
Wu, Shujuan; Cheng, Hanlie; Qin, Qiang

Periodical Part

Physical delivery network optimization based on ant
colony optimization neural network algorithm

International journal of information systems and supply chain management

Provided in Cooperation with:
ZBW OAS

Reference: In: International journal of information systems and supply chain management Physical
delivery network optimization based on ant colony optimization neural network algorithm 17
(2024).
https://www.igi-global.com/ViewTitle.aspx?TitleId=345654&isxn=9798369324738.
doi:10.4018/IJISSCM.345654.

This Version is available at:
http://hdl.handle.net/11159/709516

Kontakt/Contact
ZBW – Leibniz-Informationszentrum Wirtschaft/Leibniz Information Centre for Economics
Düsternbrooker Weg 120
24105 Kiel (Germany)
E-Mail: rights[at]zbw.eu
https://www.zbw.eu/
Standard-Nutzungsbedingungen:
Dieses Dokument darf zu eigenen wissenschaftlichen Zwecken und zum
Privatgebrauch gespeichert und kopiert werden. Sie dürfen dieses Dokument
nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich
ausstellen, aufführen, vertreiben oder anderweitig nutzen. Sofern für das
Dokument eine Open-Content-Lizenz verwendet wurde, so gelten abweichend
von diesen Nutzungsbedingungen die in der Lizenz gewährten Nutzungsrechte.
Alle auf diesem Vorblatt angegebenen Informationen einschließlich der
Rechteinformationen (z.B. Nennung einer Creative Commons Lizenz)
wurden automatisch generiert und müssen durch Nutzer:innen vor einer
Nachnutzung sorgfältig überprüft werden. Die Lizenzangaben stammen aus
Publikationsmetadaten und können Fehler oder Ungenauigkeiten enthalten.

Terms of use:
This document may be saved and copied for your personal and scholarly purposes.
You are not to copy it for public or commercial purposes, to exhibit the document
in public, to perform, distribute or otherwise use the document in public. If the
document is made available under a Creative Commons Licence you may exercise
further usage rights as specified in the licence. All information provided on this
publication cover sheet, including copyright details (e.g. indication of a Creative
Commons license), was automatically generated and must be carefully reviewed by
users prior to reuse. The license information is derived from publication metadata
and may contain errors or inaccuracies.

  https://savearchive.zbw.eu/termsofuse

https://savearchive.zbw.eu/
https://www.zbw.eu/
http://hdl.handle.net/11159/709516
mailto:rights@zbw-online.eu
https://www.zbw.eu/
https://savearchive.zbw.eu/termsofuse
https://www.zbw.eu/


International Journal of Information Systems and Supply Chain Management
Volume 17 • Issue 1 • January-December 2024

DOI: 10.4018/IJISSCM.345654

1

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creative-
commons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium, provided the author of the 

original work and original publication source are properly credited.

Physical Delivery Network Optimization 
Based on Ant Colony Optimization 
Neural Network Algorithm
Shujuan Wu
Minxi Vocational and Technical College, China

Hanlie Cheng
 https:// orcid .org/ 0000 -0003 -4080 -8373

COSL-EXPRO Testing Services (Tianjin) Co., Ltd., China

Qiang Qin
 https:// orcid .org/ 0000 -0002 -3096 -1967

COSL-EXPRO Testing Services (Tianjin) Co., Ltd., China

ABSTRACT

The development of modern logistics chains is not just simple cargo transportation, it has become 
a cross-integrated industry that integrates many emerging technologies such as IoT technology, 
intelligent transportation, cloud computing and mobile Internet. Based on the ant colony algorithm 
(ACA), this paper optimizes the physical delivery network of the optimized neural network algorithm, 
establishes a mathematical model for the constraints and optimization objectives in the optimization of 
the physical delivery path, and proposes some improvements to the ACA to improve the convergence 
of the algorithm. speed and global search ability, so as to use the improved algorithm to solve the 
physical delivery path optimization problem. Experiments show that the optimal distance of physical 
delivery path planning calculated by traditional ACA is 207.8544km, while the optimal distance of 
improved ACA path planning is 197.9879km. The performance of the improved ACA is improved 
by analyzing the results of solving typical examples.

KEYWORDS 
ACA, Logistics and Distribution, Neural Network

The development level of a country's logistics chains can objectively reflect the country's 
comprehensive national strength and enterprise competitiveness. Modern logistics and distribution 
widely exist in daily life and enterprise management, connecting production and consumption to 
meet the increasing demand of human beings. Social consumption demand and systematic and 
rational logistics management will create considerable economic profits for the country and society. 
Logistics started late in China, but developed rapidly, and has become one of the pillar industries 
of the national economy. The rapid development of the logistics chains is of great significance to 
promoting economic growth, changing the mode of development and improving the competitiveness 
of the national economy (Zhao et al., 2020). The development of modern logistics chains is not only a 
simple cargo transportation, but also a cross-integrated industry that integrates a variety of emerging 
technologies such as Internet of things (IoT), intelligent transportation, cloud computing, and mobile 
internet (Afra & Behnamian, 2021). Therefore, the systematization of logistics and distribution has 
become a top priority (Mavrovouniotis & Yang, 2015). Modern logistics covers many industries 
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of the national economy. It is not only the product of economic development, but also the pillar of 
economic development. It is not only a value-added economic activity, but also an economic activity 
that affects the ecological environment (Geng & Wang, 2014). Because of the importance of logistics 
in the modern economy, how to save logistics costs and create higher profits has become a research 
hotspot. Developing the logistics chains and reducing the total logistics cost will become a new 
economic growth point in China (B. Wang et al., 2020). For enterprises, in the face of increasingly 
fierce competition, how to reduce the total logistics cost has become an urgent problem to be solved.

