
Kubiuk, Yevhenii; Kyselov, Gennadiy

Article

Comparative analysis of approaches to source code
vulnerability detection based on deep learning
methods

Technology audit and production reserves

Provided in Cooperation with:
ZBW OAS

Reference: Kubiuk, Yevhenii/Kyselov, Gennadiy (2021). Comparative analysis of approaches to source
code vulnerability detection based on deep learning methods. In: Technology audit and production
reserves 3 (2/59), S. 19 - 23.
http://journals.uran.ua/tarp/article/download/233534/234422/539637.
doi:10.15587/2706-5448.2021.233534.

This Version is available at:
http://hdl.handle.net/11159/7028

Kontakt/Contact
ZBW – Leibniz-Informationszentrum Wirtschaft/Leibniz Information Centre for Economics
Düsternbrooker Weg 120
24105 Kiel (Germany)
E-Mail: rights[at]zbw.eu
https://www.zbw.eu/
Standard-Nutzungsbedingungen:
Dieses Dokument darf zu eigenen wissenschaftlichen Zwecken und zum
Privatgebrauch gespeichert und kopiert werden. Sie dürfen dieses Dokument
nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich
ausstellen, aufführen, vertreiben oder anderweitig nutzen. Sofern für das
Dokument eine Open-Content-Lizenz verwendet wurde, so gelten abweichend
von diesen Nutzungsbedingungen die in der Lizenz gewährten Nutzungsrechte.
Alle auf diesem Vorblatt angegebenen Informationen einschließlich der
Rechteinformationen (z.B. Nennung einer Creative Commons Lizenz)
wurden automatisch generiert und müssen durch Nutzer:innen vor einer
Nachnutzung sorgfältig überprüft werden. Die Lizenzangaben stammen aus
Publikationsmetadaten und können Fehler oder Ungenauigkeiten enthalten.

Terms of use:
This document may be saved and copied for your personal and scholarly purposes.
You are not to copy it for public or commercial purposes, to exhibit the document
in public, to perform, distribute or otherwise use the document in public. If the
document is made available under a Creative Commons Licence you may exercise
further usage rights as specified in the licence. All information provided on this
publication cover sheet, including copyright details (e.g. indication of a Creative
Commons license), was automatically generated and must be carefully reviewed by
users prior to reuse. The license information is derived from publication metadata
and may contain errors or inaccuracies.

 https://savearchive.zbw.eu/termsofuse

https://savearchive.zbw.eu/
https://www.zbw.eu/
http://hdl.handle.net/11159/7028
mailto:rights@zbw-online.eu
https://www.zbw.eu/
https://savearchive.zbw.eu/termsofuse
https://www.zbw.eu/

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

19TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 3/2(59), 2021

ISSN 2664-9969

UDC 004.891.3
DOI: 10.15587/2706-5448.2021.233534
Article type «Reports on Research Projects»

COMPARATIVE ANALYSIS OF
APPROACHES TO SOURCE CODE
VULNERABILITY DETECTION BASED
ON DEEP LEARNING METHODS

The object of research of this work is the methods of deep learning for source code vulnerability detection. One
of the most problematic areas is the use of only one approach in the code analysis process: the approach based on
the AST (abstract syntax tree) or the approach based on the program dependence graph (PDG).

In this paper, a comparative analysis of two approaches for source code vulnerability detection was conducted:
approaches based on AST and approaches based on the PDG.

In this paper, various topologies of neural networks were analyzed. They are used in approaches based on the
AST and PDG. As the result of the comparison, the advantages and disadvantages of each approach were de-
termined, and the results were summarized in the corresponding comparison tables. As a result of the analysis, it
was determined that the use of BLSTM (Bidirectional Long Short Term Memory) and BGRU (Bidirectional Gated
Linear Unit) gives the best result in terms of problems of source code vulnerability detection. As the analysis showed,
the most effective approach for source code vulnerability detection systems is a method that uses an intermediate
representation of the code, which allows getting a language-independent tool.

Also, in this work, our own algorithm for the source code analysis system is proposed, which is able to perform
the following operations: predict the source code vulnerability, classify the source code vulnerability, and generate
a corresponding patch for the found vulnerability. A detailed analysis of the proposed system’s unresolved issues
is provided, which is planned to investigate in future researches. The proposed system could help speed up the
software development process as well as reduce the number of software code vulnerabilities. Software developers,
as well as specialists in the field of cybersecurity, can be stakeholders of the proposed system.

