	0.054	0.057	0.058	0.058		
	GLE.PA	0.053	0.053	0.057	0.058	0.057		
	CFR.SW	0.052	0.052	0.057	0.058	0.058		
	SSE.L	0.052	0.052	0.057	0.058	0.058		

Table 11: Simultaneous Top 10 (Closeness Centrality)

Notes: Simultaneous Closeness Centrality of the Top 10 firms for every period for absolute and positive data types. *Source:* Authors' calculations.

	Ticker	Total	Sans	Pre	Dur	Post
Abs	CFR.SW	22.00	22.10	23.19	23.43	23.25
	BBVA.MC	21.58	21.62	22.63	23.03	22.98
	CABK.MC	21.57	21.60	22.87	23.40	23.02
	UPM.HE	21.22	21.25	22.79	22.73	22.50
	UHR.SW	21.13	21.19	22.20	22.43	22.47
	STERV.HE	21.06	21.17	22.69	22.55	22.36
	SSE.L	21.06	21.18	22.18	22.75	22.51
	GLE.PA	21.00	21.01	22.06	22.70	22.45
Pos	BBVA.MC	19.74	19.76	20.76	21.25	20.96
	CABK.MC	19.38	19.42	20.56	21.03	20.44
	STERV.HE	19.31	19.42	20.83	20.88	20.55
	CSGN.SW	19.17	19.34	20.38	20.62	20.49
	CFR.SW	19.02	19.06	20.61	20.77	20.69
	GLE.PA	18.79	18.81	20.01	20.44	20.29
	UPM.HE	18.74	18.79	20.47	20.51	20.19

 Table 12: Simultaneous Top 10 (Harmonic Centrality)

Notes: Simultaneous Harmonic Centrality of the Top 10 firms for every period for absolute and positive data types. *Source:* Authors' calculations.

In contrast, five firms, BBVA.MC, CABK.MC, CFR.SW, GLE.PA and SSE.L, appear in the Top 10 of the closeness centrality ranking for every period and every data type (see Table 11). For the harmonic centrality, six firms consistently appear in all top 10 rankings, namely, CFR.SW, BBVA.MC, CABK.MC, GLE.PA, STERV.HE and UPM.HE (Table 12). Moreover, BBVA.MC, CABK.MC, CFR.SW, CSGN.SW, and STERV.HE are always present in the top 10 of betweenness centrality despite data type and period (Table 13). So three firms, BBVA.MC, CABK.MC, and CFR.SW, accomplished being in each top 10 ranking of three centralities of every skeleton by period.

	Ticker	Total	Sans	Pre	Dur	Post
Abs	CABK.MC	0.017	0.017	0.012	0.013	0.012
	CFR.SW	0.016	0.016	0.012	0.011	0.009
	BBVA.MC	0.014	0.013	0.009	0.009	0.009
	CSGN.SW	0.014	0.014	0.009	0.008	0.008
	UPM.HE	0.013	0.012	0.010	0.009	0.009
	STERV.HE	0.012	0.012	0.010	0.008	0.008
Pos	BBVA.MC	0.022	0.020	0.012	0.013	0.012
	CABK.MC	0.021	0.021	0.014	0.014	0.012
	STERV.HE	0.020	0.020	0.015	0.013	0.012
	SSE.L	0.019	0.018	0.012	0.012	0.012
	CSGN.SW	0.019	0.020	0.012	0.011	0.010
	BAS.DE	0.017	0.016	0.011	0.010	0.012
	CFR.SW	0.016	0.015	0.013	0.011	0.010

 Table 13: Simultaneous Top 10 (Betweenness Centrality)

Notes: Simultaneous Betweenness Centrality of the Top 10 firms for every period for absolute and positive data types. *Source:* Authors' calculations.

Finally, as in the case of daily networks in Section 5.3, we observed that the stronger ties in the network have homophilic behaviour, since the homophilic ratios are greater in every instance than the respective homophilic baselines of 0.125 for countries and 0.028 for industries. When taking different thresholds for edge strength we observe that the homophilic ratio also increased as the cut-off also increased (see Figures 14 and 15). Moreover, by comparing the homophily ratios of skeletons (Table 14) and daily networks (Tables 5 and 6), we observed that skeletons always have greater homophily ratios than the mean of their respective daily networks. In fact, when considering the partition by industries, the homophily in the skeletons exceeds the maximum homophily of the daily networks for each cut-off. Therefore, we can say that resilient edges tend to be more homophilic; in other words, stable relations are more likely to form when firms share the same country and industry. ^[20]

^[20]Notice that this is a network derived from the relations of the stock returns. In this context, an edge is formed between two stocks because they reacted similarly or oppositely to some news. Whether there is trade or some other exchange between these firms is outside of the focus of this paper.

	Coun	try	Industry		
Cut-offs	$\mathrm{Net}/\mathrm{Abs}$	Pos	$\mathrm{Net}/\mathrm{Abs}$	Pos	
0.05	0.199	0.269	0.114	0.180	
0.10	0.227	0.307	0.163	0.244	
0.15	0.488	0.540	0.604	0.674	
0.20	0.692	0.692	0.850	0.850	
0.25	0.758	0.758	0.871	0.871	
0.30	0.750	0.750	0.900	0.900	
0.35	0.815	0.815	0.889	0.889	
0.40	1.0	1.0	0.929	0.929	
0.45	1.0	1.0	0.909	0.909	
0.50	1.0	1.0	1.0	1.0	

Table 14: Homophily ratios over the skeletons

Source: Authors' calculations.

6 Conclusions

We analysed the network's topology derived from the relationships among the firms that constitute the S&P 350 Europe index, using their adjusted closing prices from January 2016 to September 2020. For this, we calculated local and global parameters of the network. The analysis of centralities was carried out through two approaches, first considering daily networks and second using the skeletons – the most resilient relations. In the first one, only three firms were found simultaneously in the top 20 of each of the eleven centralities calculated, so these firms are the ones that best transmitted positive and negative effects during the whole period. These are Scottish & Southern Energy (SSE.L), CaixaBank (CABK.MC), and Stora Enso OYJ R. (STERV.H.). These firms are from the Paper & Forest Products, Banks, and Electric Utilities industries, and they are located in Finland, Spain, and the United Kingdom, respectively. In the second approach, for the degree and eigenvector centralities, no firms were simultaneously present in the top 20 rankings, indicating a lack of stability. At the same time though, closeness, harmonic, and betweenness were pretty stable during all periods, and three firms, managed to appear simultaneously in each top 10 rankings. These firms are Banco Bilbao Vizcaya Argentaria S.A. (BBVA.MC) in Spain, CaixaBank (CABK.MC) in Spain, and Compagnie Financière Richemont S.A. (CFR.SW) from Switzerland. The first two are from the bank industry and the third from Textiles, Apparel & Luxury Goods.

Placing the firms with the highest centralities serves to complement the company's risk profile and locate the systemic risk entities. Identifying them allows the corresponding authorities to regulate them. Using the 84-day skeleton construction, we detected an increase of 20% over the number of resilient relationships during the Covid-19 pandemic, while the total number of edges do not have a similar change. However, we could not conclude whether there was a significant change, either in the number of edges, or in the centrality values over time.

The financial network turned out to be highly homophilic, and in fact, a direct relationship between the partial correlation coefficient and the homophilic ratio was discovered, where the stronger relations tend to be established between firms that belong to the same country and industry. On the same note, homophily ratios of the skeletons proved to be greater than in the daily networks, which suggests resilient relations have a larger proclivity to be homophilic than unstable ones.

This paper can be extended in multiple ways. Although average distance, radius, and diameter help us better understand the power needed to be travelled by a shock to trigger a cascade effect over a network; the fact that, in this case, the radius is always greater than the average distance makes us wonder whether an analysis of average eccentricities would be more useful for a systemic risk analysis than the average distance. In addition, estimating the clustering coefficient could be helpful to measure the density of the neighbourhood of the vertices and the graph, complementing the topological analysis. Furthermore, a skeleton generalisation could be made, allowing flexibility in the absence of connections. On the other hand, we considered an undirected network, preventing us from deriving the causality of the relationships; looking for their causality will be fruitful for a better understanding of the network and its reaction in case of systemic risk.

A Appendix

A.1 Radius versus Average Path Length

The graphs shown below are examples where radius and average distance hold different inequality outcomes. In each of them the top vertex can reach any other vertex in at most $rad(G_i)$ steps for i = 1, 2, 3.

$$1 = \operatorname{rad}(G_1) < \overline{d}(G_1) = 1.1$$
$$2 = \operatorname{rad}(G_2) > \overline{d}(G_2) = 1.5$$
$$2 = \operatorname{rad}(G_3) = \overline{d}(G_3) = 2$$

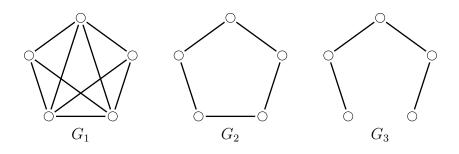


Figure 8: Graphs where its radius and average distance have different order relationships.

A.2 Tables and Figures

Tables and figures appear in this section in the same order they were mentioned in the main text.

From Section 5.1

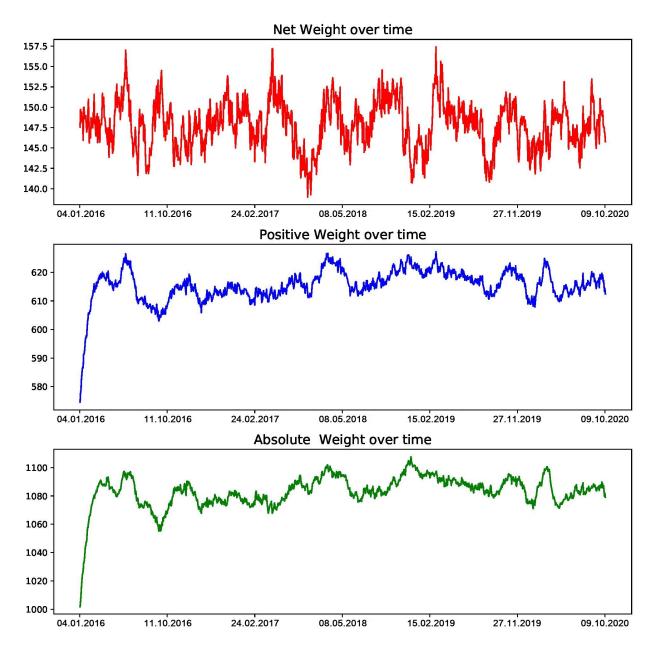


Figure 9: Weights over time. Notice there is no change in the behaviour of net weight, positive weight, and absolute weight in the Covid-related periods. *Source:* Authors' calculations.

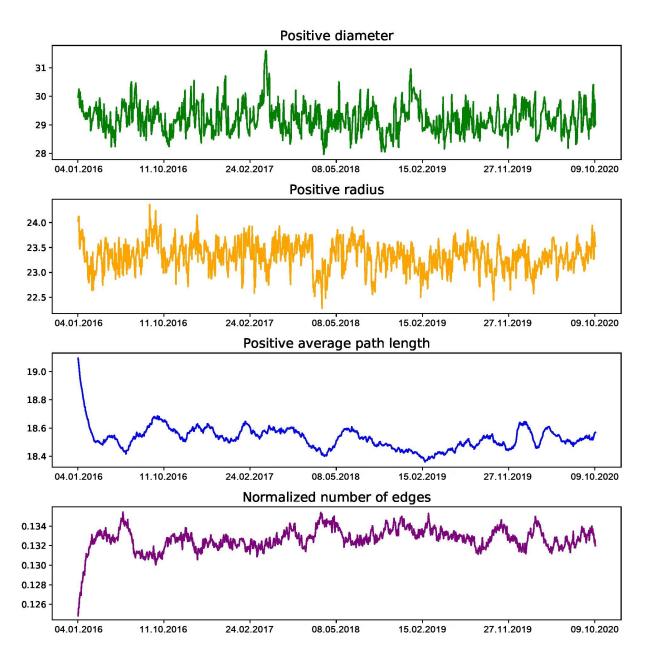


Figure 10: Global measures over time. Diameter, radius, average distance, and the normalised number of edges, where positive values are considered. *Source:* Authors' calculations.

