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Abstract

Recent research shows that time-varying volatility plays a crucial role in nonlinear
modeling. Contributing to this literature, we suggest a DSGE-GARCH approach that
allows for straight-forward computation of DSGE models with time-varying volatility.
As an application of our approach, we examine the forecasting performance of the
DSGE-GARCH model using Eurozone real-time data. Our findings suggest that the
DSGE-GARCH approach is superior in out-of-sample forecasting performance in com-
parison to various other benchmarks for the forecast of inflation rates, output growth
and interest rates, especially in the short term. Comparing our approach to the widely
used stochastic volatility specification using in-sample forecasts, we also show that the
DSGE-GARCH is superior in in-sample forecast quality and computational efficiency.
In addition to these results, our approach reveals interesting properties and dynamics
of time-varying correlations (conditional correlations).
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1 Introduction

Dynamic stochastic general equilibrium (DSGE) models have become standard toolkits of
macroeconomic analysis used by central banks and other institutions. Because they allow
for microeconomic foundations in their building blocks, these models allow researchers to
overcome the Lucas critique (Lucas (1976)) and provide a forecasting quality close to or
better than autoregressive models (see among others Adolfson et al. (2011), Rubaszek &
Skrzypczyński (2008) and Del Negro & Schorfheide (2013)).

While these results are based on linearized DSGE models, recent studies such as Pichler
(2008) or Ivashchenko et al. (2020) show that adding non-linearities to the modeling frame-
work can further improve forecasting performance. This potential advantage of adding
non-linearities however is usually overshadowed by increasing computational costs.

One way in which previous studies introduced non-linearities into the DSGE framework
is by means of time-varying volatilities (see e.g. Sims & Zha (2006), Justiniano & Primiceri
(2008), Bloom (2009), and Fernández-Villaverde & Rubio-Ramı́rez (2010)). As shown by
Ivashchenko et al. (2020), considering this approach is relevant because, even with a first-
order approximation, models in which time-variation of volatilities is introduced are able to
produce superior forecasts in comparison to their non-varying counterparts1.

Previously, authors such as Diebold et al. (2017) implemented procedures for estimating
DSGE models with time-varying volatility and for evaluating their forecasting performance
in comparison to benchmark constant volatility DSGE models. In this work we introduce an
alternative approach for the modeling of time-varying volatility which is based on expressing
volatility as a GARCH process. To the best of our knowledge, the only other study to
consider a DSGE model with GARCH volatilities is Andreasen (2012) who studies the effects
of rare disasters and uncertainty shocks on risk premia in a New Keynesian DSGE model
approximated to second and third order, using usual perturbation methods. The approach
considered in Andreasen (2012) and our approach are complementary as we use real-time
data and test for the forecasting performance of the model in comparison to their constant
variance counterparts and other time-varying specifications. However, the computational
approaches are quite different.

Using real-time data for the euro area, we first build a model of the economy and use
various specifications for the modeling of the volatility process. Among the specifications
we compare, DSGE with GARCH(1,1), DSGE with Random-Walk GARCH and DSGE
with constant volatility, we show that the GARCH(1,1) specification is mostly superior in
producing out-of-sample point and density forecasts. We then compare the GARCH(1,1)
specification to the widely used stochastic volatility model as utilized in Justiniano & Prim-
iceri (2008) or Diebold et al. (2017) within DSGE frameworks. Using in-sample forecasts and
examining inefficiency factors, we demonstrate that the GARCH specification produces bet-
ter forecasts and is computationally more efficient in comparison to the stochastic volatility
approach which is based on Gibbs sampling and Gaussian-mixture approximation of density.

Our contribution supports the view that incorporating time-varying volatilities is impor-
tant in macroeconomic modeling, as highlighted in previous research such as Fernández-
Villaverde & Rubio-Ramı́rez (2010). Using various metrics, we further show that the
GARCH specification is superior to other time-varying volatility specifications and exhibits
computational costs similar to those of linearized DSGE models.

We proceed as follows. In section 2 we describe the DSGE model, data and priors, our
DSGE-GARCH approach and corresponding estimation procedure, in section 3, we present
our results and compare the DSGE-GARCH approach to the widely used stochastic volatility
(DSGE-SV) approach. In the last section, we present our conclusions.

1It is important to mention that despite providing a superior forecast, the first-order approximation of
a DSGE model solution is not affected by the variance matrix (see e.g. Justiniano & Primiceri (2008)
or Diebold et al. (2017)) and hence allows for the computation of a special approximation that reflects
time-variation effects with computational costs similar to a usual linear first-order approximation.
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2 Model and Estimation

2.1 Model, data and measures

As a benchmark, we use the small-scale model presented in Diebold et al. (2017), which
is a variant of the Smets & Wouters (2007) model without capital accumulation, wage
stickiness and habit formation. In the following, we present key features of the model. The
consumption Euler equation can be represented by

ct = Et(ct+1 + zY,t+1 − (rt − pt+1)/τ) (1)

where ct is consumption, rt is the nominal interest rate, pt is the inflation rate, τ is
the relative degree of risk aversion and zY,t is a term that describes the evolution of the
technology shock. The New-Keynesian Phillips curve is given by

pt =
pt−1ι

1 + ιβ
+
βEtpt+1

1 + ιβ
+

(ct + ytv1)(1− χβ)(1− χ)

(χ∗(1 + ιβ))
(2)

where ι is the share of price setters that index their prices to lagged inflation, χ is the
probability that governs the ability of price setters to reset their prices, v1 is the Frisch
elasticity of labor supply and β is the representative household’s discount factor. Output
consists of household consumption ct and government consumption gt:

yt = ct + gt (3)

The central bank follows a monetary policy rule that includes interest rate smoothing,
and sets nominal interest rates rt in response to deviations of inflation and output growth
from their respective targets:

rt = γrrt−1 + (1− γr)(γrP (pt − p) + (1− γrP )(p∗,t − p∗) + γrY (yt − yt−1 + zY,t)) + zR,t (4)

Here, γr is the interest smoothing parameter and zR,t is the monetary policy shock.
The inflation target p∗t and government consumption gt evolve according to the following
exogenous processes:

p∗,t = γPT p∗,t−1 + zPT,1 (5)

gt = γGT gt−1 + zG,1 (6)

Here, zG,t, zPT,t and zR,t are zero mean iid exogenous processes, while zY,t is an AR(2)
process with the following parameterization:

zY,t = η1,Y (1− η2,Y )zY,t−1 + η2,Y zY,t−2 + (1− η1,Y (1− η2,Y )− η2,Y )η0,Y εY,t (7)

The observed variables that link measurement equations to observables include the in-
flation rate obsP,t, 10-year inflation expectations obsP40,t, nominal interest rates obsR,t and
the quarterly growth rate of GDP obsY,t.

obsP,t = 400 · (pt + π) (8)
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obsP40,t = 400 · Et
(
π +

40∑
i=1

pt+i/40

)
(9)

obsR,t = 400 · (π + γ − log(β) + rt) (10)

obsY,t = 100 · (γ + yt − yt−1 + zY,t) (11)

Priors

For priors, we use those that were used by Diebold et al. (2017), which are based on
Smets & Wouters (2007).

Table 1: Prior distributions

Density Mean std

stderr εG I-G 0.001 0.02
stderr εPT I-G 0.001 0.02
stderr εR I-G 0.001 0.02
stderr εY I-G 0.001 0.02
τ N 1.5 0.37
vl G 2 0.75
ι B 0.5 0.15
χ B 0.5 0.1
γrP N 1.5 0.25
γrY N 0.12 0.05
400log(1/β) G 1 0.4
400π G 2.48 0.4
100γ N 0.4 0.1
γr B 0.5 0.2
γGT B 0.5 0.2
γGT B 0.5 0.2
η2,Y U 0 0.67
γPT B 0.5 0.2
ηR,G B 0.6 0.25
ηR,PT B 0.6 0.25
ηR,Y B 0.6 0.25
ηS,G B 0.9 0.085
ηS,PT B 0.9 0.085
ηS,Y B 0.9 0.085

2.2 DSGE-GARCH

The first-order approximation of a model with a rational expectations solution can be for-
mulated to have the following form:

Yt = HXt + ut (12)

Xt = AXXt−1 +Aεεt

where Yt represents the vector of observables, Xt represents the vector of endogenous
variables and εt represents the vector of structural innovations. While this form can be solved
with various algorithms such as those introduced in Blanchard & Kahn (1980), Collard &
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Juillard (2001), Sims (2002) and or Schmitt-Grohé & Uribe (2004) to name a few, the
solution remains the same and does not depend on the variance of shocks var(εt). Following
this, we can introduce a process for the variance term that exhibits GARCH properties and
does not influence the rational expectations solution approximation:

E(εtε
′
t|It−1) = Et−1(εtε

′
t) = Vt = Vc +

N GARCH∑
i=1

GiVt−iG
′
i +

N ARCH∑
i=1

AiEt−i(εt−iε
′
t−i)A

′
i (13)

Here, It is information available up to time t and Vc is the “constant” positive definite
component of the variance Vt, thus making Vt positive definite too. A useful property of this
formulation is that the use of a Kalman filter produces the values of Et(εtε

′
t). Consequently,

the likelihood can be computed directly and the Markov Chain Monte Carlo (MCMC)
sampling procedure becomes computationally similar to a usual linearized DSGE model.