Keywords: AST-based approaches, program dependence graph-based approaches, code analysis.

Yevhenii Kubiuk,
Gennadiy Kyselov

© The Author(s) 2021

This is an open access article

under the Creative Commons CC BY license

How to cite

Kubiuk, Y., Kyselov, G. (2021). Comparative analysis of approaches to source code vulnerability detection based on deep learning methods. Technology

Audit and Production Reserves, 3 (2 (59)), 19–23. doi: http://doi.org/10.15587/2706-5448.2021.233534

Received date: 18.01.2021

Accepted date: 26.02.2021

Published date: 30.06.2021

1. Introduction

Nowadays, information technologies are used in almost
all spheres of human activity. As a result, the need for
high-quality software is constantly growing. The larger the
software product, the more critical vulnerability can be.
Therefore, the task of source code analysis and searching for
security vulnerabilities in it (e. g. buffer overflow, improper
memory management) is very important for companies in
the information technology industry.

The problem of analyzing program code is not a new
one, and many techniques and tools have been created to
solve it. The classical approach to source code vulnerability
detection is an approach based on rules that are created
by the expert [1, 2]. With the development of machine
learning the algorithms were created, which use statisti-
cal and machine learning models to predict vulnerabilities
in the code [3, 4]. The weakness of this approach is that
it requires a technical expert, who would have to set up

the system manually, for example: to create a dictionary
of the language syntax, add information about grammatical
structures, etc. These disadvantages are absent in models
using the deep learning approach. An important advantage
of deep learning is that the responsibility for identifying the
necessary features for code analysis falls on the model itself.

Thus, the object of research in this paper is deep learn-
ing methods for source code vulnerability detection. The
aim of research is to conduct a comparative analysis of
existing deep learning in the tasks of source code vulner-
ability detection.

2. Methods of research

In this section, the application of deep learning me-
thods for analyzing program code is reviewed. Source code
analysis methods can be roughly divided into two groups:
methods, based on the use of an AST (abstract syntax tree),
and methods, based on the program’s dependence graph.

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

20 TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 3/2(59), 2021

ISSN 2664-9969

An AST describes the syntactic structure of program
code. AST is often used in tasks of analyzing and correct-
ing program code. AST nodes represent various syntax
elements of the programming language, such as variables,
functions, operators, and so on. Any valid program code
has its own representation in the form of an AST, just as
any AST can be converted to a valid program code. In
practice, to get an AST from code, special tools are used.
The tool can be either a part of the compiler (or inter-
preter), as it is done in Clang [5], or it can be a separate
tool that can work with several programming languages
and provide a universal AST, for example, Babelfish [6].

PDG (program dependence graph) describes library
functions and API calls. It allows to detect and correct
erroneous calls. The dependence graph can be divided into
two categories: the data flow graph (DFG) and the control
flow graph (CFG).

3. Research results and discussion

3.1. AST-based methods. In [7], AST is used for code
clone detection using the supervised learning method. The
algorithm for detecting duplicate code is as follows:

1) based on the source code, AST’s are built;
2) ASTs are converted to binary trees;
3) using the word2vec model [8], each node of the

binary tree is vectorized;
4) vectorized binary trees are fed to the input of the

Siamese neural network [9], which uses LSTM [10] as
a subnet.

In [7], various models with different hyperparameters were
compared, and the usefulness of pre-trained embeddings for
learning-based approaches in the context of software engineer-
ing was experimentally demonstrated. The disadvantage of the
proposed algorithm is the use of a binary tree instead of the
original AST. Representing an AST as a binary tree increases
the height of the tree, and potentially leads to a loss of se-
mantic connection between program code entities. This may
primarily affect the location of node embeddings in the resulting
hyperspace, as well as the accuracy of the neural network.

In [11], AST is used to predict defects in software
using a supervised learning approach. In this paper, the
authors proposed a tree structure of the LSTM network –
Tree-LSTM. The system works as follows:

1) based on the source code, an AST is built;
2) each AST node is vectorized using ast2vec [11];
3) AST with vectorized nodes is fed to the input of

Tree-LSTM, which generates a vector representation for
the entire AST;

4) in the vector representation, the AST is fed to the
input of traditional models for binary classification (Lo-
gistic Regression, Random Forests) in order to determine
the vulnerability of the code.