Optimizing logistics algorithms can not only realize scientific logistics, but also improve the 
economic benefits of logistics. The ant colony algorithm (ACA) has only been put forward for a 
few decades, and it is still in the simulation stage. No one can give a mathematical explanation yet. 
Although the research time is not long, it has shown great advantages in solving complex optimization 
problems, indicating that its application prospect is still very bright (Chen et al., 2020). In a word, 
although the ACA is in the development stage, it is an algorithm with very broad development space 
and great development potential, reflecting its great theoretical research value (Lei et al., 2019). The 
main research content of this paper is the ACA and physical delivery network optimization. First, the 
ACA and physical delivery optimization problem are understood in detail. Second, the mathematical 
model of constraints and optimization objectives in physical delivery route optimization is established. 
By improving the convergence speed and global search ability of the algorithm, the physical delivery 
path optimization problem can be solved, and the shortest path can be solved.

Through in-depth research by scholars, it is found that the use of bionic optimization algorithms 
can better solve such combinatorial optimization problems. In this regard, the ACA has shown 
significant advantages in solving complex optimization problems, so it can be better applied to 
solve the physical delivery path optimization problem (Y. Wang et al., 2017). At present, the search 
method based on physical delivery can no longer meet the needs of actual physical delivery, and the 
planning based on optimal physical delivery not only requires finding the shortest physical delivery 
path, but also requires strict real-time performance (Sakai et al., 2016). In the process of physical 
delivery planning, from the application point of view, it is particularly important to plan the route 
reasonably and improve the calculation response speed (Q. Liu, 2020). A large number of experts 
and scholars have conducted in-depth research on physical delivery route planning. How to plan a 
reasonable physical delivery in time has a very practical significance for the research problem. The 
grid method is used to model the transportation environment of physical delivery, the ACA is applied 
to the physical delivery planning, and the results show that the ACA can solve the physical delivery 
planning problem well (Singh et al., 2019). Applying the operators in the genetic algorithm to improve 
the performance of the ACA, the genetic algorithm and the ACA are found to be very similar in some 
characteristics. For example, they are both methods of simulating biological evolution. The ACA uses 
swarm intelligence to find the optimal solution. The genetic algorithm uses population evolution to find 
the optimal solution, and the genetic algorithm is a relatively mature optimization algorithm, which 
is widely used to solve combinatorial optimization problems. To a certain extent, the time efficiency 
is improved (Droździel et al., 2017). The physical delivery network optimization technology based 
on the ant colony optimization neural network algorithm has the following advantages:

1.  This paper conducts further research and improvement on the basis of the existing ACA and 
then applies it to the issue of optimization of flow distribution path in order to obtain higher 
economic benefits and to manage logistics scientifically.

2.  This paper uses the operators in the genetic algorithm to improve the performance of the ACA 
to reduce the execution cost of the algorithm. At the same time, the genetic algorithm searches 
for the optimal solution faster, which can improve the time efficiency to a certain extent.

This paper studies the optimization problem of a physical delivery network based on an ant 
colony optimization neural network algorithm. The architecture is as follows: The first section is 
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the introduction part. This part mainly expounds the research background and research significance 
of physical delivery network optimization based on the ant colony optimization neural network 
algorithm and puts forward the research purpose, method, and innovation of this paper. The second 
section mainly summarizes the relevant literature, summarizes the advantages and disadvantages, 
and proposes the research ideas of this paper. The third section is the method part, which focuses on 
the optimization of the physical delivery network combining the ACA and neural network algorithm 
and establishes a mathematical model for it. The fourth section is the experimental analysis part. 
This part is experimentally verified on the data set to analyze the performance of the model. Section 
5 includes conclusions and outlook. This part mainly reviews the main content and results of this 
research, summarizes the research conclusions, and points out the direction of further research.

RELATED WORK

Hou et al. (2017) successfully applied the self-organizing innuendo network to the route planning 
problem and the solution of the vehicle distribution area problem, using a one-dimensional ring network 
topology to solve the vehicle routing problem. Du et al. (2018) discussed two types of demand paths 
and adopted the simulated annealing algorithm, which saved the computational complexity of the 
algorithm and improved the applicability of the two-stage simulated annealing algorithm. Li et al. 
(2016) transformed the traditional free annealing algorithm into a directional annealing with direction 
orientation, transformed the traditional free annealing algorithm into a directional annealing algorithm 
by providing some commonsense knowledge for the search program, and proved that the algorithm 
improved the efficiency with an example. Safeer et al. (2014) studied the vehicle routing optimization 
problem considering the uncertainty of vehicle travel time and customer service time, proposed an 
incomplete undirected graph representation of the physical delivery network composed of two types 
of nodes, the distribution center and the customer, and established a physical delivery network, a 
fuzzy programming model for vehicle path optimization, which solves the problem by embedding 
the Floyd algorithm in the predator search algorithm. He (2020) transformed the traditional free 
annealing algorithm into directional annealing with direction orientation, transformed the traditional 
free annealing algorithm into a directional annealing algorithm by providing some common-sense 
knowledge for the search procedure, and proved that the algorithm improved the efficiency with an 
example. Moncayo–Martínez et al. (2016) proposed an ACA with the characteristic of mutation in 
the genetic algorithm, so as to change the problem of the slow convergence speed of the. Utamima 
et al. (2019) deeply studied the ant colony system model for optimization problems in continuous 
space. S. Q. Liu et al. (2012) proposed a model that solves the assignment problem and can be used 
to solve the graph coloring problem. Ting et al. (2013) analyzed and studied the transportation route 
optimization problem of distribution centers from the perspectives of direct delivery and distribution 
transportation. Considering the shortest distribution route and the minimum cost, a vehicle route 
optimization model was established, and the ACA was used to solve the problem. Feng (2020) also 
introduced a genetic algorithm into the ACA and adopted a new coding method: coding the distance 
between the distribution center and the customer, constructing a fitness function, and designing a 
new improved ACA. C. Qi (2013) used the activity-based costing method to improve the model of 
the vehicle routing optimization problem to study the book routing problem and used the ACA to 
solve the model.