Similar to other models, it is straightforward to extend GARCH models to the multi-
variate case. An important difference of our definition of GARCH lies in the usage of condi-
tional expectations of unobserved shocks. For state-space models with exact identification
of shocks, similar to VAR models, conditional and unconditional expectations of shocks are
equivalent whereas for asymptotically exact identification of shocks, (e.g. linearized DSGE
models with an equal number of shocks and observables or other linear state-space models)
conditional and unconditional shocks are asymptotically equivalent.

In the Kalman filter initialization of the state-space model presented in eq. 11, the
variance of shocks V0 and the variance of unobserved variables X0 are used to compute the
density of observed variables Yt, which is normally distributed due to the linear nature of
the equation describing observed variables. Then, the conditional density of unobserved
variables (Xt|It) and the conditional density of current shocks (εt|It) are computed. The
next step of the Kalman filter involves the computation of the conditional variance of shocks
according to eq. 12 and differs from a conventional computation of a linear setup. Finally,
the density of (Xt+1|It) is computed, which is similar to the forecasting step of a Kalman
filter. The parameterization we use suggests that the matrices G and A are diagonal and
thus prevents an increase in the number of parameters.

For those cases when the information set It is sufficient for the identification of the
shocks’ values, we receive the standard multidimensional GARCH such that

Et(εtε
′
t) = εtε

′
t

However, in the case of DSGE models we often don’t have sufficient observed variables
and there is uncertainty about initial conditions. As a consequence, the usual Kalman Filter
procedure produces conditional densities of shocks that are normally distributed such that

εt ∼ N
(
Et(εt), vart(εt)

)
Et(εtε

′
t) = Et(ε

′
t)(εt) + vart(εt)

While the conditional variance of shocks is usually small (when the number of shocks is
equal to number of observed variables), it is not equal to zero.

DSGE specifications usually assume that innovations are uncorrelated while recent stud-
ies show that this assumption doesn’t hold in most cases2. E.g. Cúrdia & Reis (2010) model
U.S. business cycles by allowing structural shocks to be correlated, finding as a result that
government spending and technology shocks are more relevant while changes in markups
are less relevant than is typically found. A feature of our GARCH specification is that
conditional correlations of shocks as implied by Vt can be non-zero even if VC , A and G are

2See e.g. Falter et al. (2018) or Georgiadis & Jančoková (2020) for an elaboration on this point.
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diagonal matrices. This is due to the multidimensional ARCH component of the GARCH
process.

The filtering procedure is straightforward and the initial condition is usually given by the
unconditional variance. However, the computation of this variance is not straightforward.
To simplify this problem, we use a different parameterization, where the parameters define
the unconditional variance of shocks, and Vc is computed according to the unconditional
variance.

Lastly, there is an additional view on GARCH processes. GARCH is a special case of
the stochastic volatility model. It is well known that ε2

t and εt are uncorrelated (in the
case of normal distribution). This implies that (εt)

2, which affects volatility at time t is an
uncorrelated volatility shock. Thus, eq. 13 can be rewritten as in eq. 14, with the additional
term ξ denoting the “volatility” shock in eq. 15.

Et−1(εtε
′
t) = Vt = VC +

N GARCH∑
i=1

GiVt−iG
′
i +

N ARCH∑
i=1

AiEt−i(εt−iεt−i )A′i = (14)

= VC +

N GARCH∑
i=1

GiVt−iG
′
i +

N ARCH∑
i=1

AiEt−i−1(Et−i(εt−iε
′
t−i))A

′
i +

N ARCH∑
i=1

Aiξt−iA
′
i =

= VC +

N GARCH∑
i=1

GiVt−iG
′
i +

N ARCH∑
i=1

AiVt−iA
′
i +

N ARCH∑
i=1

Aiξt−iA
′
i

ξt = Et(εtε
′
t)− Et−1(εtε

′
t) (15)

Model Comparison

To see which volatility specification is superior, we compare three models: a constant
volatility specification without GARCH parameters, a GARCH(1,1) specification and a
Random-Walk GARCH specification (RW-GARCH). For the initialization of the variance of
the GARCH and RW-GARCH specifications and their parameterization, we use a GARCH(1,1)
which makes the specification in eq. 16 simpler. Also, instead of using the ARCH parameter
ηA∗ and the GARCH parameter ηG∗ , we use their sum ηS∗ , and their ratio ηR∗ as described
in eq. 17 and these can be transformed back easily according to eq. 18.

Estimating a constant variance version of the model given in eq. (1)-(11) results in mon-
etary policy shocks that do not exhibit GARCH properties. Consequently, the GARCH(1,1)
and RW-GARCH specifications are also modeled such that the monetary policy shock pro-
cess has a constant variance.

Et−1(εtε
′
t) = Vt = VC +G1Vt−1G

′
1 +A1Et−1(εt−1ε

′
t−1)A′1 =

VC +


ηG,G 0 0 0

0 ηG,PT 0 0
0 0 0 0
0 0 0 ηG,Y

Vt−1


ηG,G 0 0 0

0 ηG,PT 0 0
0 0 0 0
0 0 0 ηG,Y

 (16)

+


ηA,G 0 0 0

0 ηA,PT 0 0
0 0 0 0
0 0 0 ηA,Y

Et−1(εt−1ε
′
t−1)


ηA,G 0 0 0

0 ηA,PT 0 0
0 0 0 0
0 0 0 ηA,Y
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(ηG∗)2 + (ηA∗)2 = (ηS∗)2 (17)

ηR∗ = ηA∗/ηS∗

ηG∗ = ηS∗

√
(1− η2

R∗) (18)

ηA∗ = ηS∗ηR∗

For the RW-GARCH specification, the parameter ηS∗ is equal to 1. The squared standard
error parameters are used as the initial (unconditional) variance of shocks and are obtained
by solving the expression in eq. 16 for the VC matrix. The solution is given in eq. 19. In
the case of the RW-GARCH model, the VC matrix becomes a null matrix which implies a
random walk without drift for the variance term.


(std εG,t)

2 0 0 0
0 (std εPT,t)

2 0 0
0 0 (std εR,t)

2 0
0 0 0 (std εY,t)

2

 = V = VC +G1V G
′
1 +A1V A

′
1 (19)

It should be noted that while our priors are similar to the benchmark constant volatility
model of Diebold et al. (2017), they deviate from the priors they used for their time-varying
models because the unconditional variance of the SV-AR model utilized by these authors
can be infinite. Correspondingly, we use priors such that the prior for the unconditional
standard deviation of shock parameters have the same mean and variance (for the constant
volatility (CV), GARCH(1,1) and Random Walk-GARCH (RW-GARCH) specifications).

2.3 Data

We use real-time data for the euro area for three variables, which we obtained from the
real-time database of the ECB: the quarterly growth rate of GDP, inflation rate, nominal
interest rates. We also use the five-year ahead inflation expectation as provided by the ECB
survey of professional forecasters (SPF). The duration of the longest vintage is 1995Q2 –
2017Q2 while the duration of the shortest vintage is 1995Q2 – 2000Q4 (23 periods), with 67
vintages used overall. It should be noted that the time series for inflation expectations (see
eq. 9) is shorter than for other variables and starts in 2000Q1 with two observations before
that point.

3 Results

As referred to in the introduction section, several authors have used univariate or multi-
variate models or DSGE models to show that density forecasts can be improved upon by
including time variation. Among these, Clarke (2007) demonstrates this point within a
Bayesian VAR setup, using real time data for the US. The closest recent work to the present
study is that of Diebold et al. (2017), where the authors show within a DSGE model that
time variation in the form of SV improves density forecast performance, using US real time
data. However, their approach is computationally expensive, making it difficult to extend
their results to larger models (see e.g. Pitt et al. (2012) who point to increased computa-
tional costs for noisy posterior calculations). Here, we suggest an alternative form that is
computationally cheaper, modeling time variation in the form of a GARCH process, and
demonstrate its performance using EMU real time data.

Both Clark (2011) and Diebold et al. (2017) use variants of the Metropolis-within-Gibbs
algorithm, which involves the use of the usual Metropolis-Hastings (MH) random walk al-
gorithm for the parameters of the model, and Gibbs sampling for the stochastic volatility
component (based on a Gaussian mixture approximation).
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In contrast, our approach allows us to compute the “stochastic volatility component” of
the law of motion by filter (without approximation) with increased computational speed.
Moreover, we test our approach under less favorable conditions (in terms of estimation
quality). We use posterior mode estimation instead of fully Bayesian estimation.