The main advantage of the Tree-LSTM is that the model
automatically determines the features during the process of
learning. One of the drawbacks of the algorithm is that the
AST is built for each project file separately, which means
that the relationship between different files is not taken
into account. According to the authors of [12], this can
potentially lead to a lower accuracy of the system. Also,
one of the drawbacks of the system is that the resulting
binary tree representation of AST has a large height. The
use of such trees in the training a neural network can
lead to the problem of vanishing gradient [13].

The authors in [14] aimed to eliminate the vanishing
gradient problem when training neural network models
based on AST. For this purpose, the ASTNN model was
developed, which generated its vector representation based
on the AST. In contrast to the previous work, the authors
split the AST into logically atomic blocks and translated
them into a vector representation. Based on the set of
vectors of one AST, a single vector representation of AST
was generated. This model was tested for code classifica-
tion tasks, as well as for code clone detection tasks. The
model uses recurrent neural networks. The disadvantages
of this approach include the potential loss of associative
information between atomic AST blocks.

Table 1 presents a comparative analysis of code analysis
solutions using AST-based approaches.

Table 1

Comparative analysis of source code analysis approaches using AST

Paper Technology Problem Metrics Language

[1] Siamese LSTM Code clone detection AUC – 0.993 Java

[4]

Tree-LSTM,
Logistic
Regression

Source code vulner-
abilities detection

F1 – 0.52
Precision – 0.36
Recall – 1.0
AUC – 0.59

C

Tree-LSTM,
Random
Forest

F1 – 0.92
Precision – 0.93
Recall – 0.93
AUC – 0.99

[5] ASTNN

Code clone detection
Precision – 0.989
Recall – 0.927
F1 – 0.955 C

Source code vulner-
abilities detection

Accuracy – 0.982

According to the data in Table 1, it is possible to con-
clude that using AST models to solve the problem of source
code vulnerabilities detection demonstrates a higher ac-
curacy, comparing to systems that use AST-based models
only for code vectorization tasks.

3.2. Methods, based on program dependence graph.
In [15], the authors demonstrate a method for represent-
ing source code in the form of a data flow graph, while
preserving the semantic structure of the program. With the
approach of using a data flow graph, authors solved the
problems of incorrect naming of variables in the code (Var-
Naming) [16], as well as the problem of incorrect use of
variables (VarMisuse) [15]. GGNN [17], a model specially
adapted for working with graphs, was used as a neural
network model. The disadvantage of this representation of
the source code is that the resulting graph is too large.
A large number of nodes and links between them affected
the accuracy of the model – 52.6 % for VarNaming and
85.5 % for VarMisuse.

In [18] authors perform source code vulnerability detec-
tion using the adjacency matrix of the control flow graph.
As an atomic unit for the graph, small code blocks of the
same type were selected (in terms of syntax), which, in
turn, were translated into a vector representation using
the word2vec model. A subtype of convolutional neural
network (CNN) [19] was used. TextCNN [20] was used as
a neural network. The disadvantages of this work can be

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

21TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 3/2(59), 2021

ISSN 2664-9969

attributed to the fact that the author did not compare the
performance of the model using information about data flow
and without. The use of a data flow graph would provide
additional information about the associative relationship
of program code entities, which could potentially improve
the prediction results.

In [21], the problem of source code vulnerability detec-
tion (CWE-119, CWE-399 [22]) was solved using the data
flow graph. The authors formed the so-called code gadget
based on the list of potentially vulnerable library functions
and the data flow graph. The code gadget consisted of
lines of code that refer to the arguments or return value
of a potentially vulnerable target function (depending on
the function type). For functions that are used for memory
allocation (malloc/new), the code gadget was built by
tracking the return values in the data flow graph. For func-
tions that are designed to deallocate memory (free/delete),
the code gadget was built for their arguments. The dis-
advantage of such a system is the lack of information
from the control flow, as noted by the authors of [23].