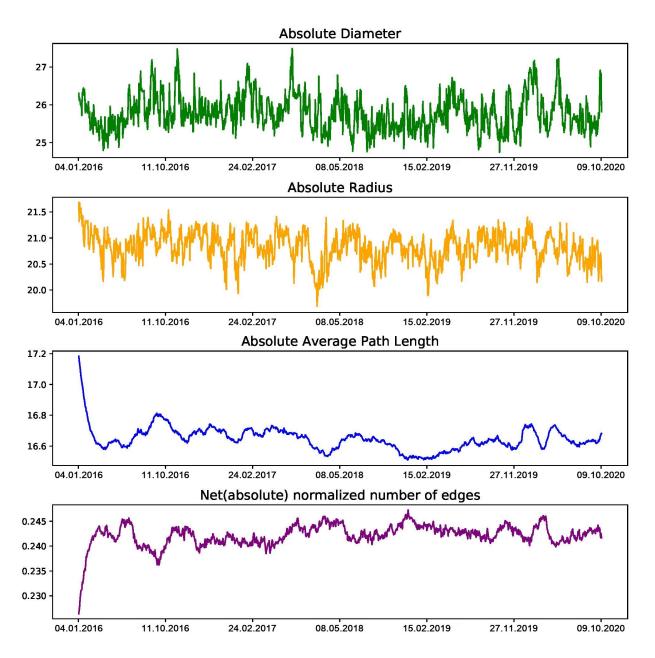


Figure 11: Global measures over time. Diameter, radius, average distance, and the normalised number of edges, where absolute values are considered. Notice that the normalised number of edges is the same for the net scenario. *Source:* Authors' calculations.

From Section 5.2

Ticker	Industry	Num. Edges	C_D^{net}	ISO Code	Market Cap. %
INVE-B.ST	FBN	225	$1.\bar{9}56$	SE	0.240
BN.PA	FOA	230	1.787	\mathbf{FR}	0.548
SN.L	MTC	212	1.779	GB	0.209
SU.PA	ELQ	214	1.769	\mathbf{FR}	0.576
LEG.DE	$\operatorname{RE}\check{\operatorname{A}}$	205	1.768	DE	0.078
CBK.DE	BNK	214	1.767	DE	0.075
AC.PA	TRT	222	1.697	\mathbf{FR}	0.122
ZURN.SW	INS	233	1.696	CH	0.595
WEIR.L	IEQ	230	1.669	GB	0.050
ACA.PA	BNK	229	1.582	\mathbf{FR}	0.403
CSGN.SW	FBN	218	1.558	CH	0.333
CABK.MC	BNK	227	1.557	\mathbf{ES}	0.181
STERV.HE	\mathbf{FRP}	249	1.551	\mathbf{FI}	0.086
SAF.PA	ARO	235	1.550	\mathbf{FR}	0.609
PSN.L	HOM	214	1.531	GB	0.109
OR.PA	\cos	227	1.510	\mathbf{FR}	1.590
SY1.DE	CHM	218	1.471	DE	0.137
SSE.L	ELC	229	1.460	GB	0.190
INF.L	PUB	202	1.452	GB	0.137
ORA.PA	TLS	217	1.439	FR	0.376

Table 15: Average net degree centrality $C_D^{net}\,$ - 2016-2020

Notes: The twenty firms with most local influence, considering net degree centrality. The number of edges represents the average number of edges during the whole period 2016-2020. *Source:* S&P Global and authors' calculations.

Table 16: Average absolute degree centrality (C_D^{abs}) , 2016-2020

Ticker	Industry	Num. Edges	C_D^{abs}	ISO Code	Market Cap. $\%$
ATL.MI	TRA	241	$8.\bar{8}10$	IT	0.186
SSE.L	ELC	229	8.700	GB	0.190
TUI1.DE	TRT	236	8.696	DE	0.072
STERV.HE	FRP	249	8.689	\mathbf{FI}	0.086
CABK.MC	BNK	227	8.606	\mathbf{ES}	0.181
CFR.SW	TEX	228	8.583	CH	0.395
LR.PA	ELQ	226	8.320	\mathbf{FR}	0.208
BBVA.MC	BNŘ	232	8.277	\mathbf{ES}	0.359
DGE.L	BVG	236	8.272	GB	1.052
BOL.ST	MNX	232	8.191	SE	0.070
AGS.BR	INS	234	8.130	BE	0.113
BRBY.L	TEX	235	8.122	GB	0.116
KNIN.SW	TRA	217	8.086	CH	0.195
SOLB.BR	CHM	238	8.072	BE	0.118
LHN.SW	COM	232	8.028	CH	0.329
UPM.HE	\mathbf{FRP}	222	7.963	\mathbf{FI}	0.178
EN.PA	CON	236	7.948	\mathbf{FR}	0.152
PGHN.SW	REA	226	7.938	CH	0.236
ASML.AS	SEM	233	7.891	\mathbf{NL}	1.211
HNR1.DE	INS	225	7.886	DE	0.225

Notes: The twenty firms with most local influence, considering absolute degree centrality. The number of edges represents the average number of edges during the whole period 2016-2020. *Source:* S&P Global and authors' calculations.

Ticker	Industry	Num. Edges	C_D^+	ISO Code	Market Cap. %
STERV.HE	FRP	126	5.12	FI	0.086
CABK.MC	BNK	113	5.082	\mathbf{ES}	0.181
SSE.L	ELC	118	5.08	GB	0.19
INVE-B.ST	FBN	119	4.8	SE	0.24
CFR.SW	TEX	116	4.778	CH	0.395
WEIR.L	IEQ	126	4.74	GB	0.05
ATL.MI	TRĂ	127	4.711	IT	0.186
BRBY.L	TEX	121	4.679	GB	0.116
ZURN.SW	INS	119	4.665	CH	0.595
BBVA.MC	BNK	114	4.642	\mathbf{ES}	0.359
BN.PA	FOA	115	4.628	\mathbf{FR}	0.548
LAND.L	REA	118	4.624	GB	0.095
OR.PA	\cos	112	4.582	\mathbf{FR}	1.59
ATCO-A.ST	IEQ	107	4.576	SE	0.323
LR.PA	ELQ	119	4.554	\mathbf{FR}	0.208
CPG.L	REX	116	4.552	GB	0.385
HNR1.DE	INS	114	4.541	DE	0.225
KNIN.SW	TRA	111	4.537	CH	0.195
BARC.L	BNK	121	4.535	GB	0.393
TUI1.DE	TRT	125	4.533	DE	0.072

Table 17: Average positive degree centrality (C_D^+) , 2016-2020

Notes: The twenty firms with most local influence, considering positive degree centrality. The number of edges represents the average number of edges during the whole period 2016-2020. *Source:* S&P Global and authors' calculations.

Ticker	Industry	Num. Edges	C_C^{abs}	ISO Code	Market Cap. $\%$
CFR.SW	TEX	228	0.067	CH	0.395
BBVA.MC	BNK	232	0.066	\mathbf{ES}	0.359
CABK.MC	BNK	227	0.066	\mathbf{ES}	0.181
SSE.L	ELC	229	0.066	GB	0.19
UPM.HE	\mathbf{FRP}	222	0.065	$_{\rm FI}$	0.178
UHR.SW	TEX	232	0.065	CH	0.083
STERV.HE	\mathbf{FRP}	249	0.065	$_{\rm FI}$	0.086
GLE.PA	INS	241	0.065	\mathbf{FR}	0.284
MUV2.DE	INS	213	0.064	DE	0.41
TUI1.DE	TRT	236	0.064	DE	0.072
NG.L	MUW	225	0.064	GB	0.453
ALV.DE	INS	221	0.064	DE	0.985
ATL.MI	TRA	241	0.064	IT	0.186
LLOY.L	BNK	217	0.064	GB	0.561
LHN.SW	COM	232	0.064	CH	0.329
HNR1.DE	INS	225	0.064	DE	0.225
DGE.L	BVG	236	0.064	GB	1.052
CSGN.SW	FBN	218	0.064	ĊH	0.333
ATCO-A.ST	IEQ	217	0.064	SE	0.323
MC.PA	ΤEŽ	220	0.064	\overline{FR}	2.282

Table 18: Average absolute closeness centrality (C_C^{abs}) , 2016-2020

Notes: The twenty firms with the highest closeness centrality, considering absolute values. The number of edges represents the average number of edges during the whole period 2016-2020. *Source:* S&P Global and authors' calculations.

Ticker	Industry	Num. Edges	C_C^+	ISO Code	Market Cap. %
BBVA.MC	BNK	114	0.06	ES	0.359
STERV.HE	FRP	126	0.06	\mathbf{FI}	0.086
CABK.MC	BNK	113	0.06	\mathbf{ES}	0.181
CFR.SW	TEX	116	0.06	CH	0.395
UPM.HE	FRP	109	0.059	\mathbf{FI}	0.178
CSGN.SW	FBN	105	0.059	CH	0.333
GLE.PA	INS	127	0.059	\mathbf{FR}	0.284
SSE.L	ELC	118	0.059	GB	0.19
MUV2.DE	INS	109	0.058	DE	0.41
UHR.SW	TEX	123	0.058	CH	0.083
NG.L	MUW	116	0.058	GB	0.453
INVE-B.ST	FBN	119	0.058	SE	0.24
LHN.SW	COM	118	0.058	CH	0.329
ATCO-A.ST	IEQ	107	0.058	SE	0.323
IFX.DE	SEM	106	0.058	DE	0.275
HNR1.DE	INS	114	0.058	DE	0.225
DGE.L	BVG	120	0.058	GB	1.052
BNP.PA	BNK	107	0.058	\mathbf{FR}	0.711
SAN.MC	BNK	101	0.058	\mathbf{ES}	0.67
ASML.AS	SEM	121	0.057	\mathbf{NL}	1.211

Table 19: Average positive closeness centrality (C_C^+) , 2016-2020

Notes: The twenty firms with the highest closeness centrality, considering positive values. The number of edges represents the average number of edges during the whole period 2016-2020. *Source:* S&P Global and authors' calculations.

Ticker	Industry	Num. Edges	C_H^{abs}	ISO Code	Market Cap. $\%$
CFR.SW	TEX	228	23.896	CH	0.395
CABK.MC	BNK	227	23.422	\mathbf{ES}	0.181
BBVA.MC	BNK	232	23.213	\mathbf{ES}	0.359
STERV.HE	FRP	249	23.182	\mathbf{FI}	0.086
UPM.HE	FRP	222	23.179	\mathbf{FI}	0.178
SSE.L	ELC	229	22.985	GB	0.19
UHR.SW	TEX	232	22.906	CH	0.083
GLE.PA	INS	241	22.715	\mathbf{FR}	0.284
CSGN.SW	FBN	218	22.655	CH	0.333
ALV.DE	INS	221	22.61	DE	0.985
DGE.L	BVG	236	22.549	GB	1.052
TUI1.DE	TRT	236	22.513	DE	0.072
HNR1.DE	INS	225	22.484	DE	0.225
NG.L	MUW	225	22.384	GB	0.453
LAND.L	REA	232	22.381	GB	0.095
MC.PA	TEX	220	22.375	\mathbf{FR}	2.282
IFX.DE	SEM	214	22.345	DE	0.275
ATCO-A.ST	IEQ	217	22.344	SE	0.323
VNA.DE	$\operatorname{RE}\operatorname{\check{A}}$	222	22.341	DE	0.282
MUV2.DE	INS	213	22.314	DE	0.41

Table 20: Average absolute harmonic centrality (C_H^{abs}) , 2016-2020

Notes: The twenty firms with the highest harmonic centrality, considering absolute values. The number of edges represents the average number of edges during the whole period 2016-2020. *Source:* S&P Global and authors' calculations.

Ticker	Industry	Num. Edges	C_H^+	ISO Code	Market Cap. $\%$
STERV.HE	FRP	126	21.394	FI	0.086
BBVA.MC	BNK	114	21.361	\mathbf{ES}	0.359
CFR.SW	TEX	116	21.306	CH	0.395
CABK.MC	BNK	113	21.112	\mathbf{ES}	0.181
UPM.HE	FRP	109	20.954	$_{\rm FI}$	0.178
CSGN.SW	FBN	105	20.911	CH	0.333
SSE.L	ELC	118	20.891	GB	0.19
IFX.DE	SEM	106	20.678	DE	0.275
GLE.PA	INS	127	20.641	\mathbf{FR}	0.284
HNR1.DE	INS	114	20.536	DE	0.225
LAND.L	REA	118	20.516	GB	0.095
UHR.SW	TEX	123	20.5	CH	0.083
MUV2.DE	INS	109	20.493	DE	0.41
SAN.MC	BNK	101	20.4	\mathbf{ES}	0.67
INVE-B.ST	FBN	119	20.363	\mathbf{SE}	0.24
ASML.AS	SEM	121	20.341	\mathbf{NL}	1.211
ALV.DE	INS	122	20.305	DE	0.985
NG.L	MUW	116	20.301	GB	0.453
LLOY.L	BNK	111	20.298	GB	0.561
ATCO-A.ST	IEQ	107	20.297	\mathbf{SE}	0.323

Table 21: Average positive harmonic centrality (C_{H}^{+}) , 2016-2020

Notes: The twenty firms with the highest harmonic centrality, considering positive values. The number of edges represents the average number of edges during the whole period 2016-2020. *Source:* S&P Global and authors' calculations.