Additionally, the time period considered in Diebold et al. (2017), 1964Q2-2011Q2, en-
compasses the period before and after the great moderation - a period under which the
stochastic volatility model faces more favorable conditions. They also use a structural break
model, where a break happens during the great moderation, in order to analyze its perfor-
mance against SV models. In contrast to their sample, our sample starts in 1995Q2.

In the following, we discuss and compare the point and density forecast performance of
the three models that we use.

3.1 Point Forecasts

We use Dynare (Adjemian et al. (2011)) for the estimation of the model with real-time
data. Our sample consists of 67 vintages of quarterly data for the euro area and spans the
period 1995Q2 - 2017Q2 with the shortest vintage covering the period 1995Q2 – 2000Q4 (23
periods). We estimate the model on each data-file (including short vintages), using the four
observed variables, as discussed in section 2.3. We estimate three versions of the model, i.e.
CV, GARCH and RW-GARCH by maximum posterior and use the first four quarters for
pre-sampling. Then forecasts are generated for the 1- to 8-step ahead horizons from each
data-point.

Table 2 presents Root Mean Square Errors (RMSE) of point forecasts for the different
models we estimate (we use the freshest data as the true one). Our results suggest that the
GARCH specification outperforms all other specifications in forecasting inflation, output
growth (except at the two quarters ahead horizon) and short-term forecasting of interest
rates, while the CV model produces superior inflation expectations forecasts. The last result,
that the CV model outperforms in the forecast of inflation expectations, is not surprising if
one takes into account that inflation expectations data are less volatile in comparison to the
other observed variables.

Table 2: RMSE for point forecasts

t+ 1 t+ 2 t+ 3 t+ 4 t+ 5 t+ 6 t+ 7 t+ 8

zz
o
b

s
d

P CV 0.56 0.81 0.91 0.96 0.99 1.01 1.03 1.04
RW-GARCH 0.49 0.76 0.90 0.96 0.99 1.00 1.02 1.03

GARCH 0.48 0.74 0.89 0.96 0.98 0.99 1.00 1.01

zz
o
b

s
d

P
4
0 CV 0.06 0.06 0.07 0.08 0.09 0.10 0.11 0.11

RW-GARCH 0.06 0.07 0.08 0.09 0.11 0.12 0.13 0.14
GARCH 0.06 0.07 0.09 0.11 0.13 0.14 0.16 0.17

zz
o
b

s
R

CV 0.45 0.79 1.07 1.29 1.47 1.61 1.73 1.82
RW-GARCH 0.43 0.78 1.07 1.34 1.56 1.75 1.93 2.08

GARCH 0.41 0.73 1.01 1.26 1.47 1.65 1.81 1.95

zz
o
b

s
d

Y CV 0.81 0.72 0.77 0.80 0.79 0.83 0.84 0.85
RW-GARCH 0.87 0.77 0.79 0.80 0.79 0.81 0.81 0.83

GARCH 0.78 0.74 0.75 0.75 0.75 0.76 0.76 0.77

Because the errors of the shorter samples may affect the results, we use two measures
for robustness of the quality of point forecasts. The first measure is a test which is based
on Clarke (2007), where the H0 implies that two of the models that are compared have
equal forecasting ability. The respective p-values for the test are presented in Table 33.
It is apparent from the results that there are significant advantages of using the GARCH
specification for interest rate forecasts across all horizons and for output forecasts at longer
horizons. In contrast, the CV model is superior in the forecast of inflation expectations.

3A p-value < 0.5 suggests an advantage for model 1 (with smaller number of parameters).
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Table 3: P-Values for the test of equality of forecasting ability

t+ 1 t+ 2 t+ 3 t+ 4 t+ 5 t+ 6 t+ 7 t+ 8
zz

o
b

s
d

P CV vs. RW 99.9% 83.9% 64.6% 40.1% 4.9% 22.1% 18.3% 21.7%
CV vs. GARCH 99.9% 69.0% 45.0% 15.7% 1.5% 10.0% 2.6% 5.9%
RW vs. GARCH 59.8% 95.9% 55.0% 3.8% 0.8% 10.0% 12.3% 14.9%

zz
o
b

s
d

P
4
0 CV vs. RW 0.1% 31.0% 1.6% 0.6% 0.0% 0.0% 0.0% 0.0%

CV vs. GARCH 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
RW vs. GARCH 6.8% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

zz
o
b

s
R

CV vs. RW 100.0% 100.0% 99.6% 89.6% 35.2% 15.3% 4.6% 0.2%
CV vs. GARCH 100.0% 100.0% 100.0% 100.0% 99.8% 90.0% 55.1% 14.9%
RW vs. GARCH 99.9% 99.9% 99.8% 100.0% 100.0% 100.0% 100.0% 100.0%

zz
o
b

s
d

Y CV vs. RW 93.2% 50.0% 73.4% 59.9% 18.7% 50.0% 55.1% 50.0%
CV vs. GARCH 93.2% 83.9% 94.8% 77.5% 95.1% 98.0% 99.7% 99.8%
RW vs. GARCH 59.8% 59.8% 99.2% 97.9% 95.1% 77.9% 74.1% 98.2%

To ensure that potentially large errors of the initial periods will not significantly affect
our forecasting results, we also produce forecasts for the post-2009 period using the last 34
periods of our sample (i.e. 2009Q1 to 2017Q2), computing the RMSE and using the test of
Clarke (2007) for model equality. As is apparent from Table 4, the RMSE results once again
confirm that the GARCH model is superior across almost all horizons to other models for
forecasts of the growth rate of GDP, inflation rate and nominal interest rates, while the CV
model produces superior forecasts for long-term inflation expectations.

Table 4: RMSE (forecasts made using data range 2009Q1 – 2017Q2)

t+ 1 t+ 2 t+ 3 t+ 4 t+ 5 t+ 6 t+ 7 t+ 8

zz
o
b

s
d

P CV 0.53 0.75 0.88 0.97 1.04 1.11 1.16 1.21
RW-GARCH 0.45 0.68 0.84 0.94 1.02 1.07 1.12 1.16

GARCH 0.42 0.62 0.77 0.87 0.95 1.01 1.07 1.10

zz
o
b

s
d

P
4
0 CV 0.06 0.07 0.09 0.10 0.11 0.13 0.14 0.14

RW-GARCH 0.06 0.08 0.10 0.12 0.14 0.15 0.17 0.18
GARCH 0.07 0.09 0.12 0.14 0.17 0.19 0.21 0.22

zz
o
b

s
R

CV 0.43 0.77 1.03 1.25 1.43 1.58 1.70 1.81
RW-GARCH 0.38 0.70 0.98 1.23 1.45 1.65 1.83 2.01

GARCH 0.33 0.60 0.84 1.05 1.24 1.41 1.58 1.73

zz
o
b

s
d

Y CV 0.58 0.43 0.47 0.51 0.54 0.56 0.53 0.57
RW-GARCH 0.67 0.49 0.47 0.49 0.50 0.51 0.47 0.49

GARCH 0.52 0.45 0.43 0.45 0.47 0.48 0.46 0.47

In Table 5, the p-values that correspond to Clarke (2007)’s test of equality of forecasts
are presented when we use the period 2009Q1-2017Q2. The results suggest that the GARCH
specification is significantly superior to other specifications across all horizons for interest
rate forecasts and for the first four horizons of the inflation rate. Further, the results are
mixed for output growth forecasts, i.e. the GARCH specification is superior to the RW
specification but not to the CV specification. For forecasts of inflation expectations, the
test once more suggests that the CV model is preferred over other models.

9



Table 5: P-values of RMSE-test (forecasts made using data range 2009Q1 – 2017Q2)

t+ 1 t+ 2 t+ 3 t+ 4 t+ 5 t+ 6 t+ 7 t+ 8
zz

o
b

s
d

P CV vs. RW 99.9% 99.0% 98.5% 57.2% 50.0% 71.4% 77.9% 91.6%
CV vs. GARCH 99.9% 99.0% 99.8% 95.1% 64.4% 82.8% 77.9% 83.7%
RW vs. GARCH 94.5% 100.0% 100.0% 99.2% 93.2% 90.8% 77.9% 83.7%

zz
o
b

s
d

P
4
0 CV vs. RW 5.5% 43.0% 23.7% 4.9% 0.4% 0.0% 0.0% 0.0%

CV vs. GARCH 0.4% 0.4% 0.2% 0.3% 0.0% 0.0% 0.0% 0.0%
RW vs. GARCH 5.5% 0.4% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

zz
o
b

s
R

CV vs. RW 100.0% 100.0% 92.5% 81.9% 35.6% 17.2% 2.6% 0.0%
CV vs. GARCH 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 99.5%
RW vs. GARCH 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

zz
o
b

s
d

Y CV vs. RW 89.2% 5.5% 14.1% 10.0% 13.2% 42.5% 64.9% 83.7%
CV vs. GARCH 81.1% 18.9% 36.0% 29.2% 35.6% 42.5% 77.9% 91.6%
RW vs. GARCH 97.5% 89.2% 100.0% 99.7% 93.2% 57.5% 50.0% 96.2%

3.2 Density Forecasts

The point forecast exercise that was discussed in the previous subsection demonstrates
that for inflation, interest and growth rates, time-varying models outperform CV models
and further, that the GARCH specification is the superior time-varying model. In this
subsection, we estimate our models to obtain density forecasts. As a measure of forecasting
quality, we use the log predictive density score (LPS), which is a broad measure of calibration
of density forecasts.