Also, the accuracy of the model is significantly af-
fected by the size of the code gadget. In real projects,
a variable that holds allocated memory and was created
in one function can be passed to many other functions
as an argument. The authors of the study [24] conducted
a comparative analysis of the performance of models with
different sizes of code gadgets. In their solution, an em-
pirically selected nesting limit was used to traverse the
data flow tree, which resulted in an increase in prediction
accuracy compared to [21].

The authors of [23] extended the functionality of [21]
and [24] by adding information from the control flow graph.
Also, in contrast to [21] and [24], which focused on detect-
ing buffer overflow-related vulnerabilities (CWE-119) and
resource management-related vulnerabilities (CWE-399),
the authors of [23] detected 126 different types of vulner-
abilities. According to the study [23], the use of BGRU as
a model for predicting source code vulnerabilities proved
to be better than the use of BLSTM [25]. The main limita-
tion of the algorithms in works [21–23] is that they are
based on a previously defined list of potentially vulnerable
library functions and APIs. This means that the model
is not able to detect a vulnerability that is not related
to the library function of a certain API call. Also, the
question of optimal code gadget size was raised by the
authors in [24]. Although the problem of the size of the
code gadget was raised by the authors of [24], the selection
of the optimal nesting size for generating the code gadget
remains an important problem.

In [26], the authors created a system for source code
vulnerability detection based on data flow and control
flow graphs. First, the so-called syntax vulnerability can-
didate (SyVC), was built based on the AST. Then the
semantic vulnerability candidate (SeVC) was generated
on its basis. In this paper, the authors demonstrated the
effectiveness of this approach, and also presented a com-
parison of the use of various neural network models in
terms of source code vulnerability detection task. Later,
in this work [27], the authors showed that the use of
SySeVC for tasks of source code vulnerability detection
is effective not only for source code in its original ap-
pearance, but also for intermediate representation (IR)
of the source code. Intermediate representation can be
obtained by using LLVM tools [28].

Table 2 provides a comparative analysis of code analysis
solutions using an approach based on the program depen-
dence graph.

Table 2

Comparative analysis of source code analysis approaches using PDG

Paper Technology Problem Metrics Language

[8] GGNN

VarNaming
Accuracy – 0.536
F1 – 0.658

C#

VarMisuse
Accuracy – 0.855
AUC – 0.980

[11] TextCNN
Source code vulner-
abilities detection

AUC – 0.82 C/C++

[21] BLSTM
Source code vulner-
abilities detection

Accuracy – 0.908
Precision – 0.92
F1 – 0.934

C/C++

[23]

BLSTM

Source code vulner-
abilities detection

Accuracy – 0.967
Precision – 0.909
F1 – 0.924

C/C++

BGRU
Accuracy – 0.968
Precision – 0.919
F1 – 0.925

[24] BLSTM
Source code vulner-
abilities detection

Accuracy – 0.92 C/C++

[19] BGRU
Source code vulner-
abilities detection

Accuracy – 0.960
Precision – 0.88
F1 – 0.844

C/C++

[20]

BLSTM

Source code vulner-
abilities detection

Accuracy – 0.977
Precision – 0.985

F1 – 0.952 C/C++
(LLVM

IR)
BGRU

Accuracy – 0.988
Precision – 0.982

F1 – 0.972

According to the presented data, it is possible to conclude
that using BGRU for the task of source code vulnerability
detection gives a better result than using alternative neural
network models. This statement is true for both problems
of finding vulnerabilities in the original source code and
for problems of finding vulnerabilities in the intermediate
representation of the source code (e. g. LLVM).

3.3. Source code analysis system. As a result of the
analysis, an algorithm for source code vulnerability detec-
tion is proposed (Fig. 1).

There are several ways to generate an AST: first, build
an AST based on an intermediate source code representa-
tion using LLVM, or second way – build an AST using
universal AST construction tools. Then, using the program
dependence graph, the code gadget is constructed, which
after being translated into a vector representation is fed
into the neural network model.

The next step of the algorithm is to classify whether
the code gadget is vulnerable or not. In case if code gadget
is vulnerable, the algorithm should classify the type of
vulnerability. The final step of the algorithm is to generate
a recommendation of a possible fix of the vulnerability.
There are still several open questions in this study:

1. Selection of the AST construction method.
2. Size of the generated code gadget.
3. Model for classifying vulnerabilities.
4. Model for generating patches.

