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OIL-PRICE UNCERTAINTY AND INTERNATIONAL STOCK RETURNS: DISSECTING 
QUANTILE-BASED PREDICTABILITY AND SPILLOVER EFFECTS USING MORE THAN A 

CENTURY OF DATA 
 

MEHMET BALCILAR*, RANGAN GUPTA** AND CHRISTIAN PIERDZIOCH*** 
 
ABSTRACT 
We investigate whether oil-price uncertainty helps in forecasting international stock returns 
of ten advanced and emerging countries. We consider an out-of-sample period of 1925:08 to 
2021:09, with an in-sample period 1920:08-1925:07, and employ a quantile-predictive-
regression approach, which is more informative relative to a linear model, as it investigates 
the ability of oil-price uncertainty to forecast the entire conditional distribution of stock 
returns, rather than only its conditional-mean. A quantile-based approach accounts for non-
linearity (including regime changes), non-normality, and outliers. Based on a recursive 
estimation scheme, we draw the following main conclusions: the quantile-predictive-
regression approach using oil-price uncertainty as a predictor statistically outperforms the 
corresponding quantile-based constant-mean model for all ten countries at certain quantiles 
(capturing normal, bear, and bull markets), and over specific forecast horizons, compared to 
forecastability being detected for eight countries under the linear predictive model. 
Moreover, we detect forecasting gains in many more horizons (at particular quantiles) 
compared to the linear case. In addition, an oil-price uncertainty-based state-contingent 
spillover analysis reveals that the ten equity markets are tighter connected during the upper 
regime, suggesting that heightened oil-market volatility erodes the benefits from 
diversification across equity markets. 
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1. INTRODUCTION 
The large literature on investment under uncertainty and real options suggests that high oil-
price uncertainty creates cyclical fluctuations in investment by lowering firms’ incentive for 
current investment (Bernanke, 1983; Pindyck, 1991). This, in turn, impacts cash flows 
generated by a firm and the discount rate that is used to calculate stock prices and, hence, 
negatively impacts stock prices and/or returns (Swaray and Salisu, 2018). In addition, 
because stock prices are the sum of discounted cash flows including dividends, oil-price 
uncertainty can adversely affect stock prices by decreasing the overall profit that a firm 
generally uses to pay dividends, with this resulting from the fact that firms need to bear 
additional costs to avoid risk associated with oil-price uncertainty (Demirer et al., 2015).1 
Overall, the theoretical prediction is that oil-price uncertainty negatively impacts stock prices 
and/or returns via the investment and dividends channels, with this hypothesis having been 
widely empirically validated for both developed economies (see, Sadorsky (1999), Masih et 
al., (2011), Alsalman (2016), Diaz et al., (2016), Rahman (2021)) and emerging countries2 
(see, Jiranyakul (2014), Aye (2015), Bass (2017), Benavides (2019)).3 

Given that in-sample tests of predictability might not translate into out-of-sample 
gains, we aim to extend the empirical literature on the nexus between oil-price uncertainty 
and stock markets by analysing the role of West Texas Intermediate (WTI) crude-oil-price 
volatility (traditionally used in the above-mentioned literature as a metric for oil-price 
uncertainty) for the stock returns of Canada, France, Germany, India, Italy, Japan, South 

                                                
1 Furthermore, in the wake of the recent financialization of the oil market post the Global Financial Crisis, 
Christoffersen and Pan (2018) suggests that an increase in oil price volatility signal higher economic uncertainty 
and the tightening of funding constraints for financial intermediaries, which are systematic factors in the stock 
market. 
2 Basher and Sadorsky (2006) employed a multi-factor model to show that oil-price risk tends to strongly affect 
a large set of emerging-stock_market returns.   
3 See also the working paper of Salisu and Gupta (2021), which validates the negative relationship between oil 
uncertainty and stock prices in a global vector-autoregressive model for a set of 26 advanced and developing 
countries covering 90% of the world Gross Domestic Product (GDP). 
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Africa, Switzerland, the United Kingdom (UK), and the United States (US) over the monthly 
period from 1920:08 to 2021:09. From a statistical perspective, such a forecasting analysis is 
important because it is deemed as a more robust test of predictability compared to an in-
sample analysis (Campbell, 2008). Because we use in our empirical analysis the longest 
available data sample, we avoid the issue of a possible sample-selection bias. At the same 
time, we also cover extreme fluctuations in the oil price associated with a wide-range of 
historical events involving the interwar period, the Great Depression, the Korean and 
Vietnam wars, the two oil shocks, the Gulf war, the 9/11 attack, the Iraq invasion, the Global 
Financial Crisis, the Arab Spring, the oil-price collapse of 2014-2016, the US-China trade 
war, and, of course, the more recent swings in the price of oil due to the outbreak of the 
COVID-19 pandemic. The focus on the G7 countries and Switzerland, besides the early-
established stock markets of two emerging economies, is purely driven by the availability of 
data on stock prices over this long sample period. Moreover, our decision to analyze the stock 
markets of these ten (advanced and emerging) economies is motivated by their importance 
in the global economy, with these countries representing nearly two-third of global net 
wealth, and nearly half of world output (Salisu et al., 2021). Naturally, the impact of oil-price 
uncertainty on the equity-market system of these economies would translate into a global 
effect. 

Besides the statistical validation of the role of oil-price uncertainty for stock returns 
based on a full-fledged out-of-sample forecasting experiment, the empirical results we 
document in this research also possess value for investors, academics, and policymakers. For 
instance, practitioners in finance require real-time forecasts of stock returns for asset 
allocation, while academics are particularly interested in stock-returns forecasts because they 
hold important lessons for measures of market efficiency, and also help to refine asset-pricing 
models (Rapach and Zhou, 2013). Moreover, it is well-established that stock returns serve as 
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a leading indicator for macroeconomic variables (Stock and Watson, 2003), and the accurate 
forecasting of stock returns would entail valuable information to policymakers in terms of 
designing optimal policy responses to oil price uncertainty. 

Naturally, the existing literature on forecasting international stock returns, based on 
a wide array of (linear and nonlinear) models and (macroeconomic, financial, technical and 
behavioral) predictors, is vast, to say the least. Hence, providing a detailed review is beyond 
the scope of this paper, and also not our main objective, but the interested reader is referred 
to the recent works of Rapach et al., (2013), Aye et al., (2017), Gupta et al., (2017, 2020), 
Huber et al., (2017), Jordan et al., (2017, 2018), Christou et al., (2021), Salisu and Gupta 
(2021), and Rapach and Zhou (forthcoming), to get an idea about this ever burgeoning area 
of research. Even though the role of the oil price and/or returns in forecasting stock returns 
has been extensively analysed (see, Narayan and Gupta (2015), Gupta and Wohar (2017), 
Degiannakis et al., (2018), Smyth and Narayan (2018) for detailed reviews), our contribution 
to this important and significant area of research is that we are the first to incorporate the role 
of oil-price uncertainty in forecasting international stock returns of advanced and emerging 
countries using over a century of data.  

At this stage, it is important to outline the econometric approach we rely on to conduct 
our forecasting experiment. Traditionally, as discussed in detail in the papers cited above, the 
literature on predicting stock returns has relied on linear models, but, more recently, the focus 
has shifted to developing models that accommodate for the well-established nonlinear 
relationship between stock returns and its predictors (see the discussions in Guidolin et al., 
(2009), Gupta and Majumdar (2016), Demirer et al., (2017), Gupta et al., (2018, 2019), 
among others). Against this backdrop, we not only consider the standard linear predictive-
regression approach, but also use a predictive quantile-regression approach for our 
forecasting analysis. We argue that, due to non-linearity and non-normality patterns, which 
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we show to exist in an overwhelming fashion in our dataset based on formal statistical tests, 
a linear regression approach might not be adequate for exploring the ability of oil-price 
uncertainty to forecast the entire distribution of the stock returns of the ten countries. 