LPS(Yt+h) = log p(Yt+h|It) = −(nY /2)log(2π)− log (|Vt(Yt+h)|)/2 (20)

−0.5(Yt+h − EtYt+h)′(Vt(Yt+h))−1(Yt+h − EtYt+h)

Table 6 presents LPS values for out-of-sample forecasts. We note that for inflation
expectations, interest rates (longer horizons) and output growth rate (shorter horizons),
the CV specification is superior to other specifications. For forecasts of the inflation rate,
the RW-GARCH specification is superior in the first six quarters whereas for the last two
quarters the CV and GARCH specifications alternate in superiority. Also, the GARCH
specification produces superior density forecasts in the first quarters of the interest rate and
the last two quarters of the output growth rate.

In addition to univariate density forecasts, we examine the extent to which the results
are affected by multivariate forecasting. In the two cases we analyze – when all four variables
are included, and when inflation expectations are excluded - the CV specification dominates
other specifications. This result is similar to Diebold et al. (2017)’s finding, that CV produces
better forecasts in multivariate settings.

However, their ranking according to RMSE and LPS results are similar for each variable
while our results for each variable are sensitive to the measure used, a result that is related
to the higher influence of short sample.
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Table 6: Log Predictive Scores (LPS)

t+ 1 t+ 2 t+ 3 t+ 4 t+ 5 t+ 6 t+ 7 t+ 8

zz
o
b

s
d

P

CV -0.85 -1.23 -1.39 -1.46 -1.48 -1.50 -1.52 -1.54
RW-GARCH -0.68 -1.07 -1.23 -1.30 -1.34 -1.41 -1.53 -1.69

GARCH -0.69 -1.08 -1.26 -1.36 -1.41 -1.45 -1.52 -1.58

zz
o
b

s
d

P
4
0

CV 1.46 1.43 1.22 1.16 1.02 0.94 0.87 0.86
RW-GARCH 0.68 0.32 0.69 0.59 0.71 0.54 0.50 0.62

GARCH 1.33 1.11 0.96 0.84 0.71 0.61 0.53 0.49

zz
o
b

s
R CV -0.68 -1.43 -1.97 -2.37 -2.64 -2.84 -3.01 -3.13

RW-GARCH -0.45 -1.37 -2.11 -2.68 -3.11 -3.41 -3.62 -3.76
GARCH -0.43 -1.36 -2.10 -2.84 -3.42 -3.80 -4.06 -4.30

zz
o
b

s
d

Y

CV -1.34 -1.32 -1.42 -1.46 -1.40 -1.41 -1.41 -1.40
RW-GARCH -1.36 -1.55 -1.67 -1.74 -1.66 -1.58 -1.53 -1.51

GARCH -1.51 -1.70 -1.85 -1.84 -1.71 -1.53 -1.39 -1.40

a
ll

b
u
t

z
z
o
b
s

d
P
4
0

CV -3.10 -3.98 -4.90 -5.53 -5.87 -6.29 -6.71 -7.05
RW-GARCH -2.72 -3.90 -5.04 -6.02 -6.51 -7.10 -7.79 -8.50

GARCH -2.72 -4.03 -5.36 -6.50 -7.13 -7.50 -7.92 -8.37

a
ll

(
m

u
lt
iv

a
r
ia

t
e
)

CV -1.71 -2.60 -3.79 -4.53 -5.08 -5.62 -6.17 -6.59
RW-GARCH -4.46 -6.75 -6.38 -8.90 -8.37 -10.25 -11.46 -10.85

GARCH -2.23 -3.54 -4.87 -6.18 -6.99 -7.68 -8.39 -8.89

The LPS results in Table 6 suggest that the CV specification is superior in forecasting
several variables in univariate and multivariate settings. Table 7 presents p-values associated
with Clarke (2007)’s test of equal forecasting ability between the models we consider. In
contrast to the LPS values presented in Table 6, the p-values indicate that the GARCH
volatility model is superior across all horizons for forecasts of the interest rate and growth
rate of GDP, and the first quarter of the inflation rate, though significance in the case of
interest rates is given for the first four quarters (similar to the p-values of point forecasts
that are presented in Table 3. For forecasts of the inflation rate, the GARCH specification
produces superior forecasts only in the very short term while in the longer term the CV
specification dominates. It is worth pointing out that, while RMSE and LPS values for
point and density forecasts (Tables 2 and 6) deliver very dissimilar results, test for equality
of forecasts (Tables 3 and 7) deliver very similar results.

Overall, we can see that the GARCH specification performs better than the CV specifi-
cation, especially in short-term forecasting for most periods. Also, the GARCH specification
performs better than the RW specification, while CV is mostly superior to the RW specifi-
cation for longer horizons. In a multivariate setting, the RW specification is superior when
inflation expectations are excluded, but the results are mixed when all variables are in-
cluded (the GARCH specification is superior in the shorter horizons). In Table 7 we present
p-values of forecast equality4.

4Because a higher log predictive score indicates better forecasting performance for density forecasts while
a lower RMSE indicates better forecasting quality for point forecasts, a value of p>0.5 indicates that model
1 is preferred (in contrast to p-values for the RMSE results in Table 6).
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Table 7: P-values of forecast equality (for LPS)

t+ 1 t+ 2 t+ 3 t+ 4 t+ 5 t+ 6 t+ 7 t+ 8
z
z
o
b
s

d
P

CV vs. RW 0.3% 31.0% 55.0% 59.9% 45.0% 77.9% 81.7% 94.1%
CV vs. GARCH 0.3% 31.0% 64.6% 40.1% 91.9% 90.0% 92.2% 98.2%
RW vs. GARCH 6.8% 69.0% 87.0% 98.9% 99.2% 99.0% 99.9% 96.6%

z
z
o
b
s

d
P
4
0

CV vs. RW 77.1% 99.9% 100% 100% 100% 100% 100% 100%
CV vs. GARCH 93.2% 99.9% 100% 100% 100% 100% 100% 100%
RW vs. GARCH 99.9% 100% 100% 100% 100% 100% 100% 100%

z
z
o
b
s

R CV vs. RW 0.0% 0.1% 5.2% 30.7% 73.7% 84.7% 87.7% 94.1%
CV vs. GARCH 0.0% 0.1% 3.0% 15.7% 26.3% 30.4% 74.1% 85.1%
RW vs. GARCH 1.2% 1.2% 0.8% 2.1% 12.6% 30.4% 34.9% 39.7%

z
z
o
b
s

d
Y

CV vs. RW 1.2% 1.2% 0.8% 2.1% 12.6% 22.1% 25.9% 21.7%
CV vs. GARCH 0.3% 0.6% 0.0% 0.0% 0.8% 0.2% 0.0% 0.1%
RW vs. GARCH 22.9% 0.6% 0.8% 0.3% 0.0% 0.0% 0.0% 0.0%

a
ll

b
u
t

z
z
o
b
s

d
P
4
0

CV vs. RW 0.6% 0.1% 0.0% 0.1% 8.1% 30.4% 25.9% 50.0%
CV vs. GARCH 0.0% 0.0% 0.1% 0.6% 1.5% 10.0% 7.8% 30.1%
RW vs. GARCH 0.6% 4.1% 5.2% 10.4% 4.9% 3.6% 0.0% 0.0%

a
ll

(
m

u
lt
iv

a
r
ia

t
e
)

CV vs. RW 4.1% 2.3% 26.6% 22.5% 73.7% 90.0% 87.7% 98.2%
CV vs. GARCH 0.6% 10.7% 35.4% 40.1% 45.0% 69.6% 95.4% 96.6%
RW vs. GARCH 10.7% 31.0% 45.0% 77.5% 64.8% 50.0% 65.1% 30.1%