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

22 TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 3/2(59), 2021

ISSN 2664-9969

4. Conclusions

In this paper, deep learning methods for source code
vulnerability detection ARE ANALYZED. Approaches to
analyzing the source code were divided into two catego-
ries: AST-based methods and PDG-based methods. When
using approaches, based on AST, the authors focus on
the tasks of converting the original AST into a structure
that would be able to highlight the syntax features of
the source code. Also, in theirs works, the authors pay
attention to the selection of a deep learning model that
would be able to solve the task correctly without los-
ing the associative connection of program code entities.
The dependence graph approach allows operating with
information obtained from the control flow and data flow.
This approach provides the neural network model with
additional information about the semantic relationship
of source code entities. However, this approach has its
own drawbacks – often the code sections semantically
associated with a variable or function call are quite large,
which leads to lower prediction accuracy. The problem of
the universality of this approach relatively to different
programming languages remains important. At the current
stages of research, the differences in prediction accuracy
between the original code and the intermediate LLVM
representation are insignificant. Also, in this work, an
algorithm for analyzing source code was proposed. A tool
that would work according to the presented algorithm
would help to speed up the software development process,
as well as reduce the number of source code vulnerabilities.
Software developers, as well as specialists in the field of
cybersecurity, can be stakeholders of the proposed system.

References

1. Pr hofer, H., Angerer, F., Ramler, R., Lacheiner, H., Grillen-
berger, F. (2012). Opportunities and challenges of static code
analysis of IEC 61131-3 programs. Proceedings of 2012 IEEE
17th International Conference on Emerging Technologies & Fac-
tory Automation (ETFA 2012). IEEE, 1–8. doi: http://doi.org/
10.1109/etfa.2012.6489535

2. Lee, M., Cho, S., Jang, C., Park, H., Choi, E. (2006). A rule-
based security auditing tool for software vulnerability detection.

 2006 International Conference on Hybrid Information Technology.
IEEE, 2, 505–512. doi: http://doi.org/10.1109/ichit.2006.253653

3. Turhan, B., Kocak, G., Bener, A. (2009). Data mining source code
for locating software bugs: A case study in telecommunication
industry. Expert Systems with Applications, 36 (6), 9986–9990.
doi: http://doi.org/10.1016/j.eswa.2008.12.028

4. Murakami, H., Hotta, K., Higo, Y., Igaki, H., Kusumoto, S.
(2013). Gapped code clone detection with lightweight source
code analysis. 2013 21st International Conference on Program Com-
prehension (ICPC). IEEE, 93–102. doi: http://doi.org/10.1109/
icpc.2013.6613837

5. Clang: A C Language Family Frontend for LLVM. Available at:
https://clang.llvm.org/

6. Babelfish. GitHub. Available at: https://github.com/bblfsh
7. B ch, L., Andrzejak, A. (2019). Learning-based recursive ag-

gregation of abstract syntax trees for code clone detection.
2019 IEEE 26th International Conference on Software Ana-
lysis, Evolution and Reengineering (SANER). IEEE, 95–104.
doi: http://doi.org/10.1109/saner.2019.8668039

8. Mikolov, T., Chen, K., Corrado, G., Dean, J. (2013). Efficient
estimation of word representations in vector space. Available at:
https://arxiv.org/abs/1301.3781

9. Bromley, J., Guyon, I., LeCun, Y., S ckinger, E., Shah, R. (1993).
Signature verification using a «Siamese» time delay neural network.
Advances in neural information processing systems, 6, 737–744.

10. Hochreiter, S., Schmidhuber, J. (1997). Long Short-Term Me-
mory. Neural Computation, 9 (8), 1735–1780. doi: http://doi.org/
10.1162/neco.1997.9.8.1735

11. Dam, H. K., Pham, T., Ng, S. W., Tran, T., Grundy, J., Ghose, A.
et. al. (2018). A deep tree-based model for software defect
prediction. Available at: https://arxiv.org/abs/1802.00921

12. Guan, Z., Wang, X., Xin, W., Wang, J., Zhang, L. (2020).
A survey on deep learning-based source code defect analysis.
2020 5th International Conference on Computer and Communi-
cation Systems (ICCCS). IEEE, 167–171. doi: http://doi.org/
10.1109/icccs49078.2020.9118556