The quantiles-based approach, as originally developed by Koenker and Bassett 
(1978), enables us to have a more complete characterization of the forecastability of the entire 
conditional distribution of stock returns through a set of conditional quantiles, rather than 
only its conditional mean, as is the case with the standard linear regression approach.  
Looking at just the conditional mean of stock returns is likely to ‚hide’ interesting 
characteristics, as it can lead us to conclude that a predictor, in our case oil-price uncertainty, 
has poor forecasting performance, while it is actually valuable for forecasting certain parts 
of the conditional distribution of stock returns. In addition, business cycle fluctuations are 
likely to induce the slope coefficients associated with the predictor to vary across quantiles 
(Meligkotsidou et al., 2014), to the extent that oil-price uncertainty may contain significant 
information for the lower or upper quantiles, but not for the whole conditional distribution of 
stock returns. The quantile-predictive regression approach, which allows us to integrate this 
information, would, thus, lead to additional benefits over the standard linear and other 
popular nonlinear approaches. 

Furthermore in terms of modelling non-linearity, on the one hand, unlike the Markov-
switching and the smooth threshold models, we do not need to specify number of regimes of 
stock returns (for instance, bear and bull) in an ad hoc fashion with the quantile -based 
approach. On the other hand, the quantile approach has added advantages over the non- or 
semi-parametric, neural networks, and time-varying approaches, as we can study each point 
of the conditional distribution characterizing the state of the stock market. Because the 
quantile-based approach studies the entire conditional distribution, which captures various 
states of the stock market, it adds an inherent time-varying component to the estimation 



 
 

5 
 

process. Though, by pursuing a recursive estimation of both the conditional-mean and 
predictive quantile-based approaches over the out-of-sample period, we make both the 
models have time-varying parameters in the forecast evaluation part of the sample, and, in 
the process, do not provide the quantiles-based approach with an upper-hand in terms of 
estimation, besides its inherent advantage of being able to provide information on the entire 
conditional distribution of stock returns. 

In sum, the quantile-based approach is more efficient and more robust than the  linear 
approach, which focuses on the conditional mean only, in the presence of non-normality, 
non-linearity, and outliers (Gebka and Wohar, 2019), with the latter possibly leading to the 
emergence of regime changes in the relationship between oil-price uncertainty and stock 
returns (which, unsurprisingly, given the usage of over a century of data, we show to exist in 
our sample based on tests of multiple structural breaks). The fact that the quantile-based 
approach is not sensitive to outliers is particularly important in our forecasting context, as 
this implies that the quantile forecasts are still accurate in the presence of large positive or 
negative returns in the sample and, therefore, the produced forecasts are robust.  

To the best of our knowledge, this is the first paper to analyze the role of oil-price 
uncertainty in forecasting the historical stock returns of ten advanced and emerging countries 
spanning over 100 years of monthly data. In addition to this, while the focus is on forecasting, 
to provide an angle of economic and investment implications of our results, we also conduct 
an analysis involving regimes-dependent (smooth-transition, besides threshold, Markov-
switching, and quantiles-based) methods of connectedness of the ten stock markets, with the 
regimes contingent on the high- and low-levels of oil-price uncertainty. In the process, we 
test the so-called correlation-asymmetry phenomena reported in a number of studies (see Das 
et al., (2019) for a detailed review), that refer to the asymmetric pattern in which stock returns 
tend to be more correlated (connected) during bear-market regimes (as well as during periods 
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of extreme price fluctuations). This is likely to be the case when oil-price uncertainty is high, 
given the theoretical and empirical evidence of the negative nexus between stock returns and 
a highly volatile oil market. Understandably, if connectedness is high across the ten markets 
when oil uncertainty is in its upper regime, then clearly portfolio diversification opportunities 
across international equity markets are likely to erode, with all the stock returns experiencing 
a bearish-phase. 

We organize the remainder of our paper as follows. In Section 2, we describe the 
methodologies we use in our empirical analysis. In Section 4, we discuss the data and our 
empirical results, and in Section 4, we conclude.     

2. PREDICTIVE REGRESSION MODELS 
The classical linear predictive mean-regression model is given by: 

௧ାݎ = ߙ + ,௧ݔߚ +  ௧ା                       (1)ߝ
whereݎ௧ାis the observed cumulated stock returns over time period t+1 to t+h,  ݔ,௧ is a 
specific regressor / predictor at time ݐ, which in our work is oil-price uncertainty, and ߝ௧ା is 
the error term assumed to be independent with zero mean and variance ߪଶ. The ordinary least 
squares (OLS) estimators, ߙො,  መ, of the parameters in the predictive mean-regression modelߚ
are estimated by minimizing the quadratic expected loss, ∑ ௧ାݎ) − ߙ − ,௧)ଶ்ିଵ௧ୀݔߚ , with 
respect to the parameters, ߙ, ݐ . The point forecast of stock returns at timeߚ + ℎ, is obtained 
as:  ̂ݎ,௧ା = ොߙ +   .,௧ݔመߚ

The aforementioned model is primarily devised to predict the mean of ݎ௧ା, and not 
the entire conditional distribution of stock returns. Koenker and Bassett (1978) showed that 
quantile-regression estimators are more efficient and robust than mean regression estimators 
in cases where nonlinearities and deviations from normality exist, with both these features 
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existing in our data (as discussed below). Hence, we consider the predictive quantile-
regression model of the following form: 

௧ାݎ = (ఛ)ߙ + ,௧ݔ(ఛ)ߚ + ௧ା݅ߝ = 1,… , ܰ,                    (2) 
where ߬ ∈ (0,1), and ߝ௧ା is assumed independent derived from an error distribution ݃ఛ(ߝ) 
with the ߬-th quantile equal to 0. Model (2) implies the ߬-th quantile of ݎ௧ା given ݔ,௧, is 
ܳఛ൫ݎ௧ାหݔ,௧൯ = (ఛ)ߙ +  ,௧, where the intercept and the coefficients depend upon ߬. Theݔ(ఛ)ߚ
estimators of the parameters of the predictive quantile-regression model in Eq. (2), 
,(ఛ)ߙ ∑ (ఛ), are obtained by minimizing the sumߚ ௧ାݎ)ఛߩ − (ఛ)ߙ − ,௧)்ିଵ௧ୀݔ(ఛ)ߚ , where  the 
so called check function is being used, ߩఛ(ݑ) = ൫߬ݑ − ݑ)ܫ < 0)൯ = ଵ

ଶ ሾ|ݑ| + (2߬ −  .ሿݑ(1
The forecast of the ߬ -th quantile of the distribution of stock returns at time ݐ + 1 is ̂ݎ,௧ା(߬) =
ො(ఛ)ߙ +  . ,௧ݔመ(ఛ)ߚ

3. DATA AND EMPIRICAL RESULTS 

3.1. DATA 
The stock-index raw data are denominated in respective local currencies for Canada 

(S&P TSX 300 Composite Index), France (CAC All-Tradable Index), Germany (CDAX 
Composite Index), India (Bombay Stock Exchange (BSE) Index), Italy (Banca Commerciale 
Italiana Index), Japan (Nikkei 225 Index), South Africa (Johannesburg Stock Exchange All 
Share (JSE-ALSI) Index), Switzerland (All Share Stock Index), the UK (FTSE All Share 
Index), and the US (S&P500 Index). The local currency stock indexes of the nine countries 
(except for the US) are converted to US dollars by using the bilateral dollar-based exchange 
rates, and then divided by the US Consumer Price Index (CPI), to get to the real stock prices. 
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The WTI oil price in US dollars is also deflated by the US CPI to get the corresponding real 
oil price. All our raw data are obtained from the Global Financial Data.4 

We then compute log-returns in percentages for the stock and oil prices. Following 
the early work of Sadorsky (1999), and the extant literature on oil-price uncertainty, we fit a 
Generalized Autoregressive Conditional Heteroskedasticity (GARCH(1,1)) model5 to obtain 
the conditional variance of the log-returns of oil, which in turn serves as our metric of oil-
price uncertainty (OIL_UNC). Based on a balanced data set, our monthly sample period 
covers the period from 1920:08 to 2021:09, at the time of writing of this paper.   