Similar to the point forecast exercise in the previous subsection, we provide measures
of density forecast quality (Table 8) and test for equality of the density forecast (Table 9)
using post-2009 vintages. The results in Table 8 imply that the GARCH specification is
significantly superior across all horizons for forecasts of the inflation rate, output growth
rate, in the multivariate setting excluding inflation expectations and for the first quarters of
the interest rate and the very short term of the multivariate forecast including all variables.
In contrast, for quarters 5-8 of the interest rate, all horizons of inflation expectations and
the longer term forecasts of the multivariate setting, the CV specification is superior. The
RW-GARCH setting is inferior for all variables and horizons.
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Table 8: LPS (forecasts made using data range 2009Q1 - 2017Q2)

t+ 1 t+ 2 t+ 3 t+ 4 t+ 5 t+ 6 t+ 7 t+ 8

zz
o
b

s
d

P
CV -0.83 -1.14 -1.29 -1.40 -1.50 -1.58 -1.66 -1.72

RW-GARCH -0.70 -1.10 -1.29 -1.40 -1.49 -1.55 -1.62 -1.66
GARCH -0.68 -1.05 -1.23 -1.33 -1.41 -1.47 -1.53 -1.59

zz
o
b

s
d

P
4
0

CV 1.38 1.20 0.98 0.88 0.74 0.64 0.56 0.52
RW-GARCH 1.30 1.03 0.78 0.66 0.51 0.40 0.32 0.26

GARCH 1.24 0.97 0.65 0.49 0.31 0.18 0.08 0.00

zz
o
b

s
R CV -0.57 -1.21 -1.62 -1.93 -2.17 -2.33 -2.47 -2.57

RW-GARCH -0.53 -1.27 -1.85 -2.30 -2.65 -2.91 -3.09 -3.24
GARCH -0.37 -1.04 -1.52 -1.90 -2.18 -2.40 -2.58 -2.72

zz
o
b

s
d

Y

CV -1.09 -1.04 -1.07 -1.10 -1.12 -1.14 -1.14 -1.17
RW-GARCH -1.05 -1.05 -1.05 -1.09 -1.12 -1.14 -1.15 -1.19

GARCH -0.93 -0.95 -0.93 -0.96 -0.98 -1.00 -1.01 -1.04

a
ll

b
u
t

z
z
o
b
s

d
P
4
0

CV -2.54 -3.72 -4.49 -4.91 -5.18 -5.34 -5.51 -5.63
RW-GARCH -2.41 -3.63 -4.60 -5.22 -5.68 -5.99 -6.26 -6.48

GARCH -1.98 -3.28 -4.14 -4.70 -5.05 -5.28 -5.43 -5.57

a
ll

(
m

u
lt
iv

a
r
ia

t
e
)

CV -1.17 -2.52 -3.57 -4.21 -4.77 -5.19 -5.57 -5.85
RW-GARCH -1.15 -2.66 -4.04 -5.06 -5.91 -6.57 -7.03 -7.49

GARCH -0.96 -2.40 -3.70 -4.56 -5.30 -5.79 -6.16 -6.54

P-values for the test of equal forecasting when post-2009 data are used, which are pre-
sented in Table 9, corroborate the findings in Table 8. Specifically, the values imply that
in both the univariate as well as multivariate settings, the GARCH specification is superior
to other specifications for all variables and across all periods. While the results are signif-
icant for all horizons for forecasts of the interest rate, the growth rate of GDP and in the
multivariate setting excluding inflation expectations, they are significant for around half of
the results for other variables. As discussed previously, the CV specification significantly
outperforms other specifications for forecasts of inflation expectations.
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Table 9: P-values of LPS-test (forecasts made using data range 2009Q1 – 2017Q2)

t+ 1 t+ 2 t+ 3 t+ 4 t+ 5 t+ 6 t+ 7 t+ 8
z
z
o
b
s

d
P

CV vs. RW 0.0% 18.9% 50.0% 57.2% 13.2% 28.6% 22.1% 42.3%
CV vs. GARCH 0.4% 1.0% 7.5% 0.8% 35.6% 28.6% 22.1% 42.3%
RW vs. GARCH 18.9% 10.8% 1.5% 10.0% 22.9% 42.5% 35.1% 42.3%

z
z
o
b
s

d
P
4
0

CV vs. RW 97.5% 100% 100% 100% 100% 100% 100% 100%
CV vs. GARCH 97.5% 99.9% 100% 100% 100% 100% 100% 100%
RW vs. GARCH 81.1% 97.5% 100% 100% 100% 100% 100% 100%

z
z
o
b
s

R CV vs. RW 1.0% 18.9% 50.0% 90.0% 98.8% 99.4% 99.9% 100%
CV vs. GARCH 0.0% 0.0% 3.5% 10.0% 22.9% 17.2% 35.1% 42.3%
RW vs. GARCH 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1%

z
z
o
b
s

d
Y

CV vs. RW 2.5% 18.9% 7.5% 4.9% 13.2% 17.2% 35.1% 27.9%
CV vs. GARCH 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1%
RW vs. GARCH 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

a
ll

b
u
t

z
z
o
b
s

d
P
4
0

CV vs. RW 5.5% 1.0% 0.5% 10.0% 77.1% 82.8% 87.6% 91.6%
CV vs. GARCH 0.1% 0.4% 0.0% 0.3% 0.4% 4.4% 6.1% 42.3%
RW vs. GARCH 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

a
ll

(
m

u
lt
iv

a
r
ia

t
e
)

CV vs. RW 18.9% 18.9% 36.0% 29.2% 50.0% 82.8% 77.9% 91.6%
CV vs. GARCH 10.8% 5.5% 23.7% 10.0% 35.6% 57.5% 64.9% 72.1%
RW vs. GARCH 0.4% 1.0% 7.5% 4.9% 13.2% 9.2% 12.4% 8.4%

3.3 Estimated volatility path

Figures 1-4 present the plots of the time-varying standard deviations for three of the four
shocks5 included in the baseline model for the two time-varying specifications we utilize
(RW-GARCH and GARCH(1,1)). We provide the minimum, maximum, median and mean
of the estimated standard deviations that correspond to the 67 vintages we utilize in our
estimation.

5As explained previously, the monetary policy shock does not exhibit GARCH characteristics. As a result,
the GARCH and RW-GARCH specifications are modeled to have a constant variance for the monetary policy
shock (and zero correlations).
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Figure 1. Volatility path generated by the RW-GARCH model.

Figure 1 displays the standard deviations and their correlations for the RW-GARCH
model. It is apparent from the graphs that the shocks to government expenditure (εG) and
the inflation target (εPT ) exhibit substantial time-variation whereas variations in the shock
to output growth are more muted. The graphs indicate that for the government expenditure
and the inflation target shocks there were two peaks that correspond to the slowdown in
2001-2002 and the recession of 2008-2009 in the euro area. Correlations between government
expenditure shocks on one side and output growth and the inflation target on the other side
exhibit variation around the 2008 period but are mostly stable for the remaining periods. In
contrast, the correlation between government expenditure and inflation target shocks exhibit
substantial variation and are close to -1. Figure 2 shows the volatility paths that are based
on the last 34 vintages.
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Figure 2. Volatility path generated by the RW-GARCH model (using data range 2009Q1 – 2017Q2).

Figure 2 displays the path of volatilities, as generated by the RW-GARCH model and
using post-2009 vintages. It is apparent that there are large increases in the volatilities
of shocks to the government expenditure and the inflation target that correspond to the
2008-2009 period. While there are mild fluctuations in the correlation of policy shocks with
the TFP shock (εY ) during the 2008 crisis, the correlation between the two policy shocks
(εG and εPT ) fluctuates more significantly during this period.
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Figure 3. Volatility path generated by the GARCH(1,1) model.
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Figure 4. Volatility path generated by the GARCH(1,1) model (using data vintages 2009Q1 – 2017Q2).

Figures 3 and 4 display the paths of volatility as generated by the GARCH(1,1) model
for the two data vintage periods considered, 1995-2017 and 2009-2017. The graphs indicate
that the median results are mostly similar to those produced by the RW-GARCH model:
there are two increases in the volatility that correspond to the period around 2001and the
2008 financial crisis. The increase during the financial crisis of 2008 is more substantial than
the increase in the 2001 period.

3.4 Path of the Log Predictive Score

Figure 5 displays plots of 1-8 step ahead log predictive scores for all variables to account for
out-of-sample forecasting performance of the various models we compare. The plots suggest
that the GARCH model outperforms other models for most of the period and most of the
steps and corroborates the results from the previous sections. While there are several periods
when the CV specification is superior, the RW-GARCH specification is mostly inferior to
the other specifications.
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Figure 5. LPS for out-of-sample forecasts for all variables.
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Figure 6. LPS for out-of sample forecasts for all variables except inflation expectations

Figure 6 displays the predictive scores when all variables are used for the out-of-sample
forecasting performance test, with the exception of inflation expectations. The plots confirm
once more the result that the GARCH specification outperforms other models. One notable
difference is that, in contrast to the forecasting exercise when all variables are included
(figure 5), the RW-GARCH specification produces forecasts that are superior to the CV
specification for most periods.

3.5 In-sample forecast comparison with DSGE-SV

So far, we have compared the three specifications (GARCH, RW-GARCH and CV) and
demonstrated that the GARCH specification produces mostly superior point and density
forecasts within a DSGE model. In this subsection, it is our aim to compare the GARCH
specification to the widely used stochastic volatility specification that was used in various
influential studies such as Kim et al. (1998), Primiceri (2005), Justiniano & Primiceri (2008)
or Diebold et al. (2017).