The research of these methods has not fully integrated the characteristics of the actual distribution 
and transportation network. Most researchers regard the distribution and transportation network as a 
fully connected graph, that is, the basis for thinking that any two points can be directly reached. The 
model and algorithm design are carried out on the above, the physical delivery path optimization 
problem is not combined with the connectivity of the distribution and transportation network, and the 
solution to the optimal result may be one-sided to a certain extent. In the physical delivery problem, 
at present, the application research of ACA is gradually emerging. ACA has strong potential in the 
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problem of combinatorial optimization, and it is worthy of in-depth study in the optimization of 
the physical delivery problem. The improvement and application of the ACA can be divided into 
three main aspects: First is to improve the structure and rules of the existing ACA to improve the 
performance of the algorithm; second is to integrate other algorithms and combine the advantages of 
various algorithms, establishing a hybrid intelligent algorithm; third is to expand the application field 
of ACA. This subject is mainly to improve the ACA and apply it to an actual physical delivery model.

METHODOLOGY

Principle of ACA and Its Application in Physical Delivery Network Optimization
Both the logistics transportation network and the physical delivery network are line activities. 

According to whether the spatial position of the item moves, logistics activities can be divided into 
line activities and node activities, where line activities refer to the movement caused by the position of 
objects. Numerous phenomena and behaviors in nature are an important source of human innovation: 
Many biological groups and natural systems are capable of self-evolution, and this evolution can 
often solve seemingly complex and intractable problems effectively. Usually, distribution refers to 
the logistics activities of distributing goods at the logistics base, according to the customer's ordering 
requirements, and delivering the allocated goods to the customer in time to ensure the smooth 
progress of the logistics process and optimize the allocation of resources. The transportation activity 
is the activity of transporting items to the designated place on the transportation route by means of 
transportation, and it is a kind of route activity. An ant colony is a typical biological group. Scientists 
have found through long-term observation and research on the behavior of ant colonies that the 
intelligence level of individual ants is very low, but they can work in coordination with each other 
and perfectly perform behaviors such as foraging, building ant colonies, and multiplying offspring 
such that the ant colony as a whole shows extraordinary wisdom. Distribution is a process in which 
the distribution department connects production and consumption and generates benefits in time 
and space. Therefore, improving the operational efficiency of distribution is of great significance 
for reducing distribution costs. In this paper, a topology model of a physical delivery path network 
based on graph theory is designed, and a distribution path planning scheme is constructed based on 
an improved ACA.

The ACA is a natural simulation evolutionary algorithm inspired by the foraging behavior of 
ants in nature. The general process of ants looking for food sources from the ant nest is as follows: 
At the beginning, the ants choose the path randomly, but later the ants in the selection of the path 
will adaptively search for new paths as the process of finding food continues. The researchers found 
that the group foraging behavior of ants has two typical characteristics: (a) ants can instinctively 
release pheromones, and each pheromone is volatile and will gradually decrease with time; (b) ants 
can detect some situations in a small area, such as judging whether there is food or other similar 
pheromone tracks around the area. The main reason for this is that ants in the ant colony will release 
chemicals called pheromones in the places they pass to maintain indirect asynchronous contact when 
they are looking for food or on their way back to the nest and, with the information on the path and 
the passage of time, the pheromones will gradually decrease according to a certain proportion. At the 
same time, the concentration of pheromones is also related to the length of the path. The shorter the 
path, the greater is the concentration of pheromones. The more or stronger the accumulated pheromone 
concentration, the greater the possibility of being selected by other ants the next time, and this cycle 
will form a positive feedback effect until all ants take the shortest path. It should be noted that it is 
not that the ants following will definitely choose the path with high pheromone concentration, but 
the probability of choosing the path with high concentration is relatively high, which provides the 
possibility for the ants to expand the search range. In nature, the process of an ant colony finding 
food is a positive feedback process, and the optimization algorithm of an artificial ant colony is the 
process of simulating it. The specific foraging behavior diagram of ants is shown in Figure 1.
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The Solving Model of Basic ACA
Dorigo et al. proposed an ant system model: Let   b  i   (t)   be the number of ants at customer point  

i  at time  t , there are  n  customers in total, and the total number of ants in the ant colony is  m , then 
allow for Equations (1) and (2).

 m =  ∑ 
i=1

  
n

   b  i   (t)    (1)

  p  ij  
k  (t)  =  

⎧
 ⎪ 

⎨
 

⎪

 

⎩

  
  [ τ  ij   (t) ]    α  ∗   [ η  ij   (t) ]    β 

  _________________  
 
  ∑ 
s⊂allowe d  k  

    [ τ  is   (t) ]    α  ∗   [ η  is   (t) ]    β  
   

0
  

     (2)

In Equations (1) and (2), the amount of information on the path   (i, j)   between customer points  
i  and  j  at time   τ  ij   (t)  . In the process of path search and optimization, the ants mainly calculate the 