Figure A1 at the end of the paper (Appendix) plots the stock-market returns and the 
GARCH(1,1)-based oil-price conditional volatility (OIL_UNC). In addition, as can be seen 
from the summary statistics of the variables reported in Table A1 (Appendix), all the ten 
stock log-returns and OIL_UNC are found to be non-normal based on the rejection of the null 
hypothesis of normality under the Jarque-Bera test at the highest level of significance. Heavy 
tails of the variables under consideration provide a preliminary motivation to look at a 
predictive quantile-based approach. 
3.2. EMPIRICAL FINDINGS 
3.2.1. FORECASTING RESULTS  
 We use an in-sample period from 1920:08 to 1925:07 (i.e., 60 months), and then the 
models in Eq. (1) and Eq. (2) are estimated recursively over the out-of-sample period from 
1925:08 to 2021:09, to produce forecasts at horizons (h) of 1- ,3- ,6- ,9-, 12, 18-, and 24-
month-ahead. The choice of this in-sample period ensures that all regime changes, as 
determined by the multiple structural break tests of Bai and Perron (2003) applied to Eq. (1)  
and reported in Table A2, fall over the out-of-sample period. In this manner, given the 

                                                
4 https://globalfinancialdata.com/. 
5 Complete details of the estimation results of the GARCH(1,1) model are available upon request from the 
authors. 
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recursive estimation of both the predictive linear and predictive quantile-based regressions, 
we ensure that the latter does not enjoy any unfair advantage in terms of being inherently a 
nonlinear model, with non-linearity at least arising because of structural breaks. Non-
linearity in the relationship between stock returns and OIL_UNC is overwhelmingly 
confirmed by the Brock et al., (1996, BDS) test when applied on the residuals of Eq. (1), with 
the test rejecting the null hypothesis of i.i.d. at all possible dimensions at the highest possible 
level of significance, as shown in Table A3. The results from the structural instability analysis 
as well as the non-linearity test, highlight, on the one hand, the inappropriateness of the linear 
predictive regression model given in Eq.(1), and, on the other hand, indicate the necessity to 
employ a predictive quantile-based approach, as in Eq. (2), when forecasting stock returns 
based on the information content of OIL_UNC.  

[Please insert Table 2] 
In any event, for the sake of completeness and comparability, we also present the 

forecasting results from the predictive linear regression model in Table 1, besides the same 
from the predictive quantile-based approach, where we use the following quantiles for the 
latter:߬ = 0.10, 0.20, 0.30….0.90. The entries in the table report the ratio of the Mean Square 
Forecast Errors (MSFEs) of equation (1) relative to the same of the constant-mean (random-
walk (RW)) model, i.e., ̂ݎ,௧ା = -ො, and the same for equation (2) relative to the quantilesߙ
based RW model, i.e., ̂ݎ,௧ା(߬) =  ො(ఛ). Understandably, if the ratio is less than one, then theߙ
model with the predictor outperforms the model without it. It is also important, however, to 
test whether the superior performance of the model with the OIL_UNC, if it holds, is 
statistically different from the corresponding benchmark. Given that the model featuring oil-
price uncertainty nests its associated benchmark, we use the MSE-F test statistic6 of 
                                                
6 MSE-F=(MSFER/MSFEUR-1)×(T-R-h+1), where MSFER and MSFEUR are the mean square forecast error of the 
restricted (without OIL_UNC) and unrestricted (with OIL_UNC) models, respectively, with T being the total 
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McCracken (2007) to check whether, in cases where the ratio is less than one, the model with 
oil-price uncertainty outperforms the one without it in a significant fashion. 

At this point, it is worthwhile to emphasize that, because we use the MSFE to evaluate 
forecast errors, we assume that a forecast consumer uses a squared-error loss function to 
study the predictive performance of both the linear-regression and the quantiles-based 
approach. Alternatively, one could use a quantile-based loss function (that is, the check 
function), to evaluate the forecast errors implied by the quantile-based approach. This 
quantiles-based loss function is asymmetric (except in the special case where the conditional 
median is being analyzed) and accounts for the fact that the quantile-regression model adjusts 
forecasts of stock returns upward or downward depending on the quantile under scrutiny (see, 
for example, Pierdzioch et al., (2014, 2016); Gupta and Pierdzioch (2022)). In this paper, we 
stick to the standard quadratic loss function (which has been used in recent research in a 
quantile-regression context by, for example, Ren et al., (2022)) because using the MSFE for 
both approaches ensures that the results for the forecast evaluations are comparable across 
the two different approaches. From the perspective of a forecast consumer, the upward and 
downward adjustments of forecasts made under the quantile-based approach can then be 
interpreted as a data-driven pragmatic attempt to explore potential improvements in the 
forecasting performance of oil-price uncertainty by moving from a linear to a quantiles-based 
forecasting approach, where the underlying ceteris-paribus assumption is that the squared-
error loss function and, thus, the preferences of a forecast consumer are the same for both 
approaches. 

As can be seen from Table 1, for the predictive linear-regression model, the model 
with OIL_UNC beats the benchmark model in terms of forecasting performance in 13 
                                                
sample size, R the length of the in-sample, and h the forecast horizon under consideration. A positive and 
significant MSE-F indicates that the forecasts from the unrestricted model are statistically superior to those 
from the restricted model. Given our set-up, the 1%, 5% and 10% critical values derived from Table 4 of 
McCracken (2007; pp. 732) are 3.951, 1.518 and 0.616 respectively. 
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instances, which happens to be the cases at: h = 1 and 6 for Canada; h = 24 for France, India, 
Japan, and Switzerland; h = 9 for Germany; h = 6, 9 and 18 for the UK, and; h =1, 3 and 6 
for the US. There is no evidence of stock-returns forecastability due to OIL_UNC for Italy 
and South Africa at any of the seven forecasting horizons considered. But, more importantly, 
out of the 13 cases where the model with OIL_UNC outperforms the benchmark, the 
forecasting gains, based on the MSE-F test, are statistically significant at the 1% level in nine 
cases, 5% in three cases, and 10% in the remaining one case. In general, the evidence is 
mixed, with forecastability primarily observed at medium- to long-horizons for oil importers 
(France, Germany, India, Japan, Switzerland, and the UK), and at shorter-horizons for oil 
exporters such as Canada and the US.  

Given the evidence non-normality and non-linearity (including structural breaks), 
however, these results are perhaps not surprising, besides being unreliable. Thus, we move 
on to the predictive quantile-based approach. For Canada, significant forecastability based 
on the information content of OIL_UNC is observed for at least one conditional quantile 
particularly at the lower end (i.e., τ = 0.30, 0.50-0.60 and 0.80 at h = 3; 0.10-0.40 and 0.70-
0.90 at h = 6; 0.10-0.30 at h = 9, and; τ = 0.10-0.20 at h = 12 and 18) over all forecast horizon, 
except for h=24. Hence, stronger predictive effect, in terms of the coverage of the quantiles, 
is observed at lower forecast horizons. For France, strong forecastability is observed at h = 
24 over the conditional median and beyond, i.e., τ = 0.50 to 0.90, but the OIL_UNC also plays 
a role in predicting a bearish market (i.e., τ = 0.10 at h = 9, 12, 18, and; τ = 0.20 at h = 9 and 
12). For Germany, while forecastability is observed for τ = 0.2-0.4 at h = 1, and at τ = 0.4 at 
h = 6, the same is observed at primarily higher conditional quantiles (i.e., τ = 0.60-0.70 for h 
= 12, and 0.70-0.80 for h = 18. For India, while we could not find evidence of forecastability 
at the shortest horizon (h = 1), it is indeed observed primarily at higher quantiles (i.e., 0.70 
onwards up to 0.90) for h = 3 to 18, with the strongest predictability observed at h = 24 
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covering virtually the entire conditional distribution (i.e., τ  = 0.10 to 0.80). Compared to the 
predictive linear-regression model, under which Italian and South African stock returns were 
completely unpredictable based on the information content of OIL_UNC, now with the 
quantile-based approach, stock returns for Italy are consistently forecastable over all seven 
horizons considered for at least one conditional quantile, and, in particular, for below the 
median (τ = 0.10-0.40). Moderately higher quantiles are also predictable at h = 1 and 24. A 
story similar to that for Italy also holds for South Africa, with higher conditional quantiles (τ 
= 0.60-0.90) being forecastable at h = 1, 18 and 24, besides the lower quantiles (τ = 0.10-
0.40) at h = 1 to 18. Turning next to Japan, barring h = 18, oil- price uncertainty can forecast 
at least one conditional quantile of stock returns (primarily around the median and at τ = 0.90) 
for the remaining forecast horizons, with the broadest evidence in terms of quantile-coverage 
(τ = 0.20-0.90) at h = 24. For Switzerland, forecastability of stock returns is observed at all 
seven horizons considered for at least one conditional quantile, with the largest quantile 
coverage, just as in the case of Japan, being at h = 24 (τ = 0.30-0.90). The other horizons 
depict forecastabilty at each end of the conditional distribution, except for h = 18, where the 
benchmark is outperformed at τ = 0.60. For the UK, the exception is h = 1 and 24, otherwise, 
for all other horizons at least two conditional quantiles are forecastable due to OIL_UNC, 
especially on and around the moderate quantiles below the median. At h = 18, the coverage 
of the predictable τ is equal to 0.10-0.80. Finally for the US, at least one conditional quantile 
of stock returns can be accurately forecasted based on the information contained in OIL_UNC 
at: h = 1, 3, 6, 12 and 18, especially in the bearish phase, though the normal market condition 
and the bullish-regime (i.e., τ = 0.50-0.90) is also forecastable at h = 1 to 6-month-ahead. For 
all the significant cases (with 3 instances of insignificance, even though the benchmark model 
was outperformed) of out-of-sample predictability detected under the quantile regression, 3 



 
 

13 
 

cases carry significance at the 5% level and 4 at the 10% level, with the rest being at the 1% 
level.  

