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COMPARATIVE ANALYSIS OF 
APPROACHES TO SOURCE CODE 
VULNERABILITY DETECTION BASED 
ON  DEEP LEARNING METHODS

The object of research of this work is the methods of deep learning for source code vulnerability detection. One 
of the most problematic areas is the use of only one approach in the code analysis process: the approach based on 
the AST (abstract syntax tree) or the approach based on the program dependence graph (PDG).

In this paper, a comparative analysis of two approaches for source code vulnerability detection was conducted: 
approaches based on AST and approaches based on the PDG.

In this paper, various topologies of neural networks were analyzed. They are used in approaches based on the 
AST and PDG. As the result of the comparison, the advantages and disadvantages of each approach were de-
termined, and the results were summarized in the corresponding comparison tables. As a result of the analysis, it 
was determined that the use of BLSTM (Bidirectional Long Short Term Memory) and BGRU (Bidirectional Gated  
Linear Unit) gives the best result in terms of problems of source code vulnerability detection. As the analysis showed, 
the most effective approach for source code vulnerability detection systems is a method that uses an intermediate 
representation of the code, which allows getting a language-independent tool.

Also, in this work, our own algorithm for the source code analysis system is proposed, which is able to perform 
the following operations: predict the source code vulnerability, classify the source code vulnerability, and generate 
a corresponding patch for the found vulnerability. A detailed analysis of the proposed system’s unresolved issues 
is provided, which is planned to investigate in future researches. The proposed system could help speed up the 
software development process as well as reduce the number of software code vulnerabilities. Software developers, 
as well as specialists in the field of cybersecurity, can be stakeholders of the proposed system.
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1.  Introduction

Nowadays, information technologies are used in almost 
all spheres of human activity. As a result, the need for 
high-quality software is constantly growing. The larger the 
software product, the more critical vulnerability can be. 
Therefore, the task of source code analysis and searching for 
security vulnerabilities in it (e. g. buffer overflow, improper 
memory management) is very important for companies in 
the information technology industry.

The problem of analyzing program code is not a new 
one, and many techniques and tools have been created to 
solve it. The classical approach to source code vulnerability 
detection is an approach based on rules that are created 
by the expert [1, 2]. With the development of machine 
learning the algorithms were created, which use statisti-
cal and machine learning models to predict vulnerabilities 
in the code [3, 4]. The weakness of this approach is that 
it requires a technical expert, who would have to set up 

the system manually, for example: to create a dictionary 
of the language syntax, add information about grammatical 
structures, etc. These disadvantages are absent in models 
using the deep learning approach. An important advantage 
of deep learning is that the responsibility for identifying the 
necessary features for code analysis falls on the model itself.

Thus, the object of research in this paper is deep learn-
ing methods for source code vulnerability detection. The 
aim of research is to conduct a comparative analysis of 
existing deep learning in the tasks of source code vulner-
ability detection.

2. Methods of research

In this section, the application of deep learning me-
thods for analyzing program code is reviewed. Source code 
analysis methods can be roughly divided into two groups: 
methods, based on the use of an AST (abstract syntax tree), 
and methods, based on the program’s dependence graph.
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An AST describes the syntactic structure of program 
code. AST is often used in tasks of analyzing and correct-
ing program code. AST nodes represent various syntax 
elements of the programming language, such as variables, 
functions, operators, and so on. Any valid program code 
has its own representation in the form of an AST, just as 
any AST can be converted to a valid program code. In 
practice, to get an AST from code, special tools are used. 
The tool can be either a part of the compiler (or inter-
preter), as it is done in Clang [5], or it can be a separate 
tool that can work with several programming languages 
and provide a universal AST, for example, Babelfish [6].

PDG (program dependence graph) describes library 
functions and API calls. It allows to detect and correct 
erroneous calls. The dependence graph can be divided into 
two categories: the data flow graph (DFG) and the control 
flow graph (CFG).

3.  Research results and discussion

3.1.  AST-based  methods. In [7], AST is used for code 
clone detection using the supervised learning method. The 
algorithm for detecting duplicate code is as follows:

1) based on the source code, AST’s are built;
2) ASTs are converted to binary trees;
3) using the word2vec model [8], each node of the 

binary tree is vectorized;
4) vectorized binary trees are fed to the input of the 

Siamese neural network [9], which uses LSTM [10] as 
a subnet.

In [7], various models with different hyperparameters were 
compared, and the usefulness of pre-trained embeddings for 
learning-based approaches in the context of software engineer-
ing was experimentally demonstrated. The disadvantage of the 
proposed algorithm is the use of a binary tree instead of the 
original AST. Representing an AST as a binary tree increases 
the height of the tree, and potentially leads to a loss of se-
mantic connection between program code entities. This may 
primarily affect the location of node embeddings in the resulting 
hyperspace, as well as the accuracy of the neural network.