Figure 1. Foraging Behavior of Ants
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amount of information on each path and the heuristic information on the path. The state transition 
probability, and   p  ij  

k   represents the state transition probability of the ant from customer point  i  to  j  at  
t  time,   η  ij   = 1 /  d  ij    is the heuristic function,   d  ij    is the distance between customer points  i  and  j , and  
α  is the information heuristic factor, indicating the relative travel trajectory. Importance;  β  is the 
expectation heuristic factor, indicating the importance of the heuristic information displayed by the 
ants when choosing a path.  tab  u  k    is the taboo table used to record the customers who have completed 
the delivery task for each ant at present, and  allowe  d  k   =  {C − tab   u  k  }   represents the customers that 
the ant  k  can choose in the next step. Ants will leave pheromones during the entire journey, and, at 
the same time, they will leave more pheromones on the shorter path. After each round of movement, 
all the pheromones on the entire path will evaporate. Then, all ants will release pheromones around 
the current route according to the length of the path constructed by themselves, thus obtaining the 
update rule of pheromone, as shown in Equations (3) and (4).

  τ  ij   (t + n)  =  (1 − ρ)   τ  ij   (t)  + Δ  τ  ij   (t)   (3)

 Δ  τ  ij   (t)  =  ∑ 
k=1

  
m

  Δ  τ  ij  
k  (t)    (4)

In Equations (3) and (4),  ρ  is the pheromone volatilization coefficient,  0 ≤ ρ < 1  and c 1 − ρ  
are the pheromone residual coefficients;  Δ  τ  ij    is the pheromone increment of   (i, j)   on the path in this 
iteration process, and the initial value is  Δ  τ  ij   = 0 ;  Δ  τ  ij  

k  (t)   is the  k th ant in this iteration. The amount 
of information left on path   (i, j)   in the loop. From this, the basic model of the ACA is obtained, as 
shown in Equation (5).

 Δ  τ  ij  
k  (t)  =  { Q /  L  k    

0
     (5)

In Equation (5),  Q  is the pheromone intensity, which will affect the convergence speed of the 
algorithm to a certain extent;   L  k    is the total length of the path that the  k  ant traveled in this cycle. The 
flow chart of the running program of the ACA is shown in Figure 2.

ACA Combined With Neural Network Technology to 
Analyze Physical Delivery Problems

The general physical delivery path problem is described as follows: It is known that there are 
M customer points, and the demand volume and location of each customer point are also known. 
There are N vehicles from the distribution center to each demand point, and it is stipulated that the 
completion of after the distribution task, return to the logistics center, and the load capacity of each 
car is certain. It is required that the transport distance of the driving route of the delivery vehicle 
must be the shortest.

Figure 3 is a simple example of a specific physical delivery route, assuming that there is one 
logistics center, six distribution points, and three vehicles. The distribution tasks of the three customer 
points on the left go through distribution route one; the one customer point on the bottom and the 
two customer points on the right go through route two and route three, respectively; three delivery 
vehicles depart from the distribution center to deliver items, in order to traverse the customer points 
on the specified route and, finally, return to the distribution center.
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The Establishment of Distribution Mathematical Model
Suppose there are   Q  k    vehicles in the distribution center, the load capacity of each vehicle is   D  k   , 

and the maximum driving distance of a vehicle distribution is  C . A total of   q  i   (1, 2, 3⋯, C)   customers 

Figure 2. Flow Chart of the Running Program of ACA

Figure 3. Example of Physical Delivery
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are delivered goods. The demand for customer points  i  is  j . The distance is   d  ij   , when  i, j = 0  represents 
the distribution center, that is,   d  01    represents the distance from the distribution center to customer 
point 1, and  i  represents the distance from customer point 3 to the distribution center. Let   d  30    be the 
total number of customers delivered by vehicle   n  k   , and when  k , it means that vehicle   n  k   = 0  has 
not been delivered, among which,  k = 1, 2, ⋯ K .   R  k    is used to represent the set of customer points 
delivered by the vehicle  k , and the element  k  in this set indicates that the order of the delivery path 
of the vehicle   r  k  

i    to the customer is  i . From the physical delivery path problem described above, and 
according to the set mathematical symbols, plus the constraints that need to be considered for the 
problem, we can get:

The sum of the demand for customer points on each route does not exceed the car's load capacity, 
as shown in Equation (6).

  ∑ 
i=1

  
 n  k  

   q   r  k  
i     ≤  Q  k  ,  n  k   ≠ 0   (6)

The total length of each delivery route does not exceed the maximum travel distance for one 
delivery by car, as shown in Equation (7).

  ∑ 
i=1

  
 n  k  

   d   r  k  
i−1  r  k  

i      +  d   r  k  
 n  k   0   ≤  D  k  ,  n  k   ≠ 0  (7)

Only one car is allowed to pass a certain customer point, as shown in Equation (8).

  R  k1   ∩  R  k2   = ∅ ,  k  1   ≠  k  2    (8)

All customer points complete the delivery, as shown in Equations (9)–(11).