Ticker	Industry	Num. Edges	C_E^{abs}	ISO Code	Market Cap. $\%$
ATL.MI	TRA	241	0.074	IT	0.186
SSE.L	ELC	229	0.074	GB	0.19
CFR.SW	TEX	228	0.073	CH	0.395
TUI1.DE	TRT	236	0.072	DE	0.072
STERV.HE	FRP	249	0.072	\mathbf{FI}	0.086
CABK.MC	BNK	227	0.071	\mathbf{ES}	0.181
BBVA.MC	BNK	232	0.069	\mathbf{ES}	0.359
DGE.L	BVG	236	0.069	GB	1.052
LR.PA	ELQ	226	0.069	\mathbf{FR}	0.208
BOL.ST	MNX	232	0.068	\mathbf{SE}	0.07
BRBY.L	TEX	235	0.068	GB	0.116
LHN.SW	COM	232	0.068	CH	0.329
AGS.BR	INS	234	0.067	BE	0.113
KNIN.SW	TRA	217	0.067	CH	0.195
PGHN.SW	REA	226	0.067	CH	0.236
EN.PA	CON	236	0.067	\mathbf{FR}	0.152
UPM.HE	FRP	222	0.067	\mathbf{FI}	0.178
ASML.AS	SEM	233	0.066	NL	1.211
SOLB.BR	CHM	238	0.066	BE	0.118
HNR1.DE	INS	225	0.066	DE	0.225

Table 22: Average absolute eigenvector centrality (C_E^{abs}) , 2016-2020

Notes: The twenty firms with the highest eigenvector centrality, considering absolute values. The number of edges represents the average number of edges during the whole period 2016-2020. *Source:* S&P Global and authors' calculations.

Ticker	Industry	Num. Edges	C_E^+	ISO Code	Market Cap. $\%$
SSE.L	ELC	118	0.076	GB	0.19
STERV.HE	FRP	126	0.075	$_{\rm FI}$	0.086
CABK.MC	BNK	113	0.074	\mathbf{ES}	0.181
CFR.SW	TEX	116	0.071	CH	0.395
BRBY.L	TEX	121	0.07	GB	0.116
INVE-B.ST	FBN	119	0.07	\mathbf{SE}	0.24
ATL.MI	TRA	127	0.069	IT	0.186
BBVA.MC	BNK	114	0.069	\mathbf{ES}	0.359
UPM.HE	FRP	109	0.069	$_{\rm FI}$	0.178
REP.MC	OGX	110	0.068	\mathbf{ES}	0.241
WEIR.L	IEQ	126	0.068	GB	0.05
LR.PA	$\mathrm{EL}\mathrm{\check{Q}}$	119	0.068	\mathbf{FR}	0.208
BN.PA	FOÅ	115	0.068	\mathbf{FR}	0.548
PGHN.SW	REA	114	0.067	CH	0.236
ATCO-A.ST	IEQ	107	0.067	\mathbf{SE}	0.323
OR.PA	\cos	112	0.067	\mathbf{FR}	1.59
HNR1.DE	INS	114	0.067	DE	0.225
ZURN.SW	INS	119	0.067	CH	0.595
TUI1.DE	TRT	125	0.066	DE	0.072
DGE.L	BVG	120	0.066	GB	1.052

Table 23: Average positive eigenvector centrality (C_E^+) , 2016-2020

Notes: The twenty firms with the highest eigenvector centrality, considering positive values. The number of edges represents the average number of edges during the whole period 2016-2020. *Source:* S&P Global and authors' calculations.

Ticker	Industry	Num. Edges	C_B^{abs}	ISO Code	Market Cap. $\%$
AGS.BR	INS	234	$0.\bar{0}07$	BE	0.113
ALV.DE	INS	221	0.007	DE	0.985
BBVA.MC	BNK	232	0.007	\mathbf{ES}	0.359
BAS.DE	CHM	207	0.007	DE	0.669
CABK.MC	BNK	227	0.01	\mathbf{ES}	0.181
CSGN.SW	FBN	218	0.007	CH	0.333
DGE.L	BVG	236	0.006	GB	1.052
EZJ.L	AIR	233	0.007	GB	0.072
HNR1.DE	INS	225	0.006	DE	0.225
INVE-B.ST	FBN	225	0.006	SE	0.24
LAND.L	REA	232	0.006	GB	0.095
CFR.SW	TEX	228	0.01	CH	0.395
SSE.L	ELC	229	0.007	GB	0.19
GLE.PA	INS	241	0.006	\mathbf{FR}	0.284
STERV.HE	FRP	249	0.008	$_{\rm FI}$	0.086
SY1.DE	CHM	218	0.006	DE	0.137
TUI1.DE	TRT	236	0.006	DE	0.072
UPM.HE	FRP	222	0.008	$_{\rm FI}$	0.178
VNA.DE	REA	222	0.006	DE	0.282
ZURN.SW	INS	233	0.006	CH	0.595

Table 24: Average absolute betweenness centrality (C_B^{abs}) , 2016-2020

Notes: The twenty firms with the highest betweenness centrality, considering absolute values. The number of edges represents the average number of edges during the whole period 2016-2020. *Source:* S&P Global and authors' calculations.

Ticker	Industry	Num. Edges	C_E^+	ISO Code	Market Cap. %
STERV.HE	FRP	126	0.012	FI	0.086
CABK.MC	BNK	113	0.011	\mathbf{ES}	0.181
BBVA.MC	BNK	114	0.01	\mathbf{ES}	0.359
SSE.L	ELC	118	0.01	GB	0.19
CFR.SW	TEX	116	0.01	CH	0.395
LAND.L	REA	118	0.009	GB	0.095
BAS.DE	CHM	105	0.009	DE	0.669
CSGN.SW	FBN	105	0.009	CH	0.333
INVE-B.ST	FBN	119	0.009	SE	0.24
ALV.DE	INS	122	0.008	DE	0.985
HNR1.DE	INS	114	0.008	DE	0.225
UPM.HE	FRP	109	0.008	$_{ m FI}$	0.178
OR.PA	\cos	112	0.007	\mathbf{FR}	1.59
LGEN.L	BNK	109	0.007	GB	0.229
LLOY.L	BNK	111	0.007	GB	0.561
NG.L	MUW	116	0.007	GB	0.453
SBRY.L	FDR	116	0.007	GB	0.065
EZJ.L	AIR	121	0.007	GB	0.072
GLE.PA	INS	127	0.007	FR	0.284
BARC.L	BNK	121	0.007	GB	0.393

Table 25: Average positive betweenness centrality (C_E^+) , 2016-2020

Notes: The twenty firms with the highest betweenness centrality, considering positive values. The number of edges represents the average number of edges during the whole period 2016-2020. Source: S&P Global and authors' calculations.

Indus-	Market	Num.											
try	$\operatorname{Cap}\%$	Firms	C_E^{abs}	C_E^+	C_D^{net}	C_D^{abs}	C_D^+	C_C^{abs}	C_{C^+}	C_H^{abs}	C_{H}^{+}	C_B^{abs}	\sim
DRG	10.72	11	0.054	0.053	0.852	6.498	3.675	0.06	0.054	20.761	18.703	0.003	0.003
BNK	8.93	27	0.056	0.057	0.953	6.747	3.85	0.061	0.055	21.329	19.373	0.003	0.0
TEX	5.85	10	0.058	0.057	0.793	6.903	3.848	0.061	0.055	21.396	19.148	0.003	0.(
OGX	5.76	9	0.055	0.055	0.922	6.62	3.771	0.06	0.054	21.067	18.936	0.003	0.(
INS	5.53	19	0.056	0.057	0.925	6.793	3.859	0.061	0.055	21.328	19.261	0.004	0.(
FOA	4.51	8	0.054	0.054	0.872	6.553	3.713	0.059	0.053	20.38	18.391	0.002	0.(
BVG	3.60	ы	0.06	0.06	0.968	7.166	4.067	0.062	0.056	21.742	19.576	0.004	0.(
TLS	3.57	14	0.053	0.053	0.948	6.363	3.656	0.059	0.053	20.524	18.482	0.002	0.(
FBN	2.92	16	0.053	0.055	1.095	6.367	3.731	0.06	0.054	20.944	19.053	0.003	0.(
AUT	2.85	9	0.051	0.051	0.932	6.137	3.534	0.059	0.053	20.648	18.617	0.002	0.0
CHM	2.81	15	0.052	0.051	0.849	6.213	3.531	0.059	0.053	20.542	18.585	0.003	0.(
ELC	2.77	9	0.055	0.056	1.032	6.631	3.832	0.061	0.055	21.115	19.098	0.003	0.0
\cos	2.74	ω	0.057	0.058	1.111	6.719	3.915	0.061	0.055	21.277	19.331	0.003	0.0
ARO	2.54	7	0.055	0.054	0.856	6.564	3.71	0.06	0.054	20.743	18.668	0.002	0.0

firms per industry. Source: S&P Global and authors' calculations. Notes: The first twelve industries represent the 59.81% of participation in terms of market capitalization and in number of

46

Table 26: Average degree centralities, analysis by industry, 2016-202. Part I

ţ.
Part
1
2016-202.
i industry,
by
ies, analysis by
lit
degree centra
Average deg
27:
Table

 \square

+	C_B^-	0.003	0.005	0.003	0.002	0.004	0.005	0.003	0.005	0.003	0.003	0.005	0.004	0.003	0.003
Oahe	C_B^{uus}	0.002	0.004	0.002	0.002	0.003	0.004	0.002	0.004	0.002	0.003	0.004	0.003	0.003	0.003
+2	C_H	18.416	19.74	18.575	18.219	19.139	20.235	18.47	19.618	18.512	18.608	19.783	19.131	18.784	18.865
Cabe	C_{H}^{mos}	20.728	21.671	20.806	20.155	21.171	21.982	20.617	21.651	20.83	20.909	21.75	21.201	20.94	20.747
+ Č	CC	0.053	0.056	0.053	0.052	0.054	0.057	0.053	0.056	0.053	0.054	0.056	0.055	0.054	0.054
Cabe	CCC	0.06	0.062	0.06	0.058	0.06	0.062	0.059	0.062	0.06	0.06	0.062	0.061	0.06	0.06
+	C_D	3.443	3.933	3.638	3.547	3.599	4.061	3.541	3.948	3.77	3.799	4.022	3.907	3.696	3.628
Cabe	C_D^{mos}	6.244	6.951	6.494	6.18	6.428	7.032	6.404	6.844	6.819	6.696	7.257	6.979	6.555	6.355
Amet	C_D^{nee}	0.643	0.915	0.781	0.914	0.77	1.089	0.678	1.051	0.72	0.902	0.787	0.836	0.838	0.901
+	C_E	0.049	0.058	0.053	0.051	0.052	0.06	0.052	0.058	0.055	0.056	0.059	0.058	0.053	0.053
Cahs	C_E^{uuo}	0.052	0.058	0.054	0.051	0.053	0.059	0.053	0.057	0.057	0.056	0.061	0.059	0.054	0.053
.uun.	Firms	4	5	14	11	6	က	4	11	9	5 C	က	9	4	2
	Cap %		2.11	2.03	1.96	1.74	1.72	1.58	1.57	1.51	1.44	1.36	1.33	1.32	0.95
Indus-	try	SOF	MNX	IEQ	PRO	MUW	SEM	RTS	REA	TRA	ELQ	TOB	CON	IDD	PUB

Notes: Twenty nine industries participate with 0.927% or less (per industry) of market capitalisation, representing in total 12.04% of the index total.

Source: S&P Global and authors' calculations.