In [11], AST is used to predict defects in software 
using a supervised learning approach. In this paper, the 
authors proposed a tree structure of the LSTM network –  
Tree-LSTM. The system works as follows:

1) based on the source code, an AST is built;
2) each AST node is vectorized using ast2vec [11];
3) AST with vectorized nodes is fed to the input of 

Tree-LSTM, which generates a vector representation for 
the entire AST;

4) in the vector representation, the AST is fed to the 
input of traditional models for binary classification (Lo-
gistic Regression, Random Forests) in order to determine 
the vulnerability of the code.

The main advantage of the Tree-LSTM is that the model 
automatically determines the features during the process of 
learning. One of the drawbacks of the algorithm is that the 
AST is built for each project file separately, which means 
that the relationship between different files is not taken 
into account. According to the authors of [12], this can 
potentially lead to a lower accuracy of the system. Also, 
one of the drawbacks of the system is that the resulting 
binary tree representation of AST has a large height. The 
use of such trees in the training a neural network can 
lead to the problem of vanishing gradient [13].

The authors in [14] aimed to eliminate the vanishing 
gradient problem when training neural network models 
based on AST. For this purpose, the ASTNN model was 
developed, which generated its vector representation based 
on the AST. In contrast to the previous work, the authors 
split the AST into logically atomic blocks and translated 
them into a vector representation. Based on the set of 
vectors of one AST, a single vector representation of AST 
was generated. This model was tested for code classifica-
tion tasks, as well as for code clone detection tasks. The 
model uses recurrent neural networks. The disadvantages 
of this approach include the potential loss of associative 
information between atomic AST blocks.

Table 1 presents a comparative analysis of code analysis 
solutions using AST-based approaches.

Table 1

Comparative analysis of source code analysis approaches using AST

Paper Technology Problem Metrics Language

[1] Siamese LSTM Code clone detection AUC – 0.993 Java

[4]

Tree-LSTM,  
Logistic 
Regression

Source code vulner-
abilities detection

F1 – 0.52
Precision – 0.36
Recall – 1.0
AUC – 0.59

C

Tree-LSTM, 
Random 
Forest

F1 – 0.92
Precision – 0.93
Recall – 0.93
AUC – 0.99

[5] ASTNN

Code clone detection
Precision – 0.989
Recall – 0.927
F1 – 0.955 C

Source code vulner-
abilities detection

Accuracy – 0.982

According to the data in Table 1, it is possible to con-
clude that using AST models to solve the problem of source 
code vulnerabilities detection demonstrates a higher ac-
curacy, comparing to systems that use AST-based models 
only for code vectorization tasks.

3.2.  Methods,  based  on  program  dependence  graph. 
In [15], the authors demonstrate a method for represent-
ing source code in the form of a data flow graph, while 
preserving the semantic structure of the program. With the 
approach of using a data flow graph, authors solved the 
problems of incorrect naming of variables in the code (Var-
Naming) [16], as well as the problem of incorrect use of 
variables (VarMisuse) [15]. GGNN [17], a model specially 
adapted for working with graphs, was used as a neural 
network model. The disadvantage of this representation of 
the source code is that the resulting graph is too large. 
A large number of nodes and links between them affected 
the accuracy of the model – 52.6 % for VarNaming and 
85.5 % for VarMisuse.

In [18] authors perform source code vulnerability detec-
tion using the adjacency matrix of the control flow graph. 
As an atomic unit for the graph, small code blocks of the 
same type were selected (in terms of syntax), which, in 
turn, were translated into a vector representation using 
the word2vec model. A subtype of convolutional neural 
network (CNN) [19] was used. TextCNN [20] was used as 
a neural network. The disadvantages of this work can be 
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attributed to the fact that the author did not compare the 
performance of the model using information about data flow 
and without. The use of a data flow graph would provide 
additional information about the associative relationship 
of program code entities, which could potentially improve 
the prediction results.

In [21], the problem of source code vulnerability detec-
tion (CWE-119, CWE-399 [22]) was solved using the data 
flow graph. The authors formed the so-called code gadget 
based on the list of potentially vulnerable library functions 
and the data flow graph. The code gadget consisted of 
lines of code that refer to the arguments or return value 
of a potentially vulnerable target function (depending on 
the function type). For functions that are used for memory 
allocation (malloc/new), the code gadget was built by 
tracking the return values in the data flow graph. For func-
tions that are designed to deallocate memory (free/delete),  
the code gadget was built for their arguments. The dis-
advantage of such a system is the lack of information 
from the control flow, as noted by the authors of [23].

Also, the accuracy of the model is significantly af-
fected by the size of the code gadget. In real projects, 
a variable that holds allocated memory and was created 
in one function can be passed to many other functions 
as an argument. The authors of the study [24] conducted 
a comparative analysis of the performance of models with 
different sizes of code gadgets. In their solution, an em-
pirically selected nesting limit was used to traverse the 
data flow tree, which resulted in an increase in prediction 
accuracy compared to [21].