   ∪  
k=1

  k    R  k   =  {1, 2...,  C}    (9)

 0 ≤  n  k   ≤ C  (10)

  ∑ 
k=1

  
k

   n  k    = C  (11)

Therefore, the optimization goal to be achieved by the physical delivery path problem, as shown 
in Equations (12) and (13).

 min S =  ∑ 
k=1

  
k

     [ ∑ 
i=1

  
 n  k  

   d   r  k  
i−1  r  k  

i      +  d   r  k  
 n  k   0   sng ( n  k  ) ]   (12)

 sng ( n  k  )  =  { 
1,  n  k   ≥ 1

  
0, else

     (13)
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The ACA is a probabilistic algorithm used to find optimal paths, which originates from the 
research on the problem of ants searching for food. The algorithm is not only an adaptive distributed 
algorithm, but also a random search algorithm. Ants communicate and cooperate through chemical 
substances left on their paths during foraging, called pheromones. The stronger the pheromone, the 
shorter is the corresponding path distance. When the concentration of path pheromone is high, the 
probability of ants discovering the path is greater and, at the same time, other ants passing through 
the path will also release a certain amount of pheromone to enhance the concentration of the path 
pheromone, thus forming a kind of learning information and positive feedback phenomenon. With this 
positive feedback, the ant colony will eventually find the best path from the nest to the food source. 
However, biologists found that the concentration of the pheromone along the path would gradually 
decay over time. The basic steps of the ACA to solve the optimization problem are: The ant walking 
path is regarded as the feasible solution of the optimization problem, and the ant colonies on all paths 
constitute the solution space of the optimization problem. Pheromones are released more in the short 
path and, as time goes by, the accumulation of pheromone in the short path gradually increases, and 
more and more ants will choose these short paths. Eventually, the ants will focus on the best path 
under the action of positive feedback.

With the popularization and development of the ACA in recent years, although it shows excellent 
performance and strong development potential for solving many complex optimization problems, 
at the same time, the ACA also has a large amount of calculation and a slightly longer search time. 
It is easy to fall into the local optimal solution, and there are shortcomings such as stagnation. In 
view of the possible shortcomings of the ACA, this paper makes corresponding improvements to the 
algorithm, thereby accelerating the convergence speed, improving the local optimal search ability, 
and improving the global search ability. At the same time, the adaptive ability of the algorithm is 
also slightly improved, along with the efficiency of the algorithm.

The local pheromone of each ant is updated as shown in Equation (14).

  τ  ij   (t + 1)  =  (1 − λ)   τ  ij   (t)  + λΔ  τ  ij  
k  (t, t + 1)   (14)

In Equation (14),  λ ∈  [0, 1]  ,  Δ  τ  ij  
k  (t, t + 1)   is the pheromone increment of the ant  k  on the path   

(i, j)   in this cycle, which is expressed as shown in Equation (15).

 Δ  τ  ij  
k  (t, t + 1)  =  { Q  k  ∈  (i, j)    

0  else
     (15)

Through the local optimization of the ACA, the solution of each iteration process is further 
improved, thereby shortening the length of the optimal solution and improving the convergence 
speed of the improved algorithm.

The global update of pheromone is only implemented for the ants that have obtained the shortest 
path. When all ants have completed a cycle, the update of pheromone adopts the following principles,  
ρ ∈  (0, 1)   is the pheromone volatility coefficient,  1 − ρ  is the residual degree of pheromone;  Δ  τ  ij  

k  
(t, t + 1)   is the increment of pheromone on the path dd   (i, j)  , that is  m  is the sum of the pheromones 
left by the ants on the path   (i, j)   during this iteration. The main reason to improve the global search 
ability is to avoid the stagnation of the local optimal solution in the process of ant optimization. The 
main reason is the influence of pheromone accumulation and transmission on ants.

The improved ACA adopts the strategy of combining local and global pheromone updates, and 
further improves the information residual factor of global pheromone update, so as to ensure the optimal 
solution and speed up the convergence. The flowchart of the improved ACA is shown in Figure 4.



10

International Journal of Information Systems and Supply Chain Management
Volume 17 • Issue 1 • January-December 2024

RESULTS ANALYSIS AND DISCUSSION

In the Matlab programming environment, this paper compares the impact of different values 
of various parameters on the performance of the improved ACA iterative calculation path planning. 
Before comparing the different values of the parameters, we fix the values of other parameters and 
keep them constant, so as to determine the calculation process of the improved ACA one by one in 
parameter optimization. In the Matlab programming environment, the performance analysis of the 
physical delivery path planning results of the improved ACA and the traditional ACA is carried out, 
and the path planning results are generated respectively to verify the effectiveness of the improved 
algorithm proposed in this paper.

The improved hybrid ACA in this paper is implemented by language programming. In order to 
show the effectiveness and rationality of the algorithm, a lot of adjustments and improvements have 
been made to the improved hybrid ACA, which is completed by solving the physical delivery path 
optimization problem. For the test of the algorithm in this paper, the shortest path results obtained 
by the test are compared with the experimental results of several other algorithms. The algorithm in 
this section is tested on a part of the data set, and the minimum number of iterations before and after 
the improvement of the algorithm is compared. The test results are shown in Table 1.

Figure 4. Improved ACA Process
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In the specific implementation, it is found that when the routing path search is performed under 
the local and global update pheromone strategy, the convergence speed of its search rate algorithm 
is not good. Therefore, through further analysis of the ACA, a part of the data set is tested. The test 
results are shown in Table 2.

It can be seen from Table 2 that under the new pheromone update strategy, the traditional ACA 
problem can be solved while the local optimal solution is trapped, and the convergence performance 
of the algorithm can be improved.

Parametric Analysis
The Effect of the Number of Ants on the Path

In order to discuss the influence of the number of ants on the optimal path of logistics, this paper 
analyzes six groups of different ant numbers. Figure 5 shows that when the number of ants (m) is 
selected as 10, 15, or 25, the shortest path will gradually decrease as the number of ants increases.