For this purpose, we produce in-sample point and density forecasts with both models
and test for equality of the results, similar to the approach in the previous sections. In
addition, we formulate two versions of the models, i.e. four versions in total: 1) GARCH
with MCMC simulation, 2) GARCH with posterior mode estimation, 3) SV with an offset
constant6 of 10−4 and 4) SV with an offset constant of 10−8.

Using the model introduced in section 2.2., the stochastic volatility process that governs

6This refers to the “offset constant” (see Kim et al. (1998)) that is added used in drawing stochastic
volatilities and is explained more in detail in step 2 of the MCMC algorithm presented in the Appendix.
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the volatilities of the DSGE-SV approach can be described as follows:

log

(
E(εtε

′
t|Vt)i,i

)
= log(Vt)i,i = hi,t = hi(1− ρi) + ρihi,t−1 + εv,i,t (21)

The algorithm uses an approximation of squared shocks by Gaussian mixture as follows

log

(
(εtε

′
t)i,i

)
≈ 2hi,t + εGM,t (22)

The steps of the MCMC algorithm used to characterize the posterior distribution of
structural parameters are described in the Appendix7.

Table 10 displays the results of the point forecast exercise. They suggest that in short
horizons GARCH specifications are superior while in longer horizons forecasts generated
by SV specifications are superior. Further, GARCH specifications dominate forecasts of
inflation expectations and SV specifications dominate interest rate forecasts. The forecast
errors generally don’t deviate strongly from one model to another and there is also no pat-
tern according to which one specification (GARCH with MCMC or GARCH with posterior
maximization, and SV with offset coefficient 10−4 or 10−8) is superior to the other.

Table 11 presents results of the density forecast exercise where we compare log predictive
scores of the various models we utilize. These stay in stark contrast to the results in Table
10 and imply that GARCH specifications are superior to SV specifications for all variables
that we consider, and in multivariate settings. While differences between the two GARCH
specifications are mostly small, the GARCH specification with MCMC is superior to the
GARCH specification with posterior maximization. The SV specifications exhibit significant
sensitivity to the choice of the offset constant. Specifically, the specification with an offset
constant of 10−4 is superior in the forecast of inflation expectations and interest rates while
the specification with an offset constant of 10−8 is superior in the forecast of the inflation rate
and output growth. In multivariate forecasting, the specification with an offset constant of
10−8 displays vastly inferior predictive quality. The latter result, that the SV model exhibits
sensitivity to the choice of the offset parameter, is likely related to several factors such as the
short sample and missing values of the inflation expectations data, and the choice of priors
for the variance which implies that persistent volatility leads to permanently increasing
expected variances due to exponential transformation.

Table 10: RMSE of in-sample forecasts

t+ 1 t+ 2 t+ 3 t+ 4 t+ 5 t+ 6 t+ 7 t+ 8

zz
o
b

s
d

P GARCH 0.46 0.70 0.84 0.91 0.95 0.97 0.98 0.99
GARCH at mode 0.45 0.70 0.84 0.93 0.97 0.99 1.00 1.01

SV (offset const. 10−4) 0.50 0.73 0.86 0.91 0.93 0.95 0.97 0.97
SV (offset const. 10−8) 0.53 0.83 1.03 1.14 1.19 1.22 1.23 1.23

zz
o
b

s
d

P
4
0 GARCH 0.06 0.06 0.08 0.09 0.10 0.11 0.12 0.12

GARCH at mode 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13
SV (offset const. 10−4) 0.12 0.09 0.13 0.11 0.16 0.15 0.20 0.21
SV (offset const. 10−8) 0.09 0.09 0.11 0.15 0.18 0.18 0.20 0.26

zz
o
b

s
R

GARCH 0.39 0.71 1.01 1.26 1.47 1.65 1.79 1.91
GARCH at mode 0.39 0.70 0.99 1.23 1.43 1.60 1.73 1.84

SV (offset const. 10−4) 0.43 0.75 1.00 1.20 1.37 1.49 1.58 1.65
SV (offset const. 10−8) 0.38 0.68 0.95 1.19 1.40 1.58 1.71 1.80

zz
o
b

s
d

Y GARCH 0.79 0.79 0.83 0.84 0.85 0.86 0.86 0.82
GARCH at mode 0.76 0.74 0.76 0.77 0.78 0.79 0.78 0.74

SV (offset const. 10−4) 0.83 0.76 0.75 0.75 0.74 0.72 0.71 0.71
SV (offset const. 10−8) 0.96 0.89 0.86 0.84 0.85 0.84 0.85 0.79

7Our algorithm accounts for the correction in Del Negro & Primiceri (2015).
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Table 11: LPS of in-sample forecasts

t+ 1 t+ 2 t+ 3 t+ 4 t+ 5 t+ 6 t+ 7 t+ 8
zz

o
b

s
d

P GARCH -0.66 -1.05 -1.22 -1.33 -1.38 -1.41 -1.44 -1.47
GARCH at mode -0.64 -1.03 -1.21 -1.33 -1.40 -1.43 -1.46 -1.49

SV (offset const. 10−4) -4.12 -4.44 -4.64 -4.78 -4.91 -5.04 -5.17 -5.29
SV (offset const. 10−8) -1.15 -2.17 -2.86 -3.26 -3.45 -3.56 -3.56 -3.60

zz
o
b

s
d

P
4
0 GARCH 1.48 1.26 1.04 0.93 0.79 0.70 0.62 0.57

GARCH at mode 1.50 1.26 1.04 0.92 0.79 0.70 0.63 0.57
SV (offset const. 10−4) -3.39 -3.85 -4.16 -4.41 -4.64 -4.84 -5.01 -5.18
SV (offset const. 10−8) -4.47 -4.64 -7.62 -9.84 -13.27 -15.58 -17.88 -19.01

zz
o
b

s
R

GARCH -0.35 -1.04 -1.49 -1.84 -2.07 -2.18 -2.25 -2.31
GARCH at mode -0.38 -1.07 -1.51 -1.90 -2.16 -2.27 -2.34 -2.39

SV (offset const. 10−4) -4.57 -4.94 -5.17 -5.33 -5.47 -5.58 -5.67 -5.76
SV (offset const. 10−8) -8.33 -17.79 -25.85 -32.61 -38.13 -42.14 -44.80 -47.31

zz
o
b

s
d

Y GARCH -1.07 -1.19 -1.27 -1.37 -1.39 -1.34 -1.35 -1.36
GARCH at mode -1.07 -1.12 -1.18 -1.26 -1.28 -1.22 -1.21 -1.24

SV (offset const. 10−4) -4.72 -4.78 -4.85 -4.94 -5.03 -5.12 -5.22 -5.31
SV (offset const. 10−8) -3.05 -2.60 -2.49 -2.40 -2.42 -2.37 -2.39 -2.10

a
ll

b
u

t
zz

o
b

s
d

P
4
0

GARCH -1.73 -2.97 -3.73 -4.30 -4.64 -4.81 -4.98 -5.12
GARCH at mode -2.84 -2.95 -3.69 -4.30 -4.70 -4.87 -5.03 -5.19

SV (offset const. 10−4) -10.58 -13.02 -13.70 -14.19 -14.59 -14.92 -15.21 -15.45
SV (offset const. 10−8) -155.73 -189.46 -168.27 -151.57 -142.12 -131.83 -127.78 -125.45

a
ll

(m
u

lt
iv

a
ri

a
te

)

GARCH -0.33 -1.84 -2.84 -3.51 -4.04 -4.25 -4.47 -4.64
GARCH at mode -0.34 -1.84 -2.86 -3.60 -4.22 -4.48 -4.70 -4.89

SV (offset const. 10−4) -11.03 -13.88 -14.94 -15.76 -16.49 -17.11 -17.66 -18.17
SV (offset const. 10−8) -883.02 -598.15 -529.54 -476.80 -389.20 -331.43 -296.60 -262.71

Once more, we test for equality of forecasting as a robustness check using the test in
Clarke (2007) 8. Table 12 presents p-values9 of the test associated with the RMSE results
in Table 10 and imply that the values are mostly insignificant, that in the forecast of the
inflation rate and inflation expectations and interest rates in the short term, the GARCH
model produces superior forecasts, and that the SV model is dominant in the forecast of
output growth and interest rates in the long term.

In contrast to this, the p-values associated with the LPS (Table 13) results show that
the GARCH specification is superior for the forecast of all variables and in the multivariate
environment. Finally, comparing the two GARCH specifications, the results reveal that both
specifications alternate in superiority.

8We only report values for the SV model with an offset constant 10-4.

9A p-value < 0.5 suggests a smaller value of the statistic for model 1. GARCH and SV have the same
number of parameters, so that the difference in parameters number does not affect the test statistic.