The authors of [23] extended the functionality of [21] 
and [24] by adding information from the control flow graph. 
Also, in contrast to [21] and [24], which focused on detect-
ing buffer overflow-related vulnerabilities (CWE-119) and 
resource management-related vulnerabilities (CWE-399),  
the authors of [23] detected 126 different types of vulner-
abilities. According to the study [23], the use of BGRU as 
a model for predicting source code vulnerabilities proved 
to be better than the use of BLSTM [25]. The main limita-
tion of the algorithms in works [21–23] is that they are 
based on a previously defined list of potentially vulnerable 
library functions and APIs. This means that the model 
is not able to detect a vulnerability that is not related 
to the library function of a certain API call. Also, the 
question of optimal code gadget size was raised by the 
authors in [24]. Although the problem of the size of the 
code gadget was raised by the authors of [24], the selection  
of the optimal nesting size for generating the code gadget 
remains an important problem.

In [26], the authors created a system for source code 
vulnerability detection based on data flow and control 
flow graphs. First, the so-called syntax vulnerability can-
didate (SyVC), was built based on the AST. Then the 
semantic vulnerability candidate (SeVC) was generated 
on its basis. In this paper, the authors demonstrated the 
effectiveness of this approach, and also presented a com-
parison of the use of various neural network models in 
terms of source code vulnerability detection task. Later, 
in this work [27], the authors showed that the use of 
SySeVC for tasks of source code vulnerability detection 
is effective not only for source code in its original ap-
pearance, but also for intermediate representation (IR) 
of the source code. Intermediate representation can be 
obtained by using LLVM tools [28].

Table 2 provides a comparative analysis of code analysis 
solutions using an approach based on the program depen-
dence graph.

Table 2

Comparative analysis of source code analysis approaches using PDG

Paper Technology Problem Metrics Language

[8] GGNN

VarNaming
Accuracy – 0.536
F1 – 0.658

C#

VarMisuse
Accuracy – 0.855
AUC – 0.980

[11] TextCNN
Source code vulner-
abilities detection

AUC – 0.82 C/C++

[21] BLSTM
Source code vulner-
abilities detection

Accuracy – 0.908
Precision – 0.92
F1 – 0.934

C/C++

[23]

BLSTM

Source code vulner-
abilities detection

Accuracy – 0.967
Precision – 0.909
F1 – 0.924

C/C++

BGRU
Accuracy – 0.968
Precision – 0.919
F1 – 0.925

[24] BLSTM
Source code vulner-
abilities detection

Accuracy – 0.92 C/C++

[19] BGRU
Source code vulner-
abilities detection

Accuracy – 0.960
Precision – 0.88
F1 – 0.844

C/C++

[20]

BLSTM

Source code vulner-
abilities detection

Accuracy – 0.977
Precision – 0.985

F1 – 0.952 C/C++ 
(LLVM 

IR)
BGRU

Accuracy – 0.988
Precision – 0.982

F1 – 0.972

According to the presented data, it is possible to conclude 
that using BGRU for the task of source code vulnerability 
detection gives a better result than using alternative neural 
network models. This statement is true for both problems 
of finding vulnerabilities in the original source code and 
for problems of finding vulnerabilities in the intermediate 
representation of the source code (e. g. LLVM).

3.3.  Source  code  analysis  system. As a result of the 
analysis, an algorithm for source code vulnerability detec-
tion is proposed (Fig. 1).

There are several ways to generate an AST: first, build 
an AST based on an intermediate source code representa-
tion using LLVM, or second way – build an AST using 
universal AST construction tools. Then, using the program 
dependence graph, the code gadget is constructed, which 
after being translated into a vector representation is fed 
into the neural network model.

The next step of the algorithm is to classify whether 
the code gadget is vulnerable or not. In case if code gadget 
is vulnerable, the algorithm should classify the type of 
vulnerability. The final step of the algorithm is to generate 
a recommendation of a possible fix of the vulnerability. 
There are still several open questions in this study:

1. Selection of the AST construction method.
2. Size of the generated code gadget.
3. Model for classifying vulnerabilities.
4. Model for generating patches.
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4.  Conclusions

In this paper, deep learning methods for source code 
vulnerability detection ARE ANALYZED. Approaches to 
analyzing the source code were divided into two catego-
ries: AST-based methods and PDG-based methods. When 
using approaches, based on AST, the authors focus on 
the tasks of converting the original AST into a structure 
that would be able to highlight the syntax features of 
the source code. Also, in theirs works, the authors pay 
attention to the selection of a deep learning model that 
would be able to solve the task correctly without los-
ing the associative connection of program code entities. 
The dependence graph approach allows operating with 
information obtained from the control flow and data flow. 
This approach provides the neural network model with 
additional information about the semantic relationship 
of source code entities. However, this approach has its 
own drawbacks – often the code sections semantically 
associated with a variable or function call are quite large, 
which leads to lower prediction accuracy. The problem of 
the universality of this approach relatively to different 
programming languages remains important. At the current 
stages of research, the differences in prediction accuracy 
between the original code and the intermediate LLVM 
representation are insignificant. Also, in this work, an 
algorithm for analyzing source code was proposed. A tool 
that would work according to the presented algorithm 
would help to speed up the software development process, 
as well as reduce the number of source code vulnerabilities. 
Software developers, as well as specialists in the field of 
cybersecurity, can be stakeholders of the proposed system.
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