Table 1. Comparison Results of the Minimum Number of Iterations Before and After Improvement of ACA

Problem DL Best length Traditional Improved

Oliver30 426.71 426.71 110 31

Att48 33527.9 33527.9 65 19

Eil51 436 436 98 34

St70 668 668 150 122

Table 2. Performance Comparison of ACA Before and After Improvement

Arithmetic 
example

Optimal 
solution

Optimal solution after 
improvement

Before 
improvement

After 
improvement

Oliver30 411.56 411.56 144.22 111.5

Att48 32111.39 32111.39 883.2 662.3

Eil51 437.5 437.5 22.5 11.2

St70 666 666 111.5 85.2

Figure 5. Effect When the Number of Ants is 10, 15, or 25
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The algorithm calculates the number of times, that is, the path with the most travel times is set 
as the optimal path. This process simulates the foraging process of ants. As shown in Figure 5, as 
the number of ants increases, the planned shortest path will gradually increase. Therefore, when m 
= 15, the proposed improved ACA can make the result of each running of the improved hybrid ACA 
as small as possible, and the result can be kept as stable as possible.

Effects of Pheromone Concentration Factors on Pathways
In order to discuss the influence of pheromone concentration factors on the optimal path of 

logistics, different groups of pheromone concentration factors are set for comparative analysis, as 
shown in Figure 6.

Ants can produce special chemicals called pheromones, which are volatile. According to research, 
in the ant colony system, the communication between ants and between ants and the environment 
depends on pheromones. Figure 6 shows that when the pheromone concentration factor α=3, the 
change of the total length of the path planning is obvious, when the pheromone concentration factor 
α=1 or 2, the change of the total length of the path planning is not obvious, but when α=1, the 
convergence rate of path planning is significantly faster than α=2, so α=1 is finally selected as the 
pheromone concentration factor parameter.

The Effect of the Path Expectation Factors on the Path
In order to discuss the influence of the route expectation factors on the optimal logistics route, 

different groups of route expectation factors are set for comparative analysis, as shown in Figure 7.
Figure 7 shows that when the path expectation factor β=1, the result of path planning fluctuates 

greatly. On the contrary, when the path expectation factor β=2, the path planning result is more stable. 
Therefore, this paper chooses β=2 as the path expectation factor, which can obtain a more stable 
and more realistic path planning effect than other path expectation factors during the experiment.

Effects of Pheromone Volatile Factors on Pathways
The effect of pheromone volatile factors on the pathway is shown in Figure 8.

Figure 6. Effects of Pheromone Concentration Factors on Pathways
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If the pheromone volatilization factor is set too large, the pheromone volatilizes quickly, and 
the pheromone content on each path varies greatly, which increases the search range of ants. If the 
pheromone volatilization factor is set too small, the pheromone volatilization is slow, and the difference 
in pheromone content on each path is small, which is conducive to finding the global optimal solution, 
but will slow down the convergence speed of the algorithm. In order to control the convergence 
speed of the algorithm and avoid the algorithm falling into the local optimal solution, the pheromone 
volatility factor should be set reasonably. Figure 8 shows that when the pheromone volatility factor 
ρ=0.1, the shortest path gradually converges with the increase of the number of iterations, and when 
ρ=0.2 or 0.3, the path planning result fluctuates greatly with the increase of the number of iterations. 
Therefore, it is more reasonable to choose ρ=0.1 in this paper.

Results Analysis
In this paper, the optimal calculation parameters are selected for physical delivery path planning. 

Figure 9 shows the performance comparison between the improved ACA and the traditional ACA.
In this paper, the optimal calculation parameters are selected to plan the physical delivery route: 

The number of ants is m = 15, the pheromone concentration factor is α = 1, the route expectation factor 

Figure 7. Influence of Path Expectation Factors on Path

Figure 8. Effects of Pheromone Volatile Factors on Pathways
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is β = 2, the pheromone volatilization factor is ρ = 0.1, and the number of iterations is 500. Figure 
9 shows that the improved ACA has a convergence effect more than the traditional ACA. And the 
optimal distance of physical delivery path planning calculated by the traditional ACA is 207.8544km, 
while the optimal distance of the improved ACA path planning is 197.9879km. It can be seen from the 
analysis of the above results that a better optimization scheme can be obtained by using the improved 
ACA and neural network algorithm to solve the physical delivery network optimization problem.

In order to ensure the good performance of the improved ant colony algorithm in the logistics 
delivery path, the improved ant colony algorithm is compared with the genetic algorithm. Although 
the genetic algorithm is good at finding the global optimal solution by exploring a large search 
space and converging to the optimal solution, the calculation cost of genetic algorithm may be 
high, especially for complex problems with a large number of variables. And it may take a long 
time to converge to the best solution, especially for the problem of rugged terrain. The improved 
ACA algorithm is designed to be more efficient and faster than traditional algorithms in terms of 
convergence speed and solution quality. The ACA algorithm incorporates local search techniques to 
exploit the neighborhood of solutions, leading to better exploitation of the search space. The algorithm 
can adapt dynamically to changes in the environment or problem landscape, making it more robust 
in dynamic optimization scenarios.

The improved ACA has emerged as a powerful tool for optimizing a wide range of complex 
optimization problems, particularly in the realm of logistics networks. Its adaptability and effectiveness 
make it a promising solution for enhancing efficiency in medium to larger-scale logistics operations. 
However, when considering its application in diverse geographical contexts, several key factors must 
be carefully considered to maximize its utility and effectiveness.

Adaptation to Different Geographical Contexts

1.  Topology: Tailoring the ACA algorithm to accommodate the unique topological characteristics 
of various logistics networks is essential. By customizing the algorithm to account for the 
specific layout of roads, warehouses, and distribution centers in different geographic settings, 
organizations can enhance the accuracy and efficacy of route planning and resource allocation.