In sum, despite heterogeneity of the results across the stock markets, the quantile 
regression model with OIL_UNC as a predictor outperforms the prevailing quantile 
benchmark for all ten countries at certain quantiles, capturing normal, bear, and bull markets, 
over specific forecast horizons. This is unlike in the case of the predictive linear-regression 
model, which picks up forecasting gains for eight countries (excepting Italy and South 
Africa). Moreover, we unveil forecasting gains in many more horizons (at particular 
quantiles) compared to the linear case. Clearly, our results depict the advantages of resorting 
to a non-linear approach that renders it possible to shed light on the entire conditional 
distribution of stock returns rather than just the conditional mean, while analysing the 
predictive relationship of oil-price uncertainty for international stock returns, which depict 
non-normality. Besides the statistical importance of our findings, indeed our results also hold 
value for academics, investors, and policymakers seeking to optimize their respective 
decisions during bull, bear, and normal stock-market phases in the wake of changes in oil-
price uncertainty. 

Table A4 provides the results for the forecasting experiment when we use an in-
sample period of 120 months, i.e., from 1920:08 to 1930:07, with 1930:08 to 2021:09 being 
the out-of-sample period. As can be seen from this table, the basic conclusions derived for 
the shorter in-sample period from 1920:08 to 1925:07, as reported in Table 1, continue to 
hold also for the longer in-sample period. This observation shows that our forecasting results 
are robust relative to a reasonable variation of the length of the in- and out-of-sample periods, 
in terms of the superiority of the quantile predictive regression relative to its linear 
counterpart. 

[Please insert Table 1] 
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3.2.2. REGIMES-BASED CONNECTEDNESS RESULTS AND INVESTMENT IMPLICATIONS  
 Table 2 displays the regime-dependent connectedness metrics, based on a smooth 
transition vector autoregressive (STVAR) model (see Balcilar et al., 2020, 2021a, b), 
computed in the same way as in Diebold and Yilmaz (2012). The lag order of the STVAR 
models is 1, which is determined by the Bayesian information criterion (BIC) in a linear VAR 
model. Oil uncertainty is the threshold variable. The lower regime relates to the below 
threshold (low uncertainty) periods, while the upper regime corresponds to the above 
threshold (high uncertainty) periods. The estimations for STVAR smoothness and threshold 
parameter are 44.876 and 59.709, respectively. The Diebold-Yilmaz spillover index as a 
measure of the total connectedness measure is estimated as 62.60% in the low oil-price -
uncertainty regime, while it is 83.58% in the high oil-price-uncertainty regime. Thus, there 
is a much stronger connectedness in the high-uncertainty regime, where more than four-fifth 
of the total spillover is due to cross links across the stock markets and oil-price uncertainty. 
Indeed, much of the cross links in both regimes is with the oil-price uncertainty. In the low-
uncertainty regime, Canada, France, Germany, India, Italy, the UK, and the US are 
significantly influenced by the oil market as volatility receivers. There are also a few strong 
connectedness links among stock markets in the low-uncertainty regime. For example, the 
spillover from Canada, Franca, Germany, Italy, and the US to Switzerland, as well as  the 
spillover from India, the UK, and the US to South Africa are substantial. A similar pattern is 
also observed in the high-uncertainty regime.  

 In the high-uncertainty regime, the predictive power of oil-price uncertainty is 
stronger for almost all stock markets except South Africa. Indeed, the spillover estimates 
from oil-price uncertainty to stock returns are all above 90% for Canada, France, Italy, Japan, 
Switzerland, the UK, and the US, while they are above 80% for Germany and India. Although 
oil-price uncertainty is the key predictor variable for all stock returns in both regimes, its 
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predictive capacity is much higher in the high-uncertainty regime. In the high-uncertainty 
regime, 95.53% of the spillover received by the 10 stock markets comes from oil-price 
uncertainty, while this figure is only 70.68% in the low-uncertainty regime. Comparing the 
total spillover across the regimes, we observe that 88.93% of the total spillover of 11,000 in 
the high-uncertainty regime is accounted for by oil-price uncertainty, while this proportion 
falls to 53.32% in the low-uncertainty regime. Another noteworthy result for both regimes is 
related to the net-spillover estimates. In both regimes, all 10 stock markets are net receivers, 
while oil-price uncertainty is the only net transmitter. All stock markets receive higher 
spillover from others in the high-uncertainty regime. For example, the net spillovers received 
by South Africa, Japan, Germany, and India are 2.18, 1.65, 1.63, and 1.31 times higher in the 
high-uncertainty regime, respectively, compared to the low-uncertainty regime. A further 
observation is that oil-price uncertainty does not receive any spillover from stock returns in 
the high-uncertainty regime, while the spillover from others to oil-price uncertainty in the 
low uncertainty regime is also negligible.  

[Please insert Table 2] 
 Overall, oil-price uncertainty is the key variable governing and generating spillover 
connectedness for the ten stock markets, where its influence is much higher during high-
uncertainty periods. The main findings from the STVAR model are summarized in the 
network analysis provided in Figure 1. 
 In addition, it should be noted that the conclusions from the STVAR model are also 
verified in a robust manner in Tables A5, A6 and A7, under the Threshold VAR (TVAR), 
Markov-switching VAR (MSVAR) and Quantile VAR (QVAR), respectively (see, Shahzad 
et al., (2021), Balcilar et al., (2022) for further details). Our findings related to connectedness, 
thus, suggest that international portfolio allocation across stock markets would be relatively 
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more difficult during episodes of heightened oil-price uncertainty, which is likely to result in 
bearish stock markets7 – a finding in line with the correlation asymmetry phenomena. 

[Please insert Figure 1] 

4. CONCLUSIONS 
The importance of accurate forecasting of stock returns for academics and 

practitioners in finance, and policymakers is well-recognized. However, stock-return 
forecasting is highly challenging because it inherently contains a sizable unpredictable 
component. Naturally, a large variety of models and predictors has been used in earlier 
literature.  

In this regard, given that in-sample predictability does not necessarily translate into 
out-of-sample forecasting gains, we aim to extend the structural analyses-type literature on 
the oil-price uncertainty/stock-returns nexus by forecasting real stock returns of ten 
developed and emerging markets (Canada, France, Germany, India, Italy, Japan, South 
Africa, Switzerland, the UK, and the US) based on the information content of oil-price 
uncertainty. We investigate the forecastability of the stock returns of these markets based on 
over a century of monthly historical data (1920:08 to 2021:09), and rely on a predictive 
quantile-based approach to account for non-linearity and non-normality (which we show to 
exist in an overwhelming manner in our data based on statistical tests) while forecasting the 
entire conditional distribution of stock returns. 