Indus-	Market	Num.											
try	Cap %	Firms	C_E^{abs}	C_E^+	C_D^{net}	C_D^{abs}	C_D^+	C_C^{abs}	C_{C^+}	C_H^{abs}	C_{H}^{+}	C_B^{abs}	~
MTC	0.93	4	0.054	0.054	0.968	6.394	3.681	0.06	0.054	20.982	18.903	0.003	0.0
FDR	0.91	6	0.054	0.055	1.054	6.597	3.826	0.06	0.055	21.038	19.172	0.003	0.0
COM	0.77	ట	0.061	0.06	0.815	7.208	4.012	0.062	0.057	21.714	19.87	0.004	0.0
BLD	0.76	4	0.061	0.058	0.785	7.233	4.009	0.061	0.054	21.122	18.889	0.002	0.0
HOU	0.76	2	0.059	0.058	0.696	7.061	3.879	0.06	0.054	20.714	18.604	0.002	0.0
TSV	0.75	4	0.048	0.048	0.879	5.809	3.344	0.057	0.051	19.858	17.656	0.001	0.0
TCD	0.58	υ	0.05	0.051	1.032	5.999	3.516	0.059	0.053	20.373	18.516	0.002	0.0
REX	0.55	2	0.061	0.059	0.731	7.278	4.005	0.061	0.054	21.413	18.917	0.003	0.0
ATX	0.54	ట	0.052	0.051	0.725	6.333	3.529	0.059	0.053	20.452	18.385	0.002	0.0
TRT	0.51	თ	0.057	0.055	0.829	6.79	3.809	0.06	0.054	21.044	18.82	0.003	0.C
AIR	0.49	4	0.051	0.05	0.761	6.167	3.464	0.06	0.053	21.025	18.756	0.003	0.C
GAS	0.47	ယ	0.052	0.052	0.899	6.307	3.603	0.061	0.055	21.34	19.197	0.003	0.004
CMT	0.46	2	0.049	0.047	0.558	5.887	3.222	0.058	0.051	20.052	18.007	0.002	0.C
HEA	0.46	2	0.051	0.051	0.838	6.16	3.499	0.06	0.054	20.651	18.642	0.002	0.0

Source: S&P Global and authors' calculations.

Table 28: Average degree centralities, analysis by industry, 2016-202. Part III

$Part \ IV$
2016-202.
' industry,
by
ties, analysis
e centralities,
e degree
Average
Table 29:

Cap % 0.44 0.44 0.42 0.29 0.26 0.26 0.26 0.17 0.16 0.16 0.16 0.16 0.08 0.08 0.08	Indus-	Market	Num.											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	try	Cap %	Firms	C_E^{abs}	C_E^+	C_D^{net}	C_D^{abs}	C^+_D		$\overset{O+}{C}$	C_H^{abs}	C_H^+	C_B^{abs}	C^B_B
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	LIF	0.44	လ	0.048	0.045	0.375	5.878	3.126	<u> </u>	0.051	20.162		0.002	0.002
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	FRP	0.44	4	0.057	0.059	1.097	6.85	3.974	<u> </u>	0.056	21.723		0.005	0.006
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	BTC	0.42	လ	0.056	0.054	0.723	6.676	3.7	<u> </u>	0.053	20.529		0.002	0.002
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ITC	0.29	2	0.046	0.047	0.927	5.491	3.209	<u> </u>	0.052	20.164		0.002	0.002
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	HOM	0.29	က	0.054	0.056	1.146	6.531	3.839	<u> </u>	0.056	21.642		0.004	0.004
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	OGR	0.26	Ξ	0.054	0.052	0.595	6.469	3.532	<u> </u>	0.052	20.545		0.002	0.001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ICS	0.21	လ	0.048	0.05	1.063	5.731	3.397	<u> </u>	0.054	20.488		0.002	0.003
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	STL	0.17	Ξ	0.047	0.05	1.194	5.731	3.463	<u> </u>	0.053	20.505		0.002	0.003
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CNO	0.16	2	0.055	0.054	0.894	6.532	3.713		0.054	21.046		0.003	0.003
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CTR	0.16	2	0.057	0.056	0.831	6.882	3.856	<u> </u>	0.055	21.181		0.003	0.004
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	THQ	0.08	μ	0.057	0.059	1.273	6.867	4.07	$\overline{}$	0.053	20.464		0.002	0.002
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	IMS	0.08	Π	0.046	0.044	0.458	5.603	3.031	<u> </u>	0.05	19.712		0.001	0.001
0.07 1 0.04 0.035 0.15 4.96 2.555 0.055	ALU	0.07	Ц	0.059	0.056	0.505	6.97	3.738	<u> </u>	0.056	21.441		0.003	0.004
	DHP	0.07		0.04	0.035	0.15	4.96	2.555	0	0.048	19.012		0.001	0.001

Source: S&P Global and authors' calculations.

LU	PT	AT	IE	NO	FΙ	ΒE	DK	SE	IT	NL	\mathbf{ES}	DE	CH	\mathbf{FR}	GB	try	Indus-
0.22	0.25	0.33	1.12	1.59	1.92	2.52	2.57	3.61	4.52	5.07	5.49	13.29	13.72	21.09	22.70	Cap %	Market
2	2	2	8	7	10	9	11	23	19	14	18	41	30	51	84	Firms	Num.
0.05	0.055	0.057	0.055	0.054	0.057	0.057	0.05	0.054	0.052	0.054	0.058	0.054	0.055	0.055	0.054	C_E^{abs}	
0.05	0.057	0.054	0.052	0.054	0.057	0.056	0.049	0.054	0.051	0.055	0.059	0.054	0.055	0.055	0.054	C_E^+	
0.72	1.146	0.532	0.573	0.824	0.88	0.85	0.798	0.876	0.768	0.946	1.022	0.893	0.907	0.92	0.931	C_D^{net}	
6.093	6.515	6.754	6.548	6.531	6.852	6.849	6.024	6.478	6.227	6.585	6.932	6.474	6.574	6.626	6.529	C_D^{abs}	
3.407	3.831	3.643	3.56	3.678	3.866	3.849	3.411	3.677	3.497	3.765	3.977	3.683	3.74	3.773	3.73	C_D^+	
0.059	0.059	0.06	0.06	0.06	0.061	0.06	0.058	0.06	0.059	0.06	0.061	0.06	0.061	0.06	0.06	C_C^{abs}	
0.053	0.053	0.053	0.053	0.054	0.055	0.054	0.052	0.054	0.053	0.054	0.055	0.054	0.054	0.054	0.054	C_{C}^{+}	
20.632	20.487	20.971	20.771	20.875	21.32	21.005	20.223	20.848	20.656	20.969	21.344	20.961	21.082	20.953	21.006	C_H^{abs}	
18.592	18.51	18.573	18.616	18.811	19.145	18.918	18.222	18.811	18.525	18.971	19.335	18.925	18.972	18.883	18.991	C_{H}^{+}	
0.002	0.002	0.003	0.002	0.003	0.004	0.003	0.002	0.003	0.002	0.003	0.003	0.003	0.003	0.003	0.003	C_B^{abs}	
0.003	0.002	0.003	0.003	0.003	0.004	0.004	0.002	0.004	0.003	0.003	0.004	0.004	0.004	0.003	0.004	C_B^+	

Table 30: Average degree centralities, analysis by country, 2016-202

of firms per industry respectively. *Source:* S&P Global and authors' calculations. Notes: The first four countries represent the 70.7% and 62.2% of participation in terms of market capitalisation and number

Country
by
Description
Network
Table 31:

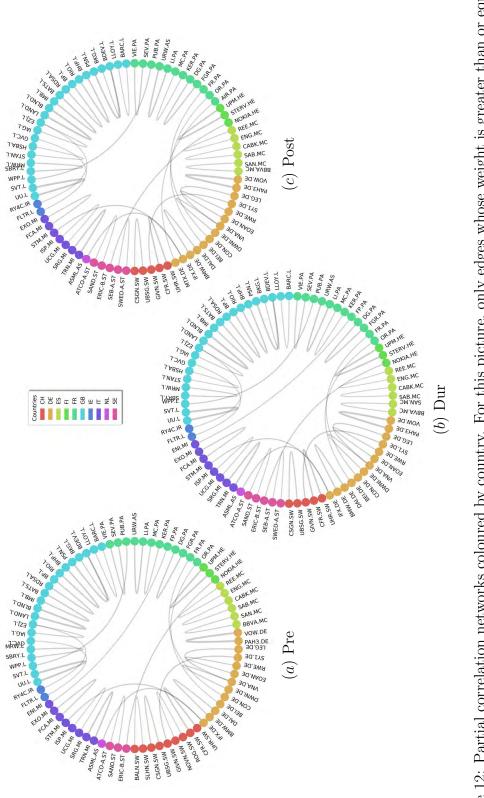
Edges		Post	0.262	0.283	0.328	0.28	0.371	0.316	0.413	0.34	0.486	0.396	0.375	0.614	0.215	1.0	1.0	0.0
Normalized Number of Edges	COVID-19	During	0.261	0.29	0.325	0.272	0.386	0.313	0.407	0.352	0.484	0.414	0.431	0.652	0.233	1.0	1.0	0.0
dized Nu	COV	Pre	0.26	0.285	0.325	0.271	0.4	0.301	0.406	0.357	0.505	0.439	0.429	0.597	0.206	1.0	1.0	0.0
Norma		Sans	0.261	0.283	0.326	0.274	0.388	0.288	0.407	0.351	0.51	0.419	0.427	0.578	0.224	1.0	1.0	0.0
ıt		Post	0.009	0.011	0.023	0.014	0.033	0.018	0.037	0.026	0.043	0.035	0.047	0.075	0.016	0.161	0.123	0.0
Normalized Weight	COVID-19	During	0.009	0.01	0.023	0.014	0.033	0.017	0.037	0.025	0.042	0.035	0.048	0.075	0.017	0.149	0.096	0.0
formaliz	COV	\Pr	0.009	0.01	0.023	0.014	0.033	0.017	0.036	0.025	0.042	0.036	0.048	0.073	0.016	0.139	0.105	0.0
Z		Sans	0.009	0.011	0.022	0.014	0.033	0.017	0.036	0.025	0.044	0.035	0.049	0.073	0.017	0.149	0.108	0.0
	Market	Cap. %	22.7	21.09	13.72	13.28	5.49	05.07	4.52	3.61	2.57	2.52	1.92	1.59	1.12	0.33	0.25	0.22
	Number	of firms	84	51	30	41	18	14	19	23	11	6	10	7	∞	2	2	2
	ISO	code	GB	FR	CH	DE	ES	NL	ΤI	SE	DK	BE	FΙ	NO	IE	AT	\mathbf{PT}	ΓΩ

S&PNotes: This table shows the country with its corresponding market capitalisation share from the most representative share to the smallest. The country is represented by its ISO code, followed by the number of firms per sector; it also shows the normalised weight of the edges among the sector and the normalised number of edges, considering net values. Source: Global and authors' calculations.

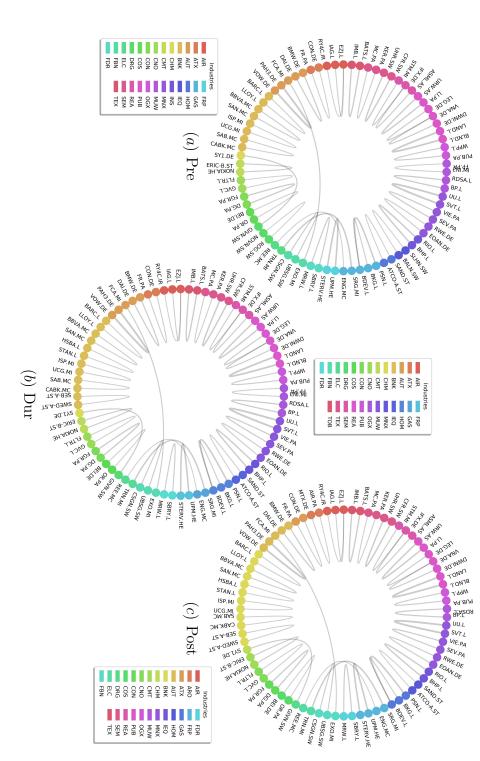
	Firm	Total	Sans	Pre	Dur	Post
BNK	27	0.344	0.344	0.340	0.351	0.343
INS	19	0.386	0.385	0.384	0.398	0.392
FBN	16	0.359	0.359	0.358	0.360	0.360
CHM	15	0.365	0.364	0.387	0.355	0.354
IEQ	14	0.392	0.391	0.386	0.412	0.396
TLS	14	0.474	0.474	0.481	0.464	0.486
REA	11	0.501	0.503	0.484	0.503	0.486
PRO	11	0.342	0.340	0.349	0.360	0.346
DRG	11	0.450	0.452	0.427	0.455	0.444
TEX	10	0.448	0.449	0.440	0.440	0.454
AUT	9	0.495	0.497	0.501	0.479	0.467
ELC	9	0.493	0.497	0.473	0.480	0.460
OGX	9	0.722	0.728	0.700	0.699	0.677
MUW	9	0.432	0.432	0.410	0.424	0.463
FOA	8	0.348	0.343	0.386	0.331	0.391
PUB	7	0.580	0.578	0.589	0.588	0.585
ARO	7	0.641	0.64	0.658	0.659	0.598
FDR	6	0.641	0.643	0.645	0.603	0.650
CON	6	0.412	0.415	0.379	0.392	0.433
TRA	6	0.604	0.603	0.583	0.652	0.572
ELQ	5	0.543	0.545	0.476	0.582	0.538
TRT	5	0.794	0.793	0.800	0.800	0.800
TCD	5	0.639	0.648	0.63	0.600	0.533
BVG	5	0.704	0.705	0.693	0.699	0.700
MNX	5	0.873	0.874	0.839	0.887	0.900
TSV	4	0.391	0.406	0.264	0.339	0.397
BLD	4	0.374	0.378	0.383	0.345	0.337
FRP	4	0.837	0.825	0.865	0.875	0.962
AIR	4	1.0	1.0	1.0	1.0	1.0
MTC	4	0.790	0.784	0.819	0.833	0.785
RTS	4	0.388	0.382	0.383	0.433	0.446
IDD	4	0.390	0.390	0.383	0.363	0.452
SOF	4	0.838	0.842	0.833	0.833	0.785