22



Table 12: P-values of in-sample RMSE-test

t+ 1 t+ 2 t+ 3 t+ 4 t+ 5 t+ 6 t+ 7 t+ 8
zz

o
b

s
d

P SV vs. GARCH 98.8% 66.6% 22.5% 58.6% 54.3% 50.0% 70.9% 50.0%
SV vs. GARCHm 99.6% 74.0% 70.5% 66.8% 45.7% 41.3% 54.4% 25.3%

GARCH vs. GARCHm 77.2% 85.8% 83.4% 66.8% 83.7% 81.0% 45.6% 41.2%

zz
o
b

s
d

P
4
0 SV vs. GARCH 99.7% 99.9% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

SV vs. GARCHm 99.7% 99.9% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
GARCH vs. GARCHm 0.0% 0.6% 9.7% 2.2% 9.7% 3.8% 6.2% 14.4%

zz
o
b

s
R

SV vs. GARCH 94.5% 80.4% 70.5% 74.2% 45.7% 19.0% 11.2% 32.8%
SV vs. GARCHm 88.0% 74.0% 70.5% 74.2% 54.3% 33.0% 22.0% 41.2%

GARCH vs. GARCHm 22.8% 6.6% 5.3% 13.9% 22.3% 74.5% 63.0% 86.7%

zz
o
b

s
d

Y SV vs. GARCH 29.7% 2.7% 16.6% 2.5% 0.3% 1.4% 3.0% 25.3%
SV vs. GARCHm 37.5% 26.0% 29.5% 9.6% 3.1% 9.4% 4.9% 32.8%

GARCH vs. GARCHm 70.3% 80.4% 96.7% 95.9% 94.9% 99.9% 99.0% 97.8%

Table 13: P-values of in-sample LPS-test

t+ 1 t+ 2 t+ 3 t+ 4 t+ 5 t+ 6 t+ 7 t+ 8

zz
o
b

s
d

P SV vs. GARCH 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
SV vs. GARCHm 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

GARCH vs. GARCHm 2.1% 2.7% 8.0% 25.8% 37.2% 74.5% 63.0% 32.8%

zz
o
b

s
d

P
4
0 SV vs. GARCH 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

SV vs. GARCHm 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
GARCH vs. GARCHm 63.8% 45.3% 54.7% 27.8% 36.2% 36.2% 36.2% 36.2%

zz
o
b

s
R

SV vs. GARCH 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
SV vs. GARCHm 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

GARCH vs. GARCHm 45.8% 74.0% 92.0% 86.1% 96.9% 97.6% 98.2% 99.3%

zz
o
b

s
d

Y SV vs. GARCH 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
SV vs. GARCHm 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

GARCH vs. GARCHm 2.1% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

a
ll

b
u

t
zz

o
b

s
d

P
4
0

SV vs. GARCH 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
SV vs. GARCHm 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

GARCH vs. GARCHm 0.2% 0.3% 3.3% 25.8% 54.3% 25.5% 54.4% 67.2%

a
ll

(m
u

lt
iv

a
ri

a
te

)

SV vs. GARCH 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
SV vs. GARCHm 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

GARCH vs. GARCHm 9.7% 6.2% 3.8% 9.7% 79.5% 85.6% 98.8% 93.8%

While forecasting quality is the primary focus of the present study, we also compare the
two models with regard to their computational speed. For this end we use the inefficiency
factor (also called autocorrelation time), which is a common metric of computational effi-
ciency, and measures the frequency of the number of draws that are larger than the number
of independent draws10. Table 14 (in the Appendix) presents the results of the inefficiency
factor calculations for the two models we compare. As is apparent, the performance of the
DSGE-GARCH model is superior to that of the DSGE-SV model across all chains.

10The Appendix contains details of the computation of the inefficiency factor.
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4 Conclusion

A number of authors suggested efficient procedures for incorporating time-varying volatilities
into structural models. In this work, we have suggested a GARCH based approach to the
modeling of time-varying volatility for DSGE models. Using a real-time dataset for the euro
area, we show that this form of time-variation allows for a simple but powerful estimation
procedure. To demonstrate this point we examine the forecasting performance of the DSGE-
GARCH model against other benchmarks and show that our suggested model is mostly
superior in terms of point and density forecasts.

An additional result relates to conditional correlations that are produced by the DSGE-
GARCH approach. We can observe that changes of volatility near crisis periods are similar
to the usual stochastic volatility approach. However, we observe changes of conditional
correlations of shocks at such periods. We also observe a large correlation between policy
shocks.
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Appendix A

A.1 The Stochastic Volatility (SV) Model

In the previous sections, we demonstrated that specifying the volatility component of the
model as a GARCH(1,1) process results in forecasting performance that is mostly superior
to constant volatility or RW-GARCH specifications. In this section, we compare the perfor-
mance of the GARCH(1,1) specification to the stochastic volatility specification (DSGE-SV),
variants of which were introduced and used in several influential studies such as Kim et al.
(1998), Justiniano & Primiceri (2008) and Diebold et al. (2017). In the following, we de-
scribe the algorithm that describes this approach and demonstrate that the DSGE-GARCH
approach is more efficient than the DSGE-SV approach. The discussion of the algorithm
closely follows Primiceri (2005) and Justiniano & Primiceri (2008)11. Since the priors we
use are different, we make additional minor modifications to the algorithm.

A.1.1 The DSGE-SV Algorithm

The stochastic volatility process of the DSGE-SV approach can be described as follows:

log
(
E(εtε

′
t|Vt)i,i

)
= log

(
Vt
)
i,i

= hi,t = hi(1− ρi) + ρihi,t−1 + εv,i,t (A1)

The algorithm uses approximation of squared shocks by Gaussian mixture (eq. A2).

log
(
(εtε

′
t)i,i

)
≈ 2hi,t + εGM,t (A2)

The MCMC algorithm used to characterize the posterior distribution of structural pa-
rameters is described in the following steps:

Step 0. Initialization. Define initial values of the main parameters (θ0), variance related
parameters (θv,0), variance trajectory matrix ({V }0), regime trajectory of the Gaussian
mixture approximation ({R}0) and shocks’ trajectory ({ε}0).

Step 1. Draw the variance trajectory ({V }j |{ε}j−1,{R}j−1, θv,j−1). Here the fact is
utilized that conditional on the regime, the Gaussian mixture system in A1-A2 is linear
Gaussian. Thus, the usual Kalman filter and draw approach can be used.

Step 2. Draw the structural shocks ({ε}j |{V }j , θj−1, Yt). The solution approximation
and equation for observed variables are linear, so that the usual Kalman filter and draw
approach can be used. However, one difficulty with this step is that the squared shocks
in eq. A2 can be too small so that their logarithm goes towards negative infinity. Also,
in contrast to the conventional12 use of an “offset constant” of the size 0.001, we use the
maximum of squared shocks and 10−8 because an offset constant of 0.001 can be too large
when the magnitude of the variances are in the region of 10−6 to 10−4.

Step 3. Draw the indicators of the mixture approximations ({R}j−1|{ε}j , {V }j).
Step 4. Draw the parameters of the model (θtry, θv,try|θj−1, θv,j−1) 13.

Step 5. Accept or reject draws the DSGE parameters. θtry, θv,try is accepted with
probability αθ (i.e., θj = θtry, θv,j = θv,try), otherwise θj = θj−1, θv,j = θv,j−1. The
acceptance probability aθ depends on the prior distribution and the likelihood (computed
with the Kalman filter). For volatility parameters the scheme is similar, but the computation
of the likelihood is simpler for the model presented in eq. A1.

11Our algorithm accounts for the correction in Del Negro & Primiceri (2015).

12See e.g. Justiniano & Primiceri (2008). We demonstrate the sensitivity to this coefficient.

13Due to our use of different priors, this step deviates from the approach of Justiniano & Primiceri (2008),
who draw the coefficients directly. Instead, we use a random walk to draw the coefficients of the stochastic
volatilities.
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aθ = min

{
1;

p
(
{Y }|θtry, θv,try, {V }j

)
p
(
θtry, θv,try

)
p
(
{Y }|θj−1, θv,j−1, {V }j

)
p
(
θj−1, θv,j−1

)} (A3)

A.2 Comparison of Stochastic Volatility and GARCH

In order to compare the DSGE-SV and DSGE-GARCH approaches, we need to define the
relation between their parameters. These two time-varying volatility specifications are very
different and the relation between the parameters can be defined, using the one-dimensional
case with the following approach: we start by using the two coefficients that are equal to
each other, η∗s (from the GARCH specification) and ρ∗ (from the SV specification), where
one is the coefficient associated with the lag of log-volatility, while the other is the coefficient
related to the lag of expected volatility.