                                                
7 The fact that higher oil-price uncertainty tends to have a stronger negative effect on stock returns when stock 
markets are in their lower conditional quantiles, i.e., during their bearish states, is evident, especially for the 
short forecast horizons, from Figure A2 for Canada, France, Germany, Switzerland, and the US. For Italy, 
Japan, and India the coefficients estimated for the lower conditional quantiles are also in general negative, but, 
as the results for India demonstrate, they are not necessarily larger (in absolute value) than their counterparts in 
the upper conditional quantiles. This figure plots the full-sample-based quantile response of the average, rather 
than cumulative, stock returns, due to scale issues in the graphical representation (without compromising on the 
sign), across the ten countries due to OIL_UNC (ߚመ(ఛ)) for the various forecast horizons (h = 1, 3, 6, 9, 12, 18 
and 24), covering the entire sample period of 1920:08 to 2021:09.   
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Our results show that the out-of-sample predictive content of oil-price uncertainty for 
stock returns is country-specific, as the effect is quite heterogeneous across countries, and, 
hence, cannot (and should not) be generalized. However, oil-price uncertainty is found to 
produce significant forecasting gains for stock returns of all of the ten countries considered, 
though the specificity of the conditional quantiles and forecast horizon varies across the 
countries. In general, however, the coverage of predictability is associated with normal, bear 
and, bull-market states, as well as short-, medium-, and long-run horizons. When compared 
to the common predictive linear-regression approach, we find that the quantile results of 
forecastability encompasses all ten markets, rather than eight under the former. In addition, 
under the quantiles-based approach, the forecasting gains are detected at many more horizons 
(at particular quantiles) compared to the linear predictive regression. Our results, thus, 
highlight the importance of studying the entire distribution, based on a framework that can 
account for non-linearity and non-normality, rather than performing just a conditional mean-
based analysis, which might be misleading as it is likely to miss important information 
contained for certain parts of the distribution of stock returns. 

In addition, using a regimes-based spillover analysis, we find that the connectedness 
among the ten international stock markets, though predicted in a different manner by oil-
price uncertainty, is stronger in the wake of heightened oil-price uncertainty. This finding, in 
turn, implies that, in the wake of large unfavourable uncertainty shocks related to the oil 
market, international portfolio diversification opportunities across stock markets are limited. 

Our results further demonstrate that policymakers who use movements in real stock 
returns following oil-price-uncertainty shocks as a leading indicator for low-frequency 
macroeconomic variables would be better served by tracing the differently-behaving entire 
conditional distribution of stock returns, rather than just its conditional mean, when designing 
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policies aimed at mitigating business-cycle fluctuations and ensuring recovery out of a 
recession. 

In light of the widespread evidence of cross-market volatility spillovers (Tiwari et al., 
2018), as part of future research, it is interesting to analyse the second-moment predictability-
effect of oil-price uncertainty on stock returns, i.e., on stock-market volatility, based on the 
historical dataset used in our paper. 
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Table 1. Forecasting results 
Canada (CA) 

Horizon Linear 
Quantile 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
1 0.9980** 1.0150 1.0057 1.0197 1.0074 0.9997 1.0169 1.0160 1.0164 1.144 
3 1.0017 0.9998 1.0000 0.9846*** 1.0156 0.9980** 0.9917*** 1.0285 0.9940*** 1.0000 
6 0.9980** 0.9621*** 0.9626*** 1.0012 0.9983** 1.0022 1.0013 0.9873*** 0.9945*** 0.9265*** 
9 1.0641 0.9761*** 0.9835*** 0.9844*** 1.0578 1.1103 1.0329 1.0675 1.2132 1.1411 

12 1.1553 0.9330*** 0.9828*** 1.1089 1.0737 1.1749 1.1123 1.2327 1.1309 1.2312 
18 1.1320 0.9922*** 0.9984** 1.0484 1.0900 1.1163 1.1250 1.2039 1.2192 1.2263 
24 1.0694 1.0093 1.0034 1.0020 1.2571 1.1061 1.0691 1.0192 1.0586 1.0462 

           
France (FR) 

Horizon Linear 
Quantile 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
1 1.0251 1.1607 1.0457 1.0056 1.0364 1.0031 1.0711 1.2095 1.1462 1.0772 
3 1.0209 1.1080 1.0099 1.0365 1.0019 1.0098 1.0517 1.5301 1.3449 1.0926 
6 1.0431 1.2209 1.2231 1.1026 1.0036 1.1815 1.4462 1.2086 1.4417 1.0852 
9 1.4294 0.8060*** 0.9906*** 1.1436 1.6721 1.7185 1.6809 1.6962 1.5166 1.2891 

12 1.4385 0.8585*** 0.9100*** 1.5124 1.8152 1.5974 1.5176 1.4567 1.3110 1.2027 
18 1.3528 0.9371*** 1.1383 1.3144 1.4495 1.3513 1.4295 1.0844 1.2531 1.0528 
24 0.9941*** 2.0310 1.6327 1.3403 1.0672 0.9785*** 0.8190*** 0.8782*** 0.8927*** 0.9258*** 

           
Germany (DE) 

Horizon Linear 
Quantile 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
1 1.4176 1.1750 0.8222*** 0.9614*** 0.9707*** 1.2425 1.0300 2.4939 1.8366 1.8639 
3 1.6517 1.1434 1.1125 1.0936 1.0243 2.5849 2.6628 1.7991 2.1421 1.3476 
6 1.3142 3.5451 2.5854 2.2575 0.8455*** 1.6159 2.1308 3.3076 1.4995 1.2194 
9 0.9971** 1.2140 2.6180 2.6565 4.9158 1.1643 2.8539 1.6979 4.3362 1.2318 

12 1.1267 2.1916 1.8270 3.4710 2.0924 1.5209 0.9993* 0.9945*** 2.3191 1.2422 
18 2.5850 1.5524 1.8803 2.0956 2.5410 1.5859 1.3141 1.1005 0.8732*** 0.6903*** 
24 1.6232 1.7894 1.6333 4.2118 2.6620 1.0992 0.9854*** 1.8293 1.1091 0.8259*** 

           
India (IN) 

Horizon Linear 
Quantile 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
1 1.0857 1.7240 1.2149 1.1133 1.0344 1.0043 1.0015 1.0197 1.0007 1.1186 
3 1.1611 1.0341 1.2258 1.1876 1.1786 1.0450 1.0725 1.0465 1.1696 0.9137*** 
6 1.1925 1.1427 1.2356 1.0328 1.2058 1.0172 1.1481 1.2241 1.0290 0.9332*** 
9 1.1550 1.0927 1.1351 1.2211 1.3926 1.1182 1.2946 1.1484 0.9901*** 1.0171 

12 1.2437 1.1970 1.2089 1.3610 1.4850 1.5520 1.2222 1.0406 0.9842*** 0.9999 
18 1.0908 1.0922 1.2128 1.0453 1.1845 1.2281 1.0832 0.9610*** 0.9610*** 0.9750*** 
24 0.9516*** 0.8987*** 0.9999 0.9831*** 0.8714*** 0.9564*** 0.8902*** 0.8005*** 0.9850*** 1.0321 
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Italy (IT) 

Horizon Linear 
Quantile 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
1 1.0007 1.1022 0.9960*** 1.0354 1.0473 1.0337 1.0178 0.9939*** 1.0905 1.1920 
3 1.0548 0.9328*** 0.9686*** 0.9758*** 0.9883*** 1.0203 1.1135 1.2332 1.1777 1.0167 
6 1.0347 0.9772*** 1.0108 0.9904*** 0.9858*** 1.0188 1.0202 1.0450 1.3207 1.9168 
9 1.1396 0.9962*** 0.9226*** 0.9622*** 0.9786*** 1.0112 1.0326 1.4797 3.0196 1.4055 

12 1.1953 0.8882*** 0.9731*** 0.9525*** 0.9758*** 1.0100 1.0271 3.0478 1.3284 1.4164 
18 1.1337 0.9389*** 0.9794*** 0.9742*** 0.9943*** 1.0093 1.0906 1.5868 1.6185 1.3491 
24 1.0005 1.1307 1.0861 1.0323 1.0197 1.0058 0.9994* 1.1876 1.1627 1.2209 

           
Japan (JP) 

Horizon Linear 
Quantile 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
1 1.0048 1.0090 1.0079 1.0331 0.9991* 1.0072 1.0055 1.0336 1.0364 1.2751 
3 1.0079 1.0299 1.0359 1.0108 1.0215 0.9988* 1.0031 1.0409 1.1107 1.1536 
6 1.0153 1.1587 1.0521 1.0689 1.1444 0.9877*** 1.0016 1.0082 1.0010 0.9019*** 
9 1.1694 1.0982 1.1854 1.2222 1.3247 1.1140 1.0525 0.9935*** 1.0427 0.9210*** 

12 1.1983 0.9589*** 1.0424 1.1766 1.3171 1.2843 1.1694 1.1323 1.0128 0.8732*** 
18 1.2738 1.0021 1.1267 1.1001 1.0518 1.2595 1.2878 1.2550 1.3483 1.1020 
24 0.9408*** 1.0542 0.9402*** 0.9130*** 0.9208*** 0.9677*** 0.9281*** 0.9435*** 0.9824*** 0.9910*** 