2.  Distance calculation: Integrating geographic information such as distance metrics, traffic patterns, 
and terrain data into the algorithm enables more precise and efficient route optimization. By 

Figure 9. Performance Comparison Between the Improved ACA and Traditional ACA
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factoring in these variables, the ACA algorithm can generate optimal solutions that account for 
real-world conditions and constraints.

3.  Climate and environmental factors: In regions where climate and environmental considerations 
significantly impact logistics operations, adjusting the ACA algorithm to incorporate these 
factors is crucial. By accounting for variables like weather conditions, ecological constraints, 
and sustainability goals, organizations can improve operational efficiency while minimizing 
environmental impact.

In conclusion, the enhanced ACA algorithm presents a valuable opportunity for optimizing 
medium and larger-scale logistics networks across diverse geographical contexts. By tailoring the 
algorithm to address specific logistical challenges, mitigating scalability issues, and leveraging its 
benefits in route optimization and resource allocation, organizations can unlock significant operational 
improvements and competitive advantages. However, successful implementation of the ACA algorithm 
requires careful consideration of challenges such as scalability, real-time updates, and data integration 
to ensure its seamless integration into diverse logistics settings.

CONCLUSION

The rapid development of the global economy has made logistics chains an important part of the 
modern economy. Optimizing physical delivery can not only save resources and time, but also reduce 
environmental pollution, which is of great significance to the future development of the country and 
enterprises. This paper consults many domestic and foreign literatures, summarizes the research status 
and future development trend of the vehicle routing problem, classifies its solving algorithms, conducts 
in-depth research on the operation mechanism of ACA, and designs an improved ACA. According to 
the characteristics of physical delivery in small areas, a mathematical model of physical delivery in 
line with the actual situation is established, and the improved ACA is used to optimize the solution.

In conclusion, this study meticulously examines the operational principles of ACA along with 
three distinct ACA models, emphasizing the ant colony's pathfinding process, pheromone updating 
mechanisms, and the advantages and drawbacks of ACA. The pivotal tasks within ACA encompass 
pheromone updates and pathfinding. By scrutinizing ACA, a blend of local and global pheromones 
is leveraged for pheromone updates, with half of the ant-constructed solutions incorporating local 
search to enhance solution quality and efficiency.

In the quest to optimize the algorithm, a function has been integrated into the global update 
formula to expedite algorithm convergence while retaining optimal solutions. Experimental results 
reveal that while the traditional ant colony swarm algorithm yields an optimal distance of 207.8544km 
for physical delivery path planning, the enhanced ACA path planning achieves 197.9879km. The 
incorporation of this function reduces the number of cycles needed to attain the optimal solution, and 
dynamic adjustments to the pheromone volatilization degree coefficient during the ACA iteration 
process further enhance performance.

Upon evaluating the outcomes from typical examples, the improved ACA demonstrates enhanced 
performance in optimizing physical delivery paths. However, it is crucial to acknowledge potential 
shortcomings such as the sensitivity of the algorithm to parameter settings and the need for robust 
validation across diverse scenarios to ensure its applicability in real-world settings. While the improved 
ACA exhibits promising efficiency in solving physical delivery path problems and identifying optimal 
solutions promptly, further research is warranted to address these potential limitations and enhance 
the algorithm's robustness.

In essence, the findings presented in this paper offer practical insights and valuable references 
for optimizing physical delivery routes. By acknowledging both the feasibility of the improved ACA 
and potential areas for refinement, future advancements in this research area can be guided toward 
more effective and reliable solutions.
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In order to improve the relevance and applicability of the research results, this study puts 
forward specific implementation suggestions to integrate the research results into the real-world 
logistics operation.

We can cooperate with logistics companies to test the improved ACA algorithm in their delivery 
operations, or we can develop a software tool or module and use the improved ACA for route 
optimization. This tool can be integrated into the existing logistics management system used by 
enterprises, providing a practical and user-friendly implementation for the research results. A case 
study is compiled to show the successful implementation of the improved ACA in optimizing the 
physical delivery route and to emphasize the best practices and lessons learned from these cases to 
guide other enterprises to adopt similar strategies.

DATA AVAILABILITY

The figures and tables used to support the findings of this study are included in the article.

CONFLICTS OF INTEREST

The authors declare that they have no conflicts of interest.

FUNDING STATEMENT

This work was not supported by any funds.

ACKNOWLEDGMENT

The authors would like to show sincere thanks to those whose techniques have contributed to 
this research.

PROCESS DATES

Received: 3/7/2024, Revision: 3/29/2024, Accepted: 4/12/2024

CORRESPONDING AUTHOR

Correspondence should be addressed to Qiang Qin (China, qinqiang@ cosl -expro .com)



17

International Journal of Information Systems and Supply Chain Management
Volume 17 • Issue 1 • January-December 2024

REFERENCES

Afra, A. P., & Behnamian, J. (2021). Lagrangian heuristic algorithm for green multi-product production routing 
problem with reverse logistics and remanufacturing. Journal of Manufacturing Systems, 58, 33–43. 10.1016/j.
jmsy.2020.11.013

Chen, H., Jin, Y., & Huo, B. (2020). Understanding logistics and distribution innovations in China. International 
Journal of Physical Distribution & Logistics Management, 50(3), 313–322. 10.1108/IJPDLM-04-2020-403

Dorigo, M., & Stützle, T. (2003). The ant colony optimization metaheuristic: Algorithms, applications, and 
advances. Handbook of metaheuristics, 250-285.