The second group of coefficients is related to the variance of volatility shocks (var(εv∗,t)).
Equation A4 describes how the conditional volatilities are related. It should be noted that
the GARCH and SV specifications have different timings. We divide the different expected
variance terms for the GARCH and SV specifications to relate them such that they are
independent of the previous variance.

vart−1

(
Vi,i,t

)(
Et−1(Vi,i,t)

)2 =
SV definition

(
e16var(εv,i,t/2 − e2(4var(εv,i,t)/2)

)
e4(hi(1−ρi)+ρihi,t−1)

e4(hi(1−ρ1)+ρihi,t−1)+2(4var(εv,i,t)/2)
=

=
2(Vt−2)2(ηs,iηr,i)

4

(Vt−2)2
=

GARCH definition

vart−2(Vt−1)

(Vt−2)2
(A4)

The last relation is for the unconditional variance (eq. A5), which is defined by the
following in the GARCH approach,

E(Vi,i,t) =
SV definition

e2hi+4var(εv,i,t)/(1−(ρi)
2)/2 (A5)

An important detail related to the DSGE-SV approach is the initialization of the Kalman
filter: conventionally, the unconditional variance of model variables is used to initialize the
filter but we use the unconditional mean variance of shocks, and compute the variance of
model variables in the usual way. It may differ from the accurate unconditional variance of
the model’s variables.

We first present the sensitivity of volatility draws on the hidden parameter in step 2
of the stochastic volatility algorithm. We compute the mean volatility trajectory and cor-
responding standard deviations with fixed parameters and three values for the maximum
squared shocks, 10−2, 10−4 (our default) and 10−8. The corresponding results are presented
in figure 7. We present the trajectories in logarithms for better visual representation.
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Figure 7. Volatility draws based on various hidden parameter choices.

We calculate two versions of variance trajectories in the DSGE-SV model: 1) conditional
on the mode of the DSGE-GARCH model variables (i.e. with fixed parameters), and 2) joint
draws of volatility and parameters (i.e. non-fixed parameters). To initialize the procedure for
the fixed parameters specification, we use the posterior mode of DSGE-GARCH (using the
longest vintage) and use the unconditional mean of the variance as the initial value. We then
draw the stochastic volatilities, shocks and regime trajectories and compute 10 chains with
20 000 draws, drawn from the posterior distribution and compute the mean of the variance
trajectory (without discarding draws). Following this we compute additional 10 chains with
20 000 draws using the mean of the variance trajectory to initialize the procedure. This
results in the mean variance trajectory for the model with fixed parameters, as displayed in
figure 8 (SV at GARCH-mode).

For the version with non-fixed parameters, we use the posterior mode of the DSGE-
GARCH model as the initial value of parameters and use a Hessian-based approximation
for the drawing procedure (step 4 of the SV algorithm), manually setting multipliers to
have a conventional acceptance rate. To initialize the procedure we use the mean of the
variance trajectory from the model with fixed parameters and compute 10 chains, with 20
000 draws for each chain. We compute the mean of the variance trajectory and variance of
parameters, taking for each chain the last draw of parameters and dropping 25% of draws
of each chain for the computation of the variance. We use the remaining draws as initial
values for 10 additional chains with 20 000 draws for each chain. This results in the mean
variance trajectory that is presented in figure 8 (SV-mean).

Figure 8 presents variance trajectories according to DSGE-GARCH (at the mode and
mean) and DSGE-SV (SV at GARCH-mode and SV-mean) specifications for government
spending (erG), the inflation target (erPT ) and TFP shock (erY ). The trajectories of vari-
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ances calculated by the DSGE-SV models are close to each other and are smooth, with the
exception of the TFP shock, where difference between the mode and the mean is substantial.
The variances implied by the GARCH specifications show more substantial movements in
comparison to the trajectories calculated by the DSGE-SV models and are lower for the
inflation target (erPT ) and TFP shock (erY ).
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Figure 8. Variance according to DSGE-GARCH and DSGE-SV.

Figure 9 presents particular draws of the variances generated by the DSGE-SV specifi-
cation and contrasts them to the averaged out variance trajectories that are generated by
the DSGE-SV model. It’s apparent that particular draws show more nuanced movements
but their respective averages are more smooth.
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Figure 9. Variance according to DSGE-GARCH and particular draws of DSGE-SV.

A.2.1 Computational Efficiency

Finally, we compare the computational speed of the two approaches. Because the DSGE-SV
approach uses an MCMC algorithm, the comparison of algorithms requires comparison of
convergence speed in addition to direct comparison of computational costs. One such mea-
sure is the inefficiency factor which shows how many times the number of draws (correlated
from MCMC) should be larger than the number of independent draws for the same vari-
ance of the estimated mean. The theoretical formula (A6) requires knowledge of all auto-
correlations. Direct computation is inaccurate or impossible (when the sample is shorter
than the number of lags) in case of highly persistence time series. However, the MH MCMC
implies that density (of the full vector) conditional on first k-lags is equal to the density
conditional on the first lag. It means that the infinite sum of the auto-covariance can be
computed according to (A7) that is based on a VAR(1) presentation (with matrix A).

IF = 1 + 2

∞∑
i=1

correl(xt+i, xt) (A6)

∞∑
i=1

cov(xk,t+i, xk,t) =

∞∑
i=1

cov(xt+i, xt) =

∞∑
i=1

Aivar(xt) = A(I −A)−1var(xt) (A7)

The DSGE-SV is a Metropolis within Gibbs approach, which implies that model param-
eters and additional variables (volatility path, shocks, regimes) are described by Markov
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chains. However, a VAR(p) for model parameters can be used as a good approximation for
all auto-covariances and we use a VAR(4) for the computation of the inefficiency factor14.
Some statistics about the inefficiency factor are presented in Table 14. We have the following
conventional acceptance rates: 20.97% (min across chains), 23.90% (mean across chains),
29.41% (max across chains) for DSGE-GARCH and 13.29% (min across chains), 29.57%
(mean across chains), 37.45% (max across chains) for DSGE-SV. It should be noted that a
negative inefficiency factor refers to the existence of an eigenvalue (of VAR representation)
greater than one in modulus which implies an explosive process.

The table further displays the maximum, minimum, mean and median values of the in-
efficiency factor for the various chains for the DSGE-SV and DSGE-GARCH models and
implies that the DSGE-GARCH model is superior across all chains with regard to compu-
tational speed and computational efficiency15.

Table 14: Inefficiency factor

DSGE-SV DSGE-GARCH
min median mean max min median mean max

chain 1 4.01E+3 7.93E+4 8.28E+4 1.66E+5 1.61E+2 1.96E+2 2.17E+2 3.56E+2
chain 2 -7.40E+5 -5.79E+4 -1.38E+5 4.86E+5 1.54E+2 2.12E+2 2.11E+2 3.58E+2
chain 3 -2.45E+4 2.43E+3 1.13E+3 1.76E+4 1.66E+2 2.42E+2 2.87E+2 8.30E+2
chain 4 8.67E+2 1.04E+4 1.11E+4 2.91E+4 1.64E+2 2.00E+2 2.07E+2 3.55E+2
chain 5 1.80E+2 6.40E+3 6.42E+3 1.35E+4 2.63E+2 2.90E+3 3.95E+3 1.46E+4
chain 6 4.99E+2 2.83E+3 3.46E+3 8.20E+3 1.46E+2 3.37E+2 4.03E+2 1.27E+3
chain 7 2.24E+3 5.38E+4 5.62E+4 1.33E+5 1.59E+2 2.53E+2 2.77E+2 5.26E+2
chain 8 3.75E+2 5.83E+3 7.45E+3 2.50E+4 1.52E+2 2.18E+2 2.73E+2 6.82E+2
chain 9 7.92E+2 6.25E+3 1.18E+4 3.24E+4 1.47E+2 1.94E+2 2.45E+2 8.61E+2
chain 10 6.34E+1 4.17E+3 5.50E+3 1.60E+4 1.77E+2 3.25E+2 4.39E+2 2.15E+3

min -7.40E+5 -5.79E+4 -1.38E+5 8.20E+3 1.46E+2 1.94E+2 2.07E+2 3.55E+2
median 4.37E+2 6.04E+3 6.94E+3 2.70E+4 1.60E+2 2.30E+2 2.75E+2 7.56E+2
mean -7.55E+4 1.13E+4 4.82E+3 9.27E+4 1.69E+2 5.07E+2 6.50E+2 2.20E+3
max 4.01E+3 7.93E+4 8.28E+4 4.86E+5 2.63E+2 2.90E+3 3.95E+3 1.46E+4

14It takes 45.27 seconds per 2 chains with 1000 draws each (plus default Dynare output) of MCMC DSGE-
GARCH and 119.51 second per 2 chain 1000 draws each (without timing for output). Computations are
made with CPU intel core i7-4720HQ 2.6GHz under Windows 8.

15The advantage of DSGE-GARCH is about 42.1 times according to mean (across chains) max (across
parameters) of the inefficiency factor in addition to being faster by a measure of 2.6 in direct computational
speed. For chains 2 and 3, the computational advantage becomes infinite, because two chains of DSGE-SV
have explosive eigenvalues in their VAR(4) representation.
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