           
South Africa (ZA) 

Horizon Linear 
Quantile 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
1 1.0079 0.9631*** 0.9473*** 0.9842*** 0.9966** 1.0071 0.9962*** 0.9973** 0.9929*** 1.0229 
3 1.0548 0.8283*** 0.9522*** 0.9965*** 1.0026 1.1008 1.2520 1.2392 1.1127 1.0894 
6 1.1171 0.9239*** 0.9334*** 0.9563*** 1.0866 1.1281 1.1792 1.1782 1.2355 1.2009 
9 1.1175 0.8061*** 0.8771*** 0.9612*** 1.0510 1.1090 1.1599 1.2825 1.3334 1.2622 

12 1.0696 0.9107*** 0.7970*** 0.9908*** 1.0138 1.1403 1.0709 1.1330 1.1370 1.0567 
18 1.0141 0.9516*** 0.9334*** 0.9245*** 1.0573 1.1359 0.9949*** 0.9966** 0.9986** 0.9950*** 
24 1.1456 1.2272 1.2561 1.3636 1.1097 1.0612 1.0578 1.0058 0.9954*** 0.9507*** 

           
Switzerland (CH) 

Horizon Linear 
Quantile 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
1 1.0204 0.9290*** 1.0315 1.0565 1.0209 1.0391 1.0068 0.9830*** 1.0074 1.0247 
3 1.1437 0.4522*** 0.9962*** 0.9944*** 1.0236 1.0985 1.1754 1.2126 1.1953 1.1661 
6 1.1165 0.6385*** 1.1369 1.0811 1.0535 1.0582 1.0373 1.0329 0.9838*** 0.7994*** 
9 1.2423 0.8608*** 1.4216 1.3856 1.1707 1.0331 1.0175 1.1656 1.0339 1.0212 

12 1.2583 0.9800*** 1.2718 1.2747 1.1303 1.1448 1.1905 1.3831 1.2275 1.0096 
18 1.1429 1.0699 1.0520 1.0831 1.0031 1.0943 0.9883*** 1.1353 1.0788 1.3768 
24 0.9730*** 1.0020 1.0351 0.9687*** 0.9831*** 0.9793*** 1.0097 0.9805*** 0.9869*** 0.9858*** 
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UK 

Horizon Linear 
Quantile 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
1 1.0023 1.0677 1.0541 1.0961 1.0016 1.0048 0.9998 0.9998 1.0236 1.0349 
3 1.0013 1.0845 1.0334 1.0453 0.9901*** 0.9990* 1.0110 1.0461 1.0398 1.0969 
6 0.9921*** 1.0180 1.0499 0.9992* 0.9764*** 0.9825*** 1.0146 1.0363 1.1124 1.2448 
9 0.9988* 1.0064 0.9769*** 0.9417*** 0.9635*** 0.9891*** 1.0323 1.0542 1.1204 1.3297 

12 1.0057 1.0008 0.9627*** 0.9707*** 0.9640*** 0.9785*** 1.0160 1.0703 1.1240 1.2243 
18 0.9917*** 0.9910*** 1.0213 0.9817*** 0.9783*** 0.9989* 0.9917*** 0.9918*** 0.9985** 1.0980 
24 1.0394 1.3147 1.1081 1.0582 1.0345 1.0192 1.0107 1.0186 1.0579 1.0442 

           
US 

Horizon Linear 
Quantile 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
1 0.9907*** 1.1334 1.1105 0.9950*** 1.0052 0.9661*** 0.9583*** 0.9518*** 0.9434*** 0.9894*** 
3 0.9817*** 1.1144 1.1073 1.0307 0.9946*** 0.9811*** 0.9949*** 0.8965*** 0.8889*** 0.8665*** 
6 0.9789*** 1.1636 1.1357 1.0287 1.0104 0.9926*** 0.9565*** 0.9049*** 0.9341*** 0.7939*** 
9 1.0052 1.2372 1.1513 1.0293 1.0279 1.0864 1.1258 1.1438 1.2257 1.0315 

12 1.0830 1.0107 1.0364 0.9209*** 1.5974 1.3401 1.0593 1.0440 1.0660 1.2161 
18 1.1733 0.9291*** 0.9598*** 1.1178 1.3775 1.2569 1.1599 1.0849 1.1491 1.1675 
24 1.4589 1.2233 1.3722 1.3257 1.2879 1.8856 1.3823 1.3940 1.3036 1.3293 

Note: In-sample: 1920:08-1925:07; Out-of-sample: 1925:08-2021:09; ***, ** and * indicates significance for the MSE-F 
statistic of McCracken (2007) at 1%, 5% and 10% levels respectively, whilst τ specifies the quantile; MSFEUR / MSFER 
signifies the Mean Square Forecast Error (RMSFE) ratio of the corresponding linear (ݎ௧ାଵ = ߙ + ,௧ݔߚ +  ௧ାଵ) or quantileߝ
regression (ݎ௧ାଵ = (ఛ)ߙ + ,௧ݔ(ఛ)ߚ + ௧ାଵݎ) ௧ାଵ) models over the one generated by the benchmarksߝ = ߙ + ௧ାଵݎ ௧ାଵorߝ =
(ఛ)ߙ + ,௧ାଵߝ    .(ݕ݈݁ݒ݅ݐܿ݁ݏ݁ݎ
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Table 2. Regime dependent connectedness based on STVAR model 
  Lower regime 

 CA FR DE IN IT JP ZA CH UK US OIL_UNC From 
CA 14.55 3.86 2.93 2.88 3.07 1.18 0.8 3.68 0.44 7.31 59.29 85.45 
FR 1.94 14.82 2.53 0.27 3.39 1.04 0.05 2.49 0.21 1.22 72.04 85.18 
DE 0.91 1.51 44.01 0.15 1.64 0.98 0.02 1.69 0.14 0.75 48.2 55.99 
IN 2.39 0.41 0.4 40.59 0.38 0.08 6.1 0.78 3.11 4.4 41.34 59.41 
IT 0.71 1.37 1.41 0.11 17.34 0.77 0.01 0.92 0.12 0.65 76.58 82.66 
JP 1.45 2.62 1.89 0.13 4.41 55.5 0.04 1.97 0.58 0.91 30.49 44.5 
ZA 1.5 0.11 0.09 11.99 0.03 0.04 66.15 0.4 7.16 6.97 5.55 33.85 
CH 9.36 13.39 14.63 2.41 11.08 4.02 0.5 31.03 0.6 7.51 5.46 68.97 
UK 0.17 0.47 0.13 3.04 0.53 0.51 4.73 0.06 22.67 2.42 65.28 77.33 
US 2.95 0.97 0.87 2.29 1.22 0.33 1.86 1.1 1.18 4.86 82.37 95.14 
OU 0.02 0 0 0.01 0.02 0.08 0 0.01 0 0 99.86 0.14 
To 21.41 24.72 24.88 23.27 25.78 9.03 14.13 13.1 13.54 32.14 486.62 62.6 
Net -64.04 -60.46 -31.11 -36.13 -56.88 -35.47 -19.72 -55.86 -63.79 -63 486.47  
  Upper regime 

 CA FR DE IN IT JP ZA CH UK US OIL_UNC From 
CA 1.85 0.51 0.36 0.35 0.44 0.16 0.12 0.45 0.11 0.87 94.79 98.15 
FR 0.43 3.28 0.5 0.06 0.82 0.28 0 0.56 0.1 0.4 93.56 96.72 
DE 0.31 0.5 15.4 0.17 0.61 0.15 0.02 0.57 0.04 0.23 82.01 84.6 
IN 0.41 0.1 0.08 7.97 0.14 0.02 1.09 0.15 0.46 0.76 88.84 92.03 
IT 0.24 0.48 0.48 0.11 5.59 0.31 0 0.31 0.02 0.24 92.22 94.41 
JP 0.12 0.25 0.3 0.04 0.37 4.83 0 0.19 0.04 0.09 93.76 95.17 
ZA 0.78 0.09 0.06 6.08 0.02 0.02 34.2 0.28 3.59 3.41 51.46 65.8 
CH 0.26 0.38 0.37 0.06 0.32 0.13 0.01 0.82 0.02 0.24 97.37 99.18 
UK 0.01 0.08 0.03 0.53 0.07 0.07 0.75 0.01 4.13 0.53 93.8 95.87 
US 1.57 0.57 0.48 1.24 0.76 0.16 1.03 0.61 0.61 2.61 90.37 97.39 
OU 0 0 0 0 0 0 0 0 0 0 100 0 
To 4.13 2.97 2.63 8.63 3.56 1.3 3.02 3.14 4.99 6.76 878.2 83.58 
Net -94.02 -93.74 -81.97 -83.4 -90.86 -93.87 -62.78 -96.05 -90.88 -90.63 878.2   