 Table 32: Normalized Number of Edges per Industry

Notes: Industries with more than 3 firms. Source: Authors' calculations.



to 0.3 are considered, so the net, absolute and positive networks are the same and depicted here. Source: Authors' calculations Figure 13: Partial correlation networks coloured by industry. For this picture, only edges whose weight is greater than or equal



From Section 5.4

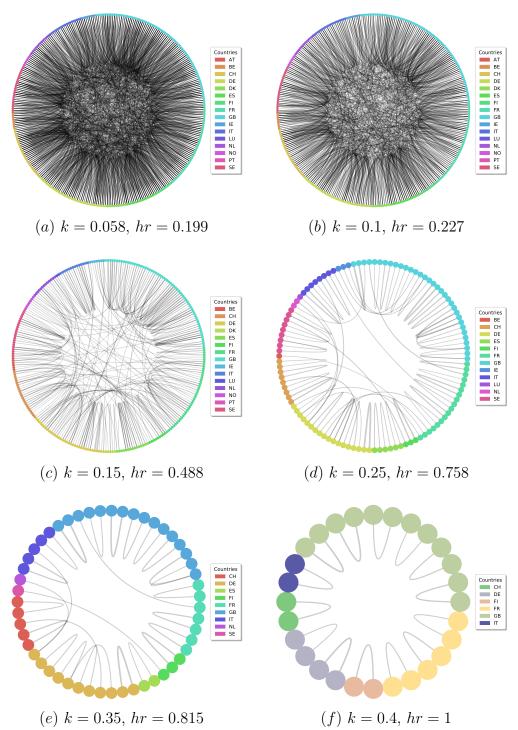


Figure 14: Homophily by country in the net skeleton, each subfigure was drawn using a different cut-off value k, obtaining the homophily ratio hr. Source: Authors' calculations.

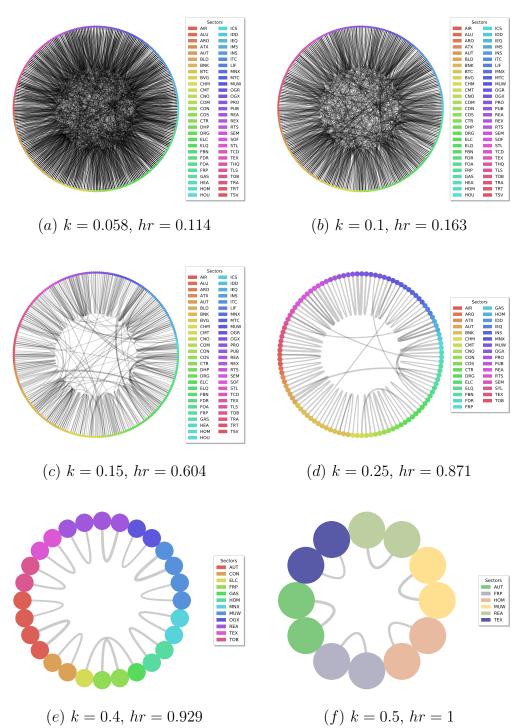


Figure 15: Homophily by sector in the net skeleton, each subfigure was drawn using a different cut-off value k, obtaining the homophily ratio hr. Source: Authors' calculations.

A.3 Tickers, Countries and Industries

	D :		ISO	Industry
Ticker	Firm	Market Cap		
1COV.DE	Covestro AG	7585 350000		CHM
AAL.L	Anglo American PLC	35532 325635		MNX
ABBN.SW	ABB Ltd	46631 121398		ELQ
ABF.L	Associated British Foods	24306 770982		FOA
ABI.BR	Anheuser Busch Inbev NV	123000 000000		BVG
ABN.AS	ABN AMRO Group NV	$15246 \ 800000$		BNK
AC.PA	Accor	$11274 \ 420500$		TRT
ACA.PA	Credit Agricole SA	$37284 \ 605325$		BNK
ACS.MC	ACS Actividades de Construccion y Servicios SA	11217 807250	\mathbf{ES}	CON
AD.AS	Ahold Delhaize NV	$26391 \ 148875$	NL	FDR
ADP.PA	ADP Promesses	17427 032100		PRO
ADS.DE	Adidas AG	58080 556800		TEX
AENA.MC	Aena SA	25575 000000		TRA
AGN.AS	Aegon NV	8523 000416		INS
AGS.BR	AGEAS	$10450 \ 342320$		INS
AHT.L	Ashtead Group	$14359 \ 138055$		TCD
AI.PA	L'Air Liquide S.A.	59445 121800		CHM
AIR.PA	Airbus SE	101000 000000		ARO
AKE.PA	Arkema	7242 750700		CHM
AKZA.AS	Akzo Nobel NV	20643 260000		CHM
ALFA.ST	Alfa Laval AB	9490 388121		IEQ
ALO.PA	Alstom	9472 357920		IEQ
ALV.DE	Allianz SE	91110 583200		INS
AMS.MC	Amadeus IT Group SA	31396 310400		TSV
ASML.AS	ASML Holding NV	112000 000000		SEM
ASSA-B.ST	Assa Abloy B	22025 237708		BLD
ATCO-A.ST		29893 459353		IEQ
ATL.MI	Atlantia SpA	$17153 \ 267670$		TRĂ
ATO.PA	AtoS SE	8115 372400		TSV
AV.L	Aviva	19478 435620		INS
AZN.L	AstraZeneca PLC	118000 000000		DRG
BA.L	BAE Systems PLC	23152 520936		ARO
BAER.SW	Julius Baer Group	$10284 \ 124741$		FBN
BALN.SW	Baloise Hldg Reg	7859 340301		INS
BARC.L	Barclays	36376 018151		BNK
BAS.DE	BASF SE	61859 560650		CHM
BATS.L	British American	94014 870214		TOB
BAYN.DE	Bayer AG	67899 111120		DRG
BBVA.MC	Banco Bilbao Vizcaya	33226 080921		BNK
DDVA.WO	-	JJZZU UOUJZI	ĽЮ	DIMI
BDEV.L	Argentaria SA Barratt Developments	8981 456822	GB	HOM
1.1100	Tobacco PLC	0301 400022	ЧU	110101
BEI.DE	Beiersdorf AG	26875 800000	\mathbf{DF}	COS
		44349 528279		
BHP.L BIDC ID	BHP Group Plc Bank of Iroland Croup			MNX BNK
BIRG.IR	Bank of Ireland Group	5270 162938	1E/	BNK

Table 33: Firms Part I

	D .		ISO	Industry
Ticker	Firm	Market Cap	Code	Code
BKG.L	Berkeley Group	7860 684449	GB	HOM
BLND.L	Holdings Plc	$7108 \ 239101$	CD	
	British Land Co		GB	REA
BMW.DE	Bayer Motoren Werke	44029 914300	DE	AUT
	AG (BMW)	FOCOF FC4FOO	БD	EOA
BN.PA BNP.PA	danone BNP Paribas	50625 564500	${ m FR}$ ${ m FR}$	FOA
		$65744 \ 980290$	г DE	BNK TCD
BNR.DE BNZL.L	Brenntag AG Bunzl	$\begin{array}{c} 7490 \ 160000 \\ 8190 \ 216743 \end{array}$	GB	TCD
BOL.ST	Boliden AB	6478 950144	SE	MNX
BOL.51 BP.L	BP p.l.c	120000 000000	GB	OGX
BRBY.L	Burberry Group	$120000\ 000000$ $10719\ 812115$	GB	TEX
BT-A.L	BT Group	22669 956904	GB	TLS
BVI.PA	Bureau Veritas SA	$10512 \ 101140$	FR	PRO
CA.PA	Carrefour SA	$12068 \ 626700$	FR	FDR
CABK.MC	CaixaBank	$12000\ 020100$ $16736\ 063524$	ES	BNK
CAP.PA	Capgemini SE	$18218 \ 316600$	\overline{FR}	TSV
CARL-B.CO	Carlsberg AS B	$15210 \ 510000 \ 15807 \ 271025$	DK	BVG
CBK.DE	Commerzbank AG	6909 259086	DE	BNK
CCL.L	Carnival Plc	$9321 \ 627486$	GB	TRT
CFR.SW	Richemont, Cie	36538 864514	CH	TEX
0110.077	Financiere A Br	00000 004014	OII	I L/X
CHR.CO	Christian Hansen Holding A/S	$9341 \ 145735$	DK	LIF
CLN.SW	Clariant AG Reg	6598 424555	CH	CHM
CLNX.MC	Cellnex Telecom S.A.	$14784 \ 996990$	ES	TLS
CNA.L	Centrica	$6152\ 218228$	GB	MUW
CNHI.MI	CNH Industrial NV	$13325\ 257110$	IT	IEQ
COLO-B.CO	Coloplast AS B	$21897\ 018624$	DK	HEA
CON.DE	Continental AG	23052 691560	DE	ATX
CPG.L	Compass Group	$35582 \ 324369$	GB	REX
CRDA.L	Croda Intl	7981 408595	GB	CHM
CRH	CRH Plc	28198 133760	IE	COM
CS.PA	AXA	60928 360380	FR	INS
CSGN.SW	Credit Suisse Group AG	$30826\ 778129$	CH	FBN
DAI.DE	Daimler AG	52817 852690	DE	AUT
DANSKE.CO	Danske Bank A/S	12437 947310	DK	BNK
DASTY	Dassault Systemes SA	38532 098400	\mathbf{FR}	SOF
DB	Deutsche Bank AG	$14295 \ 868841$	DE	BNK
DB1.DE	Deutsche Boerse AG	26628 500000	DE	FBN
DCC.L	DCC	$7836 \ 826228$	IE	IDD
DG.PA	Vinci	59918 562000	\mathbf{FR}	CON
DGE.L	Diageo Plc	$97310 \ 307888$	GB	BVG
DLG.L	Direct Line Insurance	$5078 \ 020620$	GB	INS
	Group			
DNB.OL	DNBASA	26283 427706	NO	BNK
DPW.DE	Deutsche Post AG	$41805 \ 942250$	DE	TRA
DSM.AS	Koninklijke DSM NV	$21063 \ 442500$	NL	CHM
DSV.CO	Dsv Panalpina A/s	$24146 \ 014608$	DK	TRA
DTE.DE	Deutsche Telekom AG	69374 457630	DE	TLS
DWNI.DE	Deutsche Wohnen AG BR	$13100 \ 456100$	DE	REA
EBS.VI	Erste Group Bank AG	$14424 \ 088000$	AT	BNK
EDEN.PA	Edenred	$11211 \ 750500$	\mathbf{FR}	TSV
e. SkP Clobal a	nd authors			