Droździel, P., Wińska, M., Madleňák, R., & Szumski, P. (2017). Optimization of the post logistics network and 
location of the local distribution center in selected area of the Lublin province. Procedia Engineering, 192, 
130–135. 10.1016/j.proeng.2017.06.023

Du, M., Kong, N., Hu, X., & Zhao, L. (2018). Tactical production and distribution planning in urban logistics 
under vehicle operational restrictions. Procedia Computer Science, 126, 1720–1729. 10.1016/j.procs.2018.08.105

Feng, Z. (2020). Constructing rural e-commerce logistics model based on ant colony algorithm and artificial 
intelligence method. Soft Computing, 24(11), 7937–7946. 10.1007/s00500-019-04046-8

Geng, X., & Wang, Y. (2014). A model for reverse logistics with collection sites based on heuristic algorithm. In 
Computer engineering and networking:Proceedings of the 2013 international conference on computer engineering 
and network (CENet2013) (pp. 395–402). Springer International Publishing. 10.1007/978-3-319-01766-2_45

He, Z. (2020). The challenges in sustainability of urban freight network design and distribution innovations: A 
systematic literature review. International Journal of Physical Distribution & Logistics Management, 50(6), 
601–640. 10.1108/IJPDLM-05-2019-0154

Hou, H., Chaudhry, S., Chen, Y., & Hu, M. (2017). Physical distribution, logistics, supply chain management, and 
the material flow theory: A historical perspective. Information Technology and Management, 18(2), 107–117. 
10.1007/s10799-015-0229-1

Lei, S., Chen, C., Li, Y., & Hou, Y. (2019). Resilient disaster recovery logistics of distribution systems: Co-
optimize service restoration with repair crew and mobile power source dispatch. IEEE Transactions on Smart 
Grid, 10(6), 6187–6202. 10.1109/TSG.2019.2899353

Li, S., Wang, N., Jia, T., He, Z., & Liang, H. (2016). Multiobjective optimization for multiperiod reverse logistics 
network design. IEEE Transactions on Engineering Management, 63(2), 223–236. 10.1109/TEM.2016.2516986

Liu, Q. (2020). Automated logistics management and distribution based on RFID positioning technology. 
Telecommunications and Radio Engineering, 79(1).

Liu, S. Q., Zhang, J., & Li, G. Q. (2012). Location-allocation model of logistics distribution network of fast 
fashion products in mature period. Journal of Southwest Jiaotong University, 47, 333–340.

Mavrovouniotis, M., & Yang, S. (2015). Training neural networks with ant colony optimization algorithms for 
pattern classification. Soft Computing, 19(6), 1511–1522. 10.1007/s00500-014-1334-5

Moncayo-Martínez, L. A., & Mastrocinque, E. (2016). A multi-objective intelligent water drop algorithm to 
minimise cost of goods sold and time to market in logistics networks. Expert Systems with Applications, 64, 
455–466. 10.1016/j.eswa.2016.08.003

Ning, T., Wang, J., & Han, Y. (2021). Physical delivery de-carbonization pathways and effect in China: A 
systematic analysis using VRPSDP model. The International Journal of Low Carbon Technologies, (4), 4.

Qi, C. (2013). Vehicle routing optimization in logistics distribution using hybrid ant colony algorithm. 
TELKOMNIKA Indonesian Journal of Electrical Engineering, 11(9), 5308–5315. 10.11591/telkomnika.v11i9.3284

Safeer, M., Anbuudayasankar, S. P., Balkumar, K., & Ganesh, K. (2014). Analyzing transportation and distribution 
in emergency humanitarian logistics. Procedia Engineering, 97, 2248–2258. 10.1016/j.proeng.2014.12.469

Sakai, T., Kawamura, K., & Hyodo, T. (2016). Logistics facility distribution in Tokyo metropolitan area: 
Experiences and policy lessons. Transportation Research Procedia, 12, 263–277. 10.1016/j.trpro.2016.02.064



18

International Journal of Information Systems and Supply Chain Management
Volume 17 • Issue 1 • January-December 2024

Singh, H., Naeem, H. A., Krubally, M., Balder, N., & Maaodhah, A. S. A. (2019). The impact of retailscape 
elements, customer mood and customer pleasure on customer re-patronage intentions. JIMS8M. The Journal of 
Indian Management & Strategy, 24(3), 17–24.

Ting, C. J., & Chen, C. H. (2013). A multiple ant colony optimization algorithm for the capacitated location 
routing problem. International Journal of Production Economics, 141(1), 34–44. 10.1016/j.ijpe.2012.06.011

Utamima, A., Reiners, T., & Ansaripoor, A. H. (2019). Evolutionary estimation of distribution algorithm 
for agricultural routing planning in field logistics. Procedia Computer Science, 161, 560–567. 10.1016/j.
procs.2019.11.156

Wang, B., Han, Y., Liu, F., Hu, H., Zhao, R., & Fang, H. (2020). Intelligent distribution framework and algorithms 
for connected logistics vehicles. IEEE Access : Practical Innovations, Open Solutions, 8, 204241–204255. 
10.1109/ACCESS.2020.3034642

Wang, Y., Ma, X., Liu, M., Gong, K., Liu, Y., Xu, M., & Wang, Y. (2017). Cooperation and profit allocation in 
two-echelon logistics joint distribution network optimization. Applied Soft Computing, 56, 143–157. 10.1016/j.
asoc.2017.02.025

Zhao, B., Gui, H., Li, H., & Xue, J. (2020). Cold chain logistics path optimization via improved multi-objective 
ant colony algorithm. IEEE Access : Practical Innovations, Open Solutions, 8, 142977–142995. 10.1109/
ACCESS.2020.3013951