Note: CA: Canada; FR: France; DE: Germany; IN: India; IT: Italy; JP: Japan; ZA: South Africa; CH: Switzerland; UK: the 
United Kingdom; US: the United States. The table reports the regime dependent connectedness measures computed in 
similar manner to Diebold and Yilmaz (2012). The lag order of the STVAR models is 1 which is selected by the Bayesian 
information criterion (BIC) in a linear VAR model. The threshold variable is the oil uncertainty. Lower regime corresponds 
to regime periods below the estimated threshold (low uncertainty) while upper regime corresponds to periods above the 
threshold (high uncertainty). The STVAR smoothness and threshold parameter estimates are 44.876 and 59.709, 
respectively. Boldface denotes overall spillover index. 
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Figure 1.  Connectedness based on the STVAR model  
(a) Net connectedness without thresholding in the 

lower regime 
(b) Net connectedness without thresholding in the 

upper regime 

  
(c) Net connectedness with thresholding in the lower 

regime (d) Net connectedness with thresholding in the upper 
regime 

  
 
Note: See Notes to Table 2. Net connectedness is based on the pairwise net spillovers obtained the STVAR model estimates 
reported in Table 2. Thresholding sets values below the 75-th percentile of the spillover to zero. Darker color intensity 
indicates stronger links. 
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APPENDIX: 
Table A1. Summary statistics 
 
 Canada France Germany India Italy Japan 
Statistic CA FR DE IN IT JP 
Mean 0.206 0.394 0.187 -0.106 0.319 0.358 
S.D. 4.592 5.503 8.073 6.253 7.058 6.034 
Min -32.011 -28.017 -147.279 -64.254 -30.782 -26.279 
Max 20.589 24.256 68.264 27.690 46.811 51.287 
Skewness -1.106 -0.253 -4.717 -1.119 0.760 0.580 
Kurtosis 5.618 1.822 100.959 13.170 5.591 7.124 
JB 1852.385*** 182.403*** 521844.876*** 9063.431*** 1706.435*** 2647.451*** 
       
       

 South Africa Switzerland UK US 
Oil 

Uncertainty 
(OIL_UNC)  

Statistic ZA CH UK US OU  
Mean 0.040 0.159 0.024 0.310 70.975  
S.D. 5.954 4.374 5.165 4.406 165.337  
Min -31.650 -28.479 -34.430 -30.753 1.008  
Max 27.201 28.778 36.116 41.484 2536.770  
Skewness -0.048 -0.510 -0.178 -0.465 7.922  
Kurtosis 3.156 4.988 6.059 11.969 89.223  
JB 507.507*** 1317.739*** 1872.398*** 7319.968*** 416781.610***  

Note: Table reports the descriptive statistics on the stock log-returns of Canada (CA), France (FR), Germany (DE), India (IN), Italy (IT), Japan (JP), South Africa (ZA), Switzerland 
(CH), the UK, the US, and the oil price uncertainty based on the GARCH(1,1,)-based volatility estimate of the WTI oil log-returns series. Along with the mean, standard deviation 
(SD), minimum and maximum values, skewness, and excess kurtosis, the table includes the Jarque-Bera test of normality (JB).
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Table A2. BDS test results 
Canada (CA) 

Horizon 
m 

2 3 4 5 6 
1 5.4804*** 7.2432*** 7.7305*** 8.0552*** 8.3996*** 
3 30.0470*** 29.8887*** 30.0940*** 30.5043*** 31.2106*** 
6 48.8757*** 49.5146*** 50.2101*** 51.8332*** 54.7206*** 
9 59.7664*** 61.5225*** 63.5063*** 66.8864*** 71.8290*** 

12 66.6430*** 69.3991*** 72.3594*** 76.7925*** 83.0177*** 
18 73.4330*** 77.3927*** 81.6248*** 87.7516*** 96.1108*** 
24 73.9455*** 77.8864*** 82.5771*** 89.3594*** 98.4716*** 

      
France (FR) 

Horizon 
m 

2 3 4 5 6 
1 6.3620*** 7.2471*** 7.9322*** 8.4771*** 9.2419*** 
3 32.0595*** 31.0787*** 31.0264*** 31.4570*** 32.2572*** 
6 50.4667*** 50.4568*** 50.7707*** 52.1863*** 54.5124*** 
9 60.2360*** 62.0011*** 63.7013*** 66.6309*** 70.9955*** 

12 71.1355*** 74.1394*** 77.2470*** 81.9037*** 88.3707*** 
18 78.0588*** 82.0287*** 86.4896*** 92.8287*** 101.4192*** 
24 84.1488*** 89.0199*** 94.7484*** 102.8983*** 113.8628*** 

      
Germany (DE) 

Horizon 
m 

2 3 4 5 6 
1 -0.0304 -0.0408 -0.0489 -0.0558 -0.0619 
3 22.1413*** 19.8431*** 17.8224*** 16.2627*** 15.0398*** 
6 49.1776*** 49.8417*** 50.7371*** 52.9877*** 56.5639*** 
9 57.4173*** 59.4958*** 61.9414*** 65.7028*** 70.9413*** 

12 64.2860*** 67.0138*** 70.1761*** 75.0193*** 81.7098*** 
18 65.8235*** 69.5390*** 73.6751*** 79.6903*** 87.8614*** 
24 68.1973*** 72.3469*** 77.2291*** 84.2390*** 93.6809*** 

      
India (IN) 

Horizon 
m 

2 3 4 5 6 
1 6.6610*** 7.8605*** 8.7403*** 9.7294*** 10.8895*** 
3 34.2447*** 33.4717*** 33.1863*** 33.8146*** 35.2266*** 
6 55.9590*** 56.5965*** 57.3946*** 59.3295*** 62.5465*** 
9 68.4950*** 70.3921*** 72.5318*** 75.9896*** 81.2207*** 

12 82.4923*** 85.7183*** 89.1765*** 94.5480*** 102.2504*** 
18 100.5006*** 105.5870*** 111.3451*** 119.6967*** 130.9977*** 
24 101.6299*** 107.1692*** 113.8164*** 123.5633*** 136.7903*** 
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Italy (IT) 

Horizon 
m 

2 3 4 5 6 
1 8.1219*** 9.9043*** 11.8050*** 12.9516*** 14.0496*** 
3 31.1155*** 31.2116*** 32.0832*** 33.2771*** 34.8462*** 
6 45.0681*** 46.1790*** 47.1035*** 49.0987*** 52.1795*** 
9 52.6023*** 54.2944*** 56.5492*** 60.0800*** 64.952*** 

12 58.6007*** 61.2763*** 64.2609*** 68.9322*** 75.3187*** 
18 65.6667*** 68.8835*** 72.6163*** 78.1481*** 85.6733*** 
24 72.3672*** 76.4420*** 81.2412*** 88.1203*** 97.4060*** 

      
Japan (JP) 

Horizon 
m 

2 3 4 5 6 
1 7.7895*** 10.5237*** 12.3909*** 13.5504*** 14.7601*** 
3 32.6978*** 33.0664*** 33.4913*** 34.4981*** 36.0140*** 
6 46.1696*** 47.9324*** 49.0691*** 51.0530*** 54.0522*** 
9 56.6341*** 59.0716*** 61.5812*** 65.3488*** 70.3983*** 

12 64.5106*** 67.6304*** 71.1540*** 76.2769*** 83.1049*** 
18 70.9028*** 75.1158*** 79.5581*** 85.7982*** 94.2258*** 
24 72.6994*** 77.0989*** 82.1197*** 89.3549*** 99.0218*** 

      
South Africa (ZA) 