Table 34: Firms Part II

			ISO	Industry
Ticker	Firm	Market Cap	Code	Code
EDF.PA	Electricite de France	30290 030160	\mathbf{FR}	ELC
EDP.LS	Energias de Portugal SA	$11931 \ 027360$	\mathbf{PT}	ELC
EL.PA	EssilorLuxottica	$58853\ 004000$		TEX
ELE.MC	Endesa SA	25187 710080		ELC
ELISA.HE	Elisa Corporation		\mathbf{FI}	TLS
ELUX-B.ST	Electrolux AB B	$6571 \ 380437$	SE	DHP
EN.PA	Bouygues		\mathbf{FR}	CON
ENEL.MI	Enel SpA		IT	ELC
ENG.MC	Enagas SA	5428 811160		GAS
ENGI.PA	Engie		\mathbf{FR}	MUW
ENI.MI	ENI SpA	50318 925510		OGX
EOAN.DE	E.ON SE	25155 922156		MUW
EQNR.OL	Equinor ASA	59422 071034		OGX
ERIC-B.ST	Ericsson L.M. Telefonaktie B	23660 551313	SE	CMT
EXO.MI	EXOR NV	16648 280000	IT	FBN
EXPN.L	Experian Plc	29221 182071	GB	PRO
EZJ.L	Easyjet	6659 805941	GB	AIR
FCA.MI	Fiat Chrysler Automobiles NV	20446 042518		AUT
FER.MC	Ferrovial SA	19942 211340		CON
FERG.L	Ferguson PLC	19942 211340 18780 339920	GB	TCD
	-	9996 000000		CON
FGR.PA	Eiffage			
FLTR.L	Flutter Entertainment plc		IE	CNO
FME.DE	Fresenius Medical Care AG	20259 086320		HEA
	Fortum Oyj	19544 074000		ELC
FP.PA	TOTAL SA	131000 000000		OGX
FR.PA	Valeo	7546 346730		ATX
G.MI	Assicurazioni Generali SpA	28638 458095		INS
G1A.DE	GEA AG	5320 904160		IEQ
GALP.LS	Galp Energia SGPS SA	11490 447900		OGX
GBLB.BR	Groupe Bruxelles Lambert	15161 197680		FBN
GEBN.SW	Geberit AG Reg	18517 002581		BLD
GFC.PA	Gecina	12155 614800		REA
GFS.L	G4S Plc	$3997 \ 388193$	GB	ICS
GIVN.SW	Givaudan AG	$25757 \ 519041$	CH	DRG
GLE.PA	Societe Generale	$26292 \ 438995$		INS
GLEN.L	Glencore Plc	$40569 \ 355368$		MNX
GLPG.AS	Galapagos Genomics NV	$12060 \ 395500$		BTC
GMAB.CO	Genmab AS	$12880 \ 438320$		BTC
GRF.MC	Grifols SA	$13393 \ 265900$		BTC
GSK.L	GlaxoSmithKline	$113000 \ 000000$		DRG
GVC.L	GVC Holdings PLC	$6041 \ 813756$	GB	CNO
HEI.DE	HeidelbergCement AG	$12889 \ 103360$	DE	COM
HEIA.AS	Heineken NV	$54674 \ 204760$	\mathbf{NL}	BVG
HEN3.DE	Henkel AG & Co. KGaA	$16426 \ 628600$	DE	HOU
	Nvtg - Pref			
HEXA-B.ST	Hexagon AB	$17520 \ 937593$	SE	ITC
HL.L	Hargreaves Lansdown Plc	$10846 \ 590177$		FBN
HLMA.L	Halma	9449 553980		ITC
HM-B.ST	Hennes & Mauritz AB B	26521 955023		RTS
HNR1.DE	Hannover Ruck SE	20778 863100		INS
HO.PA	Thales	19586 946600		ARO
HSBA.L	HSBC Holdings Plc	144000 000000		BNK
	11.2.2.0 11010111160 1 10		<u>с</u> р	

Table 35: Firms Part III

Source: $\overline{S\&P \text{ Global and authors.}}$

Ticker	Firm	Market Cap		Industry Code
IAG.L	International Consolidated Airlines Group SA	14713 577672		AIR
IMB.L	Imperial Brands PLC	22548 389450	GB	TOB
IMI.L	IMI	3988 017359		PRO
INDU-A.ST	Industrivarden AB A	5938 978289		FBN
INF.L	Informa PLC	12676 181930		PUB
INGA.AS	ING Groep NV	41645 321728		BNK
IBE.MC	Iberdrola SA	58403 820960		ELC
IFX.DE	Infineon Technologies AG	$25391 \ 338590$		SEM
IHG.L	InterContinental Hotels	$11553 \ 634759$		TRT
	Group PLC			
III.L	3I Group	$12602 \ 800553$		FBN
INVE-B.ST	Investor AB B	$22195 \ 627041$		FBN
ISP.MI	Intesa SanPaolo	41114 341692		BNK
ITRK.L	Intertek Group PLC	11119 592874		PRO
ITV.L	ITV PLC	7183 377677		PUB
ITX.MC	Inditex SA	$98018 \ 642500$	\mathbf{ES}	RTS
JMAT.L	Johnson, Matthey	$7043 \ 813456$	GB	CHM
KBC.BR	KBC Group NV	$27961 \ 807020$	BE	BNK
KER.PA	Kering	$73803 \ 668400$	\mathbf{FR}	TEX
KGP.L	Kingspan Group PLC	$9888 \ 392250$		BLD
KINV-B.ST	Kinnevik Investment AB B	$5280 \ 737098$	SE	FBN
KNEBV.HE	Kone Corp B	$26178 \ 851480$	\mathbf{FI}	IEQ
KNIN.SW	KUEHNE & NAGEL INTL AG-REG	18023 105439	CH	TRA
KPN.AS	Koninklijke KPN NV	$11057 \ 682564$	NL	TLS
KYGA.L	Kerry Group A	$19531 \ 935500$		FOA
LAND.L	Land Securities Group PLC	8789 760224		REA
LDO.MI	Leonardo S.p.a.	6041 667500		ARO
LEG.DE	LEG Immobilien AG	7237 880150		REA
LGEN.L	Legal & General Group	21154 473153		BNK
LHA.DE	Deutsche Lufthansa AG	7772 662140		AIR
LHN.SW	LafargeHolcim Ltd	30439 194891		COM
LI.PA	Klepierre	10406 302400		REA
LISN.SW	Lindt & Sprungli AG Reg	$10701\ 218854$		FOA
LLOY.L	Lloyds Banking Group PLC	51831 247152		BNK
LOGN.SW	Logitech International SA	7301 174195	СН	THQ
LOGN.SW	Lonza AG	24206 078639		LIF
LR.PA	Legrand Promesses	$19234 \ 418240$		ELQ
LSE.L	London Stock	$\frac{19234}{32084} \frac{410240}{185501}$		FBN
IVODE	Exchange PLC	F091 190900	DE	CITA
LXS.DE	Lanxess AG	5231 139360		CHM
	AP Moller - Maersk AS A	12997 745612		TRA
MB.MI	Mediobanca SpA	8648 440290		BNK
MC.PA	LVMH-Moet Vuitton	211000 000000		TEX
MCRO.L	Micro Focus International	4561 232100		PRO
MKS.L	Marks & Spencer Group	4920 181628		FDR
ML.PA	Michelin CGDE B Brown	19645 200600		ATX
MNDI.L	Mondi PLC	10171 043700		FRP
MONC.MI	Moncler SpA	10336 016430		TEX
MOWI.OL	Mowi ASA	$11942 \ 557638$	NO	FOA

Table 36: Firms Part IV

Ticker	Firm	Market Cap	ISO Code	Industry Code
MRK.DE	MERCK KGaA	13615 644700	DE	DRG
MRO.L	Melrose Industries PLC	$13785 \ 236033$	GB	
			GB	IEQ FDR
MRW.L	Morrison (WM) Supermarkets	5650 440187	GD	FDR
MT.AS	ArcelorMittal Inc	$15888 \ 392784$	LU	STL
MTX.DE	MTU Aero Engines AG	$13239\ 200000$	DE	ARO
MUV2.DE	Munich Re AG	$37955 \ 634000$	DE	INS
NDA-FI.HE	Nordea Bank Abp	$29111 \ 104460$	\mathbf{FI}	BNK
NESN.SW	Nestle SA Reg	287000 000000	CH	FOA
NESTE.HE	Neste Oyj	$23860 \ 956240$	$_{\rm FI}$	OGR
NG.L	National Grid PLC	41881 362823	GB	MUW
NHY.OL	Norsk Hydro AS	6848 706583	NO	ALU
NN.AS	NN Group N.V.	$11619 \ 063920$	\mathbf{NL}	INS
NOKIA.HE	Nokia OYJ	$18561 \ 447072$	\mathbf{FI}	CMT
NOVN.SW	Novartis AG Reg	$216000 \ 000000$	CH	DRG
NOVO-B.CO	Novo Nordisk AS B	96373 738885	DK	DRG
NTGY.MC	Naturgy Energy Group SA	$22044 \ 332800$	\mathbf{ES}	GAS
NXT.L	Next	$11049\ 786129$	GB	RTS
NZYM-B.CO	Novozymes AS B	$10350 \ 570630$	DK	CHM
OCDO.L	Ocado Group PLC	$10685 \ 197490$	GB	RTS
OMV.VI	OMV AG	$16389 \ 831840$	AT	OGX
OR.PA	L'Oreal	$147000 \ 000000$	\mathbf{FR}	\cos
ORA.PA	Orange	34750 589760	\mathbf{FR}	TLS
ORK.OL	Orkla AS	9034 708498	NO	FOA
PAH3.DE	Porsche Automobil Holding SE	$10204 \ 250000$	DE	AUT
PGHN.SW	Partners Group Hldg	21805 141471	CH	REA
PHIA.AS	Koninklijke Philips Electronics NV	39397 568000	NL	MTC
PNDORA.CO	Pandora A/S	$3878 \ 179176$	DK	TEX
PROX.BR	Proximus	8626 398000	BE	ELQ
PRU.L	Prudential PLC	44280 510043	GB	INS
PRY.MI	Prysmian SpA	5762 414560	IT	ELQ
PSN.L	Persimmon	10114 746939	GB	HOM
				-
PSON.L	Pearson Bublicia Cround	5876 761866	GB FD	PUB
PUB.PA	Publicis Groupe	9701 292840	FR	PUB
QIA.DE	QIAGEN NV	6913 384360	DE	
RACE.MI	Ferrari NV	28681 211700	IT	AUT
RAND.AS	Randstad NV	9960 451280	NL	PRO
RB.L	Reckitt Benckiser Group PLC	53348 811760	GB	HOU
RDSA.L	Royal Dutch Shell PLC	110000 000000	GB	OGX
REE.MC	Red Electrica Corporacion SA	9698 859000	\mathbf{ES}	ELC
REL.L	RELX PLC	45300 422373	GB	PRO
REP.MC	Repsol SA	$22271 \ 158630$	\mathbf{ES}	OGX
RI.PA	Pernod-Ricard	42290 573400	\overline{FR}	BVG
RIO.L	Rio Tinto PLC	67920 021937	GB	MNX
RMS.PA	Hermes Intl	70330 067800	\overline{FR}	TEX
RNO.PA	Renault SA	12473 553960	FR	AUT
ROG.SW	Roche Hldgs AG	203000 000000	CH	DRG
	Ptg Genus	_00000 000000	~	2100

Table 37: Firms Part V

			ISO	Industry
Ticker	Firm	Market Cap		
RR.L	Rolls-Royce Holdings PLC	$15590 \ 884245$		ARO
RSA.L	RSA Insurance Group PLC	6861 117604		INS
RTO.L	Rentokil Initial	9836 210575		ICS
RWE.DE	RWE AG	$16813 \ 303100$		MUW
RY4C.IR	Ryanair Holdings PLC	$15859 \ 007780$		AIR
SAB.MC	Banco de Sabadell SA	5840 797040		BNK
SAF.PA	Safran SA	$56314 \ 955050$		ARO
SAMPO.HE	1 00	$21562 \ 054320$		INS
SAN.MC	Banco Santander SA	61985 568950		BNK
SAN.PA	Sanofi-Aventis	113000 000000		DRG
SAND.ST	Sandvik AB	$21857 \ 965979$		IEQ
SAP.DE	SAP SE	$148000 \ 000000$		SOF
SBRY.L	Sainsbury (J)	$6008 \ 030226$		FDR
SCA-B.ST	SCA - B shares	$5774 \ 424878$	SE	FRP
SCHN.SW	Schindler-Hldg AG Reg	$14642 \ 544020$	CH	IEQ
SCMN.SW	Swisscom AG Reg	$24437 \ 307425$	CH	TLS
SCR.PA	SCOR SE	$6980 \ 326800$	\mathbf{FR}	INS
SDR.L	Schroders PLC	$8905 \ 494694$	GB	FBN
SEB-A.ST	SEB-Skand Enskilda Banken A	18219 828720	SE	BNK
SECU-B.ST	Securitas AB B	$5354 \ 462712$	SE	ICS
SESG.PA	SES	4793 225000		PUB
SEV.PA	Suez SA	8406 050055		MUW
SGE.L	Sage Group	9912 283546		SOF
SGO.PA	Saint-Gobain, Cie de	19940 789500		BLD
SGRO.L	SEGRO PLC	11627 787008		REA
SGSN.SW	SGS-Soc Gen Surveil	18624 735178		PRO
	Hldg Reg			
SHB-A.ST	Svenska Handelsbanken A	$18699 \ 691239$	SE	BNK
SIE.DE	Siemens AG	$99059 \ 000000$	DE	IDD
SK3.IR	Smurfit Kappa Group PLC	$8096 \ 425980$	IE	CTR
SKA-B.ST	SKANSKA AB-B	$8072 \ 421673$	SE	CON
SKF-B.ST	SKF AB B	$7588 \ 180375$	SE	IEQ
SLA.L	Standard Life Aberdeen	$9100 \ 512935$	GB	FBN
SLHN.SW	Swiss Life Reg	$15019 \ 669587$		INS
SMDS.L	DS Smith	$6209 \ 762969$	GB	CTR
SMIN.L	Smiths Group	7829 724427	GB	IDD
SN.L	Smith & Nephew	$19295 \ 676774$	GB	MTC
SOLB.BR	Solvay	10936 990800		CHM
SOON.SW	Sonova Holding AG	$13127 \ 267443$		MTC
SPSN.SW	Swiss Prime Site AG	7821 016722		REA
SPX.L	Spirax-Sarco Engineering	7724 540020		IEQ
SREN.SW	Swiss Re Reg	32752 395869		INS
SRG.MI	Snam SpA	15908 224926		GAS
SSE.L	Scottish & Southern Energy	17583 650712		ELC
STAN.L	Standard Chartered	26909 227396		BNK
	Stora Enso OYJ R	7939 610420		FRP
STERV.HE				
STJ.L	St James's Place	7280 987158		FBN
STM.MI	STMicroelectronics NV	21820 346430		SEM
STMN.SW	Straumann AG Reg	13888 578547		MTC
SU.PA SVT.L	Schneider Electric SE Severn Trent	$53251 \ 444500 \ 7138 \ 539011$		ELQ MUW
		7128 620011	1.12	$\Lambda/\Gamma \Gamma = \Lambda \Lambda/$