13. Hochreiter, S. (1998). The Vanishing Gradient Problem Dur-
ing Learning Recurrent Neural Nets and Problem Solutions.
International Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems, 6 (2), 107–116. doi: http://doi.org/10.1142/
s0218488598000094

14. Zhang, J., Wang, X., Zhang, H., Sun, H., Wang, K., Liu, X. (2019).
A novel neural source code representation based on abstract
syntax tree. 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE). IEEE, 783–794. doi: http://doi.org/
10.1109/icse.2019.00086

15. Allamanis, M., Brockschmidt, M., Khademi, M. (2017). Learn-
ing to represent programs with graphs. Available at: https://
arxiv.org/abs/1711.00740

Fig. 1. Algorithm for source code vulnerability detection

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

23TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 3/2(59), 2021

ISSN 2664-9969

16. Allamanis, M., Barr, E. T., Bird, C., Sutton, C. (2014). Learning
natural coding conventions. Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engi-
neering, 281–293. doi: http://doi.org/10.1145/2635868.2635883

17. Li, Y., Tarlow, D., Brockschmidt, M., Zemel, R. (2015). Gated
graph sequence neural networks. Available at: https://arxiv.org/
abs/1511.05493

18. Harer, J. A., Kim, L. Y., Russell, R. L., Ozdemir, O., Kosta, L. R.,
Rangamani, A. et. al. (2018). Automated software vulnerability
detection with machine learning. Available at: https://arxiv.org/
abs/1803.04497

19. LeCun, Y., Haffner, P., Bottou, L., Bengio, Y. (1999). Object
recognition with gradient-based learning. Shape, contour and
grouping in computer vision. Berlin, Heidelberg: Springer, 319–345.

20. Kim, Y. (2014). Convolutional neural networks for sentence
classification. Available at: https://arxiv.org/abs/1408.5882

21. Li, Z., Zou, D., Xu, S., Ou, X., Jin, H., Wang, S. et. al. (2018).
VulDeePecker: A Deep Learning-Based System for Vulnerability
Detection. Proceedings 2018 Network and Distributed System Se-
curity Symposium. doi: http://doi.org/10.14722/ndss.2018.23158

22. CWE – Common Weakness Enumeration. CWE. Available at:
https://cwe.mitre.org/

23. Li, Z., Zou, D., Tang, J., Zhang, Z., Sun, M., Jin, H. (2019).
A Comparative Study of Deep Learning-Based Vulnerability
Detection System. IEEE Access, 7, 103184–103197. doi: http://
doi.org/10.1109/access.2019.2930578

24. Chrenousov, A., Savchenko, A., Osadchyi, S., Kubiuk, Y., Kos-
tenko, Y., Likhomanov, D. (2019). Deep learning based auto-

 matic software defects detection framework. Theoretical and
Applied Cybersecurity, 1 (1). doi: http://doi.org/10.20535/
tacs.2664-29132019.1.169086

25. Schuster, M., Paliwal, K. K. (1997). Bidirectional recurrent
neural networks. IEEE Transactions on Signal Processing, 45 (11),
2673–2681. doi: http://doi.org/10.1109/78.650093

26. Li, Z., Zou, D., Xu, S., Jin, H., Zhu, Y., Chen, Z. (2021). SySeVR:
A Framework for Using Deep Learning to Detect Software
Vulnerabilities. IEEE Transactions on Dependable and Secure
Computing, 1–1. doi: http://doi.org/10.1109/tdsc.2021.3051525

27. Li, Z., Zou, D., Xu, S., Chen, Z., Zhu, Y., Jin, H. (2021).
VulDeeLocator: A Deep Learning-based Fine-grained Vulner-
ability Detector. IEEE Transactions on Dependable and Secure
Computing, 1–1. doi: http://doi.org/10.1109/tdsc.2021.3076142

28. The LLVM Compiler Infrastructure Project. Available at: https://
llvm.org/

Yevhenii Kubiuk, Department of System Design, National Technical
University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute»,
Kyiv, Ukraine, e-mail: eugen.kubiuk@gmail.com, ORCID: http://
orcid.org/0000-0002-7086-0976

Gennadiy Kyselov, PhD, Department of System Design, National
Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic In-
stitute», Kyiv, Ukraine, e-mail: g.kyselov@gmail.com, ORCID: https://
orcid.org/0000-0003-2682-3593