Table 38: Firms Part VI

T:-l	D:	Marlat Car	ISO	Industry
Ticker	Firm	Market Cap	Code	Code
SW.PA	Sodexo	15578 620750	FR	REX
SWED-A.ST	Swedbank AB	15047 719773	SE	BNK
SWMA.ST	Swedish Match AB	7821 532927	SE	TOB
SY1.DE	Symrise AG	12703 052600	DE	CHM
TATE.L	Tate & Lyle	4187 414119	GB	FOA
TEF.MC	Telefonica SA	$32331 \ 405964$	ES	TLS
TEL.OL	Telenor ASA	$23032 \ 664468$	NO	TLS
TEL2-B.ST	Tele2 AB B	$8621 \ 912671$	SE	TLS
TELIA.ST	Telia Company AB	$16151 \ 169427$	SE	TLS
TEMN.SW	Temenos Group AG	$10213 \ 002525$	CH	SOF
TEN.MI	Tenaris SA	$11864 \ 396850$	IT	OGX
TEP.PA	Teleperformance	$12735 \ 509400$	\mathbf{FR}	\mathbf{PRO}
TIT.MI	Telecom Italia SpA	$8459\ 017637$	IT	TLS
TKA.DE	ThyssenKrupp AG	$7495 \ 285280$	DE	IDD
TPK.L	Travis Perkins	$4730 \ 642257$	GB	TCD
TRN.MI	Terna SpA	$11913 \ 412186$	IT	ELC
TSCO.L	Tesco	29294 351743	GB	FDR
TUI1.DE	TUI AG	$6612 \ 159756$	DE	TRT
UBI.PA	Ubisoft Entertainment SA	6939 327040	\mathbf{FR}	IMS
UBSG.SW	UBS Group AG	43098 836809	CH	FBN
UCB.BR	UCB SA	$13790 \ 475400$	BE	DRG
UCG.MI	Unicredit SpA Ord	28956 662280	IT	BNK
UG.PA	Peugeot SA	19272 836400	\overline{FR}	AUT
UHR.SW	Swatch Group AG-B	7663 132882	CH	TEX
UMI.BR	Umicore	10683 904000	BE	CHM
UNA.AS	Unilever NV	$79136 \ 415440$	NL	COS
UPM.HE	UPM-Kymmene Oyj	16448 725590	FI	FRP
URW.AS	Unibail Rodamco Westfield	10448725590 19358644050	FR	REA
UTDI.DE	United Internet AG Reg	6002 400000 7602 265565	DE CP	TLS
UU.L	United Utilities Group Plc	7602 365565	GB	MUW
VIE.PA	Veolia Environnement	13332 180420	FR	MUW
VIFN.SW	Vifor Pharma Group	10567 085500	CH	DRG
VIV.PA	Vivendi SA	30564 528280	\mathbf{FR}	PUB
VNA.DE	Vonovia SE	26029 152000	DE	REA
VOD.L	Vodafone Group	$49971 \ 317452$	GB	TLS
VOLV-B.ST	Volvo AB B	$24537 \ 431397$	SE	AUT
VOW.DE	Volkswagen AG	51124 342500	DE	AUT
VWS.CO	Vestas Wind Systems AS	$17918 \ 957786$	DK	IEQ
WDI.DE	Wirecard AG	$13275 \ 282500$	DE	FBN
WEIR.L	Weir Group	$4631 \ 300556$	GB	IEQ
WKL.AS	Wolters Kluwer NV	$17751 \ 500320$	NL	PRÒ
WPP.L	WPP Plc	$16725 \ 083182$	GB	PUB
WRT1V.HE	Wartsila Oyj ABP	$5828 \ 501100$	\mathbf{FI}	IEQ
WTB.L	Whitbread	$8407 \ 368452$	GB	$\mathrm{TR}\mathbf{\tilde{T}}$
YAR.OL	Yara International ASA	10188 092051	NO	CHM
ZURN.SW	Zurich Insurance Group AG	55011 937615	CH	INS

Table 39: Firms Part VII

ISO Code	Country	ISO Code	Country	ISO Code	Country
AT	Austria	FI	Finland	NL	Netherlands
BE	Belgium	\mathbf{FR}	France	NO	Norway
CH	Switzerland	GB	United Kingdom	PT	Portugal
DE	Germany	IE	Ireland	SE	Sweden
DK	Denmark	IT	Italy		
ES	Spain	LU	Luxembourg		

Table 40:Countries

Industry Code	Industry	Industry Code	Industry
AIR	Airlines	ITC	Electronic Equipment,
ALU	Aluminum		Instruments &
ARO	Aerospace & Defense		Components
ATX	Auto Components	LIF	Life Sciences Tools
AUT	Automobiles		& Services
BLD	Building Products	MNX	Metals & Mining
BNK	Banks	MTC	Health Care Equipment
BTC	Biotechnology		& Supplies
BVG	Beverages	MUW	Multi & Water Utilities
CHM	Chemicals	OGR	Oil & Gas Refining
CMT	Communications Equipment		& Marketing
CNO	Casinos & Gaming	OGX	Oil & Gas Upstream
COM	Construction Materials		& Integrated
CON	Construction & Engineering	PRO	Professional Services
\cos	Personal Products	PUB	Media, Movies
CTR	Containers & Packaging		& Entertainment
DHP	Household Durables	REA	Real Estate
DRG	Pharmaceuticals	REX	Restaurants & Leisure
ELC	Electric Utilities		Facilities
ELQ	Electrical Components	RTS	Retailing
•	& Equipment	SEM	Semiconductors
FBN	Diversified Financial Services		& Semiconductor
	& Capital Markets		Equipment
FDR	Food & Staples Retailing	SOF	Software
FOA	Food Products	STL	Steel
FRP	Paper & Forest Products	TCD	Trading Companies
GAS	Gas Utilities		& Distributors
HEA	Health Care Providers	TEX	Textiles, Apparel
	& Services		& Luxury Goods
HOM	Homebuilding	THQ	Computers & Peripherals
HOU	Household Products		& Office Electronics
ICS	Commercial Services	TLS	Telecommunication
	& Supplies		Services
IDD	Industrial Conglomerates	TOB	Tobacco
IEQ	Machinery & Electrical	TRA	Transportation
Ŭ	Equipment		& Transportation
IMS	Interactive Media, Services		Infrastructure
	& Home Entertainment	TRT	Hotels, Resorts
INS	Insurance	-	& Cruise Lines
-		TSV	IT services

 Table 41: Industries

References

- Acemoglu, Daron, Asuman Ozdaglar, and Alireza Tahbaz-Salehi (2015). "Systemic risk and stability in financial networks". In: *American Economic Review* 105.2, pp. 564–608.
- Aielli, Gian Piero (2013). "Dynamic conditional correlation: on properties and estimation".
 In: Journal of Business & Economic Statistics 31.3, pp. 282–299.
- Albert, Réka, Hawoong Jeong, and Albert-László Barabási (1999). "Diameter of the worldwide web". In: *nature* 401.6749, pp. 130–131.
- Allen, Franklin and Ana Babus (2009). "Networks in finance". In: The network challenge: strategy, profit, and risk in an interlinked world 367.
- Allen, Franklin and Douglas Gale (2000). "Financial contagion". In: Journal of political economy 108.1, pp. 1–33.
- Almeida, Daniel de, Luiz K Hotta, and Esther Ruiz (2018). "MGARCH models: Trade-off between feasibility and flexibility". In: *International Journal of Forecasting* 34.1, pp. 45– 63.
- Anufriev, Mikhail and Valentyn Panchenko (2015). "Connecting the dots: Econometric methods for uncovering networks with an application to the Australian financial institutions".
 In: Journal of Banking & Finance 61, S241–S255.
- Barigozzi, Matteo and Christian Brownlees (2019). "Nets: Network estimation for time series". In: Journal of Applied Econometrics 34.3, pp. 347–364.
- Bauwens, Luc, Sébastien Laurent, and Jeroen VK Rombouts (2006). "Multivariate GARCH models: a survey". In: *Journal of applied econometrics* 21.1, pp. 79–109.
- Billio, Monica et al. (2012). "Econometric measures of connectedness and systemic risk in the finance and insurance sectors". In: *Journal of financial economics* 104.3, pp. 535–559.
- Caccioli, Fabio, Paolo Barucca, and Teruyoshi Kobayashi (2018). "Network models of financial systemic risk: a review". In: Journal of Computational Social Science 1.1, pp. 81– 114.
- Carnero, M Angeles and M Hakan Eratalay (2014). "Estimating VAR-MGARCH models in multiple steps". In: Studies in Nonlinear Dynamics & Econometrics 18.3, pp. 339–365.
- Demirer, Mert et al. (2018). "Estimating global bank network connectedness". In: *Journal* of Applied Econometrics 33.1, pp. 1–15.
- Diebold, Francis X and Kamil Yilmaz (2009). "Measuring financial asset return and volatility spillovers, with application to global equity markets". In: *The Economic Journal* 119.534, pp. 158–171.
- Diebold, Francis X and Kamil Yılmaz (2014). "On the network topology of variance decompositions: Measuring the connectedness of financial firms". In: *Journal of Econometrics* 182.1, pp. 119–134.
- Diebold, Francis X and Kamil Yilmaz (2015). "Trans-Atlantic equity volatility connectedness: US and European financial institutions, 2004–2014". In: Journal of Financial Econometrics 14.1, pp. 81–127.
- Easley, D. and J. Kleinberg (2010). *Networks, Crowds, and Markets: Reasoning about a Highly Connected World*. Cambridge University Press. ISBN: 9781139490306.
- Elliott, Matthew, Benjamin Golub, and Matthew O Jackson (2014). "Financial networks and contagion". In: American Economic Review 104.10, pp. 3115–53.

- Elliott, Matthew, Jonathon Hazell, and Co-Pierre Georg (2020). "Systemic risk-shifting in financial networks". In: Available at SSRN 2658249.
- Engle, Robert (2002). "Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models". In: Journal of Business & Economic Statistics 20.3, pp. 339–350.
- Eratalay, M Hakan and Evgenii V Vladimirov (2020). "Mapping the stocks in MICEX: Who is central in the Moscow Stock Exchange?" In: *Economics of Transition and Institutional Change* 28.4, pp. 581–620.
- Faloutsos, Michalis, Petros Faloutsos, and Christos Faloutsos (1999). "On power-law relationships of the internet topology". In: ACM SIGCOMM computer communication review 29.4, pp. 251–262.
- Fisher, Ronald Aylmer et al. (1924). "035: The Distribution of the Partial Correlation Coefficient." In.
- Freixas, Xavier, Bruno M Parigi, and Jean-Charles Rochet (2000). "Systemic risk, interbank relations, and liquidity provision by the central bank". In: *Journal of money, credit and banking*, pp. 611–638.
- Gai, Prasanna and Sujit Kapadia (2010). "Contagion in financial networks". In: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 466.2120, pp. 2401–2423.
- Horn, Roger A and Charles R Johnson (2012). Matrix analysis. Cambridge university press.
- Iori, Giulia and Rosario N Mantegna (2018). "Empirical analyses of networks in finance". In: Handbook of Computational Economics. Vol. 4. Elsevier, pp. 637–685.
- Jackson, Matthew O (2011). "An overview of social networks and economic applications". In: *Handbook of social economics*. Vol. 1. Elsevier, pp. 511–585.
- Keeling, Matt J and Ken TD Eames (2005). "Networks and epidemic models". In: *Journal* of the Royal Society Interface 2.4, pp. 295–307.
- Kenett, Dror Y et al. (2010). "Dominating clasp of the financial sector revealed by partial correlation analysis of the stock market". In: *PloS one* 5.12, e15032.
- Killworth, Peter D and H Russell Bernard (1978). "The reversal small-world experiment". In: Social networks 1.2, pp. 159–192.
- Kuzubaş, Tolga Umut, Inci Omercikoğlu, and Burak Saltoğlu (2014). "Network centrality measures and systemic risk: An application to the Turkish financial crisis". In: *Physica A: Statistical Mechanics and its Applications* 405, pp. 203–215.
- Lewis, Ted G (2011). Network science: Theory and applications. John Wiley & Sons.
- Martinez-Jaramillo, Serafin et al. (2014). "An empirical study of the Mexican banking system's network and its implications for systemic risk". In: *Journal of Economic Dynamics* and Control 40, pp. 242–265.
- Milgram, Stanley (1967). "The small world problem". In: Psychology today 2.1, pp. 60–67.
- Millington, Tristan and Mahesan Niranjan (2020). "Partial correlation financial networks". In: Applied Network Science 5.1, pp. 1–19.
- Opsahl, Tore, Filip Agneessens, and John Skvoretz (2010). "Node centrality in weighted networks: Generalizing degree and shortest paths". In: *Social networks* 32.3, pp. 245– 251.

- Pearson, Ronald K et al. (2015). "The class of generalized hampel filters". In: 2015 23rd European Signal Processing Conference (EUSIPCO). IEEE, pp. 2501–2505.
- Plümper, Thomas and Eric Neumayer (2020). "Lockdown policies and the dynamics of the first wave of the Sars-CoV-2 pandemic in Europe". In: Journal of European Public Policy 0.0, pp. 1–21.
- Solé, Ricard V et al. (2010). "Language networks: Their structure, function, and evolution". In: Complexity 15.6, pp. 20–26.
- Watts, Duncan J and Steven H Strogatz (1998). "Collective dynamics of 'small-world'networks". In: *nature* 393.6684, pp. 440–442.
- Willard, Stephen (2012). General topology. Courier Corporation.
- Wu, B.Y. and K.M. Chao (2004). *Spanning Trees and Optimization Problems*. Discrete Mathematics and Its Applications. CRC Press. ISBN: 9780203497289.
- Zachary, Wayne W (1977). "An information flow model for conflict and fission in small groups". In: *Journal of anthropological research* 33.4, pp. 452–473.

*Symbol Index

- $C_C^+(i)$ Positive closeness centrality of vertex *i*.
- $C_D^{abs}(i)$ Absolute degree centrality of vertex *i*.
- $C_D^{net}(i)$ Net degree centrality of vertex *i*.
- $C_D^+(i)$ Positive degree centrality of vertex *i*.
- $C_E^{abs}(i)$ Absolute eigenvector centrality of vertex *i*.
- $C_E^+(i)$ Positive eigenvector centrality of vertex *i*.
- $C_H^{abs}(i)$ Absolute harmonic centrality of vertex *i*.
- $C_H^+(i)$ Positive harmonic centrality of vertex *i*.
- d(i, j) Distance from nodes *i* to *j*.
- $\overline{d}(G)$ Average path length or average distance of graph G.
- $\operatorname{diam}(G)$ Diameter of graph G.
- h(G) Homophily ratio of graph G.
- $h^*(G)$ Homophily baseline ratio of graph G.
- m(G) Number of edges of the network G.
- *N* Number of vertices of the network.
- rad(G) Radius of graph G.
- w(ij) Weight of the edge ij.
- w(G) Weight of the graph G.

KOKKUVÕTTE

S&P 350 Euroopa indeksi aktsiate võrgustiku süvaanalüüs ja selle reageerimine COVID-19 pandeemiale

Antud uurimuse eesmärgiks on analüüsida võrgustiku topoloogiat Euroopa aktsiaturu, ennekõike S&P Euroopa 350 indeksisse kuuluvate aktsiate vastastikuste seoste põhjal. Indeks põhineb 350 firmal 16 erinevast arenenud riigist, vaadeldav ajavahemik on jaanuar 2016 kuni september 2020.a. (päevased andmed).

Uuringu fookus tuleneb finantskriiside majanduslikest mõjudest, mis on tabanud riike ja levinud üle maailma nagu näiteks 2008. aasta ülemaailmne finantskriis, andes võrgustike olemusele ja nende uurimisele üldise olemusliku tähtsuse. Samuti lisandus tõuge finatsvõrgustike ja süsteemse riski analüüsimiseks ning finantsvõrgustiku topoloogiast aru saamiseks.

Seitsmekümnendate aastate jooksul töötati välja mõned sotsiaalsete võrgustike uuringud, mis püüdsid mõista ja kaardistada inimsuhete käitumist, kohandades esmalt graafiteoorias ja statistikas kasutatavaid meetodeid. 21. sajandi alguses muutus võrgustikuanalüüs uueks potentsiaali omavaks uurimisvaldkonnaks tänu arvutuslikele edusammudele nagu andmesalvestusmahu suurenemine ja keerukate arvutuste läbiviimise võimalikkus. Selle distsipliini korral on silmatorkav ka lai rakendusvaldkonna spekter nagu bioloogia, genoomika, epidemioloogia, küberturvalisus, sotsioloogia, majandus või keeleteadus.

Pärast ülemaailmse finantskriisi poolt vallandatud kaskaadiefekti on ilmnenud palju uuringuid, mis kirjeldavad ja analüüsivad finantsšoki dünaamikat püüdes modelleerida, kuidas selle mõjud süsteemis levivad ja kuidas see hajub, mida tavaliselt nimetatakse vastavalt nakatumiseks ja imendumiseks.

Me teame, et finantsvõrgustik koosneb paljudest otsestest ja kaudsetest suhetest, moodustades keeruka süsteemi. Üheks võimaluseks sellist süsteemi analüüsida, on jagada see alamstruktuurideks ja uurida osade kaupa selle reaktsiooni süsteemsele riskile. Nii ongi mõned uuringud keskendunud finantsturgude omavahelistele suhetele, näiteks pankadevahelistele suhetele. Antud uurimuses kasutame sellist lähenemist Euroopa finantsturu käitumise ja struktuuri analüüsimiseks seoses COVID-19 pandeemiaga.

Käesolevas uurimuses kasutasime nii finantsökonomeetrilist kui ka võrguteooria lähenemist. Kuna saadaval olid päevased andmed, on ka loodud võrgustikud päevase dimensiooniga võimaldades lisada analüüsi dünaamilist aspekti läbi punktuaalse analüüsi ning selle ajalise muutumise. Finantsökonomeetrilise lähenemisviisi jaoks arvutasime logaritmitud tootluse igapäevaselt korrigeeritud sulgemishindadelt ja kasutasime mõjusat dünaamilise tingimusliku korrelatsiooni GARCH mudelit, kuhu lisasime ühise jälgitava teguri nagu Morgan Stanley Capital International World Indeksi. Indeksi põhjal arvutasime tingimuslikud korrelatsioonimaatriksid ning rakendades Gaussi graafilise mudeli algoritmi leidsime osalise korrelatsiooni maatriksid. Kaardistasime osalised korrelatsioonivõrgud, kasutades külgnevusmaatriksitena osalisi korrelatsioonimaatrikseid, teisisõnu, liikumis(muutumis)maatrikseid. Arvestades, et osalised korrelatsiooniväärtused jäävad miinus ühe ja ühe vahele, pidime andmete moonutamise vältimiseks eristama negatiivseid ja positiivseid väärtusi. Seega võtsime arvesse kolme erinevat tüüpi väärtusi võrguanalüüsiks - netoandmed (esialgsed osalise korrelatsiooni väärtused), absoluutandmed (osalise korrelatsiooni absoluutväärtused) ja positiivsed andmed (ainult positiivsed osalise korrelatsiooni väärtused). Teostasime võrguanalüüsi seoses COVID-19 pandeemiaga, kus vaatlesime kogu ajavahemikule kõrval ka ükskuid ajalisi segmente jaanuarist 2016 kuni oktoobrini 2019, novembrist 2019 kuni veebruarini 2020, märtsist juunini 2020 ja juulist septembrini 2020.a. Selline lähenemine võimaldas meil uurida pandeemia mõju võrgustiku läbi. Võrk koosneb kahest eraldiseisvast hulgast, üks tippudest ja teine linkidest, kus lingid kaardistavad tippude vahelise seose. Selle töö jaoks on tipud aktsiaturuindeksi ettevõtted ja koos liikumised (muutumised) on lingid. Finantsvõrgu topoloogia tundmiseks uurisime kahte tüüpi parameetreid: globaalseid ja kohalikke.

Globaalsed parameetrid aitavad meil saada infot võrgustiku kahe kõige olulisema aspekti kohta, milleks on tipud, lingid ning nendevahelised seosed. Arvutasime iga võrgustiku servade arvu ja nende kogukaalu. Lisaks arvutasime välja keskmise kauguse, võrgustiku läbimõõdu ja raadiuse. Kuigi raadiust erialases kirjanduses sageli välja ei arvutata, aitab selle arvutamine koos läbimõõduga määrata vahemikku distantsil, mida vaja läbida, et šokk leviks kogu võrgustikus. Sel viisil saame minimaalse kauguse, mis on vajalik konkreetsest tipust ja mistahes suvalisest tipust kogu võrgustiku hõivamiseks.

Kohalikud parameetrid annavad infot tippude mõju kohta võrgustikus. Nende kohalike meetmete põhjal arvutasime välja astme, läheduse, harmoonilisuse, vahepealsuse ja omavektori tsentraalsused, et hinnata ettevõtete olulisust erinevate aspektide osas, nagu suhete arv, suhted ümbruskonnaga, asukoht võrgustikus. Iga tsentraalsusmõõdu jaoks määrame kindlaks kakskümmend ettevõtet, millel on kõrgeimad tsentraalsuse mõõdikute väärtused, s.t. tsentraalsuse mõõdiku kohta kõige mõjukamad ettevõtted. Lisaks sellele, võttes arvesse keskmisi tsentraalsuse väärtusi, määratlesime võrgustiku kõige olulisemad tööstusharud ja riigid. Võrgu kesksuse mõõdikute tundmine võimaldab näiteks keskpankadel fikseerida ülemaailmse süsteemselt olulise institutsiooni asukoha ning neid reguleerida.

Töös tutvustasime dünaamilise võrgustiku raamistiku kontseptsiooni. Kuna meil oli kokku 1201 koos muutuvat võrgustikku, aitas see uus struktuur meil tuvastada komponentide vaheliste seoste stabiilsust ajalises dimensioonis. Raamistiku võrgustikus arvutasime samad globaalsed ja kohalikud parameetrid, mis ülal mainitud. Globaalseid parameetreid kasutades suutsime hinnata suhete stabiilsust ja võrrelda seda COVIDiga seotud eri ajaetappide lõikes. Märkasime suhete stabiilsuse märkimisväärset suurenemist COVID-19 pandeemia ajal. Lisaks selgitame välja, millised ettevõtted olid kohalike parameetrite osas kõige mõjukamad kogu perioodi jooksul arvestades COVIDiga seotud ajaetappe.

Teostasime esmakordselt finantsvõrgustike analüüsi kontekstis homofiilse profiili analüüsi ning analüüsides ettevõtteid riikide ja sektorite kaupa leidsime ettevõtete vahel vägagi homofiilsed suhted. Põhjalikumaks analüüsimiseks võtsime arvesse osakorrelatsioonide erinevaid katkepunkte ja märkasime otsest seost osakorrelatsioonide ja homofiilsuse proportsiooni vahel võrgustikus, millel puhul tuvastasime kõrgemate korrelatsioonikordaja väärtuste korral suurema homofiilsuse. Raamistike osas oli homofiine käitumine veelgi tajutavam. Homofiilsus on sotsiaalvõrgustike analüüsi kontektsis väga populaarne mõiste, samas rahanduses on seda autori teadmiste kohaselt ainult mainitud ilma põhjalikumalt kasutamata.

Varasemates uuringutes on empiirilised tulemused näidanud, et pärast kriisi võrgustiku seotus suureneb; seevastu antud analüüsis käsitletud võrgustiku puhul, kasutades viitena COVID-19 šokki ja dünaamilise võrgustiku raamistikku, tuvastasime pandeemia ajal hoopiski suhete stabiilsuse kasvu.