Horizon 
m 

2 3 4 5 6 
1 8.2964*** 9.4845*** 10.8520*** 11.6503*** 12.7213*** 
3 34.1471*** 33.4270*** 33.7088*** 34.5045*** 35.8966*** 
6 57.9810*** 58.3660*** 58.8450*** 60.6053*** 63.7685*** 
9 72.9328*** 75.2876*** 77.8432*** 81.9912*** 87.8248*** 

12 80.7393*** 84.4037*** 88.4145*** 94.6587*** 103.1594*** 
18 83.4895*** 88.1933*** 93.5529*** 101.3645*** 111.9483*** 
24 92.3261*** 97.6548*** 103.8140*** 112.8047*** 125.0195*** 

      
Switzerland (CH) 

Horizon 
m 

2 3 4 5 6 
1 7.4940*** 7.8755*** 9.0694*** 9.7816*** 10.7581*** 
3 31.9384*** 30.7749*** 30.6713*** 31.4211*** 32.7586*** 
6 49.7216*** 50.8735*** 52.0055*** 54.1263*** 57.3040*** 
9 63.0756*** 65.3880*** 67.7258*** 71.4613*** 76.8146*** 

12 71.2159*** 74.5311*** 78.1453*** 83.4362*** 90.5305*** 
18 83.8940*** 88.6358*** 94.0200*** 101.6712*** 111.9015*** 
24 85.7254*** 90.8166*** 96.7568*** 105.1647*** 116.4791*** 
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UK 

Horizon 
m 

2 3 4 5 6 
1 7.3849*** 9.5479*** 10.6744*** 11.9226*** 12.6929*** 
3 26.9010*** 27.2498*** 27.9282*** 28.9153*** 30.2618*** 
6 41.1060*** 41.7911*** 42.3479*** 43.6310*** 45.9965*** 
9 48.1450*** 49.6972*** 51.4142*** 54.0192*** 57.7359*** 

12 52.6877*** 54.8292*** 57.1575*** 60.8198*** 65.7464*** 
18 62.3997*** 65.7829*** 69.4332*** 74.7400*** 81.8649*** 
24 65.9381*** 69.7089*** 73.9110*** 79.8362*** 87.8560*** 

      
US 

Horizon 
m 

2 3 4 5 6 
1 7.2639*** 8.4353*** 9.4870*** 10.3174*** 11.2059*** 
3 33.4457*** 33.8675*** 34.6486*** 35.9221*** 37.9822*** 
6 50.0905*** 50.9738*** 52.1340*** 54.4882*** 58.1975*** 
9 58.4171*** 60.6130*** 63.3531*** 67.6082*** 73.4821*** 

12 65.5209*** 68.5206*** 71.9698*** 77.0623*** 84.1272*** 
18 69.3140*** 72.9984*** 77.4758*** 83.9991*** 92.7723*** 
24 71.3134*** 75.2479*** 80.0222*** 86.9867*** 96.3795*** 

Note: m stands for the number of (embedded) dimension which embed the time series into m-dimensional vectors, by taking 
each m successive points in the series; Test applied to residuals of Eq. (1): ݎ௧ାଵ = ߙ + ,௧ݔߚ +  ௧ାଵ;  entries correspond toߝ
the null hypothesis of i.i.d. residuals based on the z-statistic of the BDS (Brock et al., 1996) test.    
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Table A3. Multiple structural break test results  
Canada (CA) 

Horizon Dates 
1 1940M12, 1956M08, 1975M01 
3  
6  
9 1937M07, 1952M11, 1967M11, 1982M11, 2000M11 
12 1937M09, 1957M02, 1975M08, 1990M10, 2006M09 
18 1937M08, 1957M02, 1975M11, 1990M10, 2006M11 
24 1937M09, 1952M07, 1967M05, 1983M08, 2001M06 
  

France (FR) 
Horizon Dates 

1 1939M10, 1962M05 
3 1939M11, 1962M06 
6 1940M02, 1962M06 
9 1940M04, 1960M06, 1975M06, 1990M06, 2006M10 
12 1940M06, 1960M09, 1975M09, 1990M09, 2006M10 
18 1940M12, 1960M12, 1975M11, 1990M10, 2006M11 
24 1940M06, 1961M02, 1975M12, 1990M10, 2006M12 

 
Germany (DE) 

Horizon Dates 
1 1935M10, 1950M12, 1966M03, 1982M09, 2000M03 
3 1935M11, 1951M01, 1966M04, 1982M09, 2000M05 
6 1936M02, 1951M03, 1966M04, 1982M11, 2000M06 
9 1936M04, 1951M04, 1966M04, 1982M12, 2000M09 
12 1936M07, 1951M07, 1966M07, 1982M12, 2000M11 
18 1950M01, 1964M12, 1983M02, 2001M02 
24 1950M07, 1965M05, 1982M12, 2000M11 
  

India (IN) 
Horizon Dates 

1 1940M12, 1956M04, 1976M07, 1991M08, 2006M09 
3 1940M12, 1956M05, 1976M07, 1991M08, 2006M09 
6 1941M03, 1956M08, 1976M07, 1991M08, 2006M09 
9 1941M06, 1956M09, 1975M10, 1990M10, 2005M10 
12 1947M07, 1968M03, 1987M05, 2002M06 
18 1948M01, 1969M01, 1986M04, 2002M04 
24 1948M05, 1977M05, 1995M09 
  

Italy (IT) 
Horizon Dates 

1  
3  
6 1939M06, 1961M07, 1978M05 
9 1939M06, 1960M10, 1975M10, 1990M10, 2006M10 
12 1939M07, 1960M10, 1975M10, 1990M10, 2006M10 
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18 1939M10, 1960M12, 1975M11, 1990M10, 2006M11 
24 1939M11, 1962M06, 1979M02, 2001M02 
  

Japan (JP) 
Horizon Dates 

1  
3  
6 1944M12, 1960M01, 1975M02, 1990M03, 2005M04 
9 1945M04, 1960M04, 1975M04, 1990M04, 2005M05 
12 1945M07, 1960M07, 1975M07, 1990M07, 2005M07 
18 1947M12, 1962M11, 1989M10, 2004M09 
24 1948M01, 1962M11, 1990M02, 2004M12 
  

South Africa (ZA) 
Horizon Dates 

1 1940M06, 1974M02 
3 1941M05, 1956M09, 1974M04, 1991M07, 2006M09 
6 1941M05, 1961M09, 1981M01, 2000M10 
9 1941M05, 1961M11, 1981M02, 2001M01 
12 1947M05, 1962M05, 1981M05, 2001M03 
18 1947M10, 1962M09, 1981M11, 2001M02 
24 1948M06, 1963M04, 1982M02, 2000M12 
  

Switzerland (CH) 
Horizon Dates 

1 1945M04, 1962M03, 1982M08, 1998M08 
3 1945M05, 1962M04, 1982M09, 1998M08 
6 1945M08, 1962M05, 1982M11, 1998M08 
9 1945M09, 1962M05, 1982M11, 1998M09 
12 1939M01, 1962M05, 1982M12, 2001M03 
18 1939M06, 1962M07, 1983M02, 1999M07 
24 1939M06, 1962M10, 1983M07, 2000M01 
  

UK 
Horizon Dates 

1 1941M08, 1956M12, 1974M04, 1990M12, 2006M09 
3 1941M06, 1967M05, 1982M09 
6 1941M10, 1957M01, 1975M01, 1991M04, 2006M09 
9 1941M10, 1956M12, 1975M01, 1991M04, 2006M10 
12 1941M07, 1957M01, 1975M01, 1990M01, 2006M10 
18 1941M10, 1957M03, 1975M04, 1990M03, 2006M11 
24 1941M09, 1957M03, 1975M01, 1989M11, 2006M12 
  

US 
Horizon Dates 

1  
3  
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6 1937M04, 1952M05, 1967M08, 1982M09, 1999M09 
9 1937M05, 1952M07, 1967M11, 1982M11, 2000M08 
12 1937M06, 1952M06, 1968M01, 1983M01, 2000M04 
18 1937M05, 1952M04, 1967M03, 1983M02, 2000M09 
24 1937M09, 1952M07, 1967M05, 1983M04, 2000M11 

Note: Test applied to Eq. (1): ݎ௧ାଵ = ߙ + ,௧ݔߚ +  ௧ାଵ;  entries correspond to the break dates based on Bai and Perronߝ
(2003) tests of multiple structural breaks.    
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Table A4. Alternative forecasting results 
Canada (CA) 

Horizon Linear 
Quantile 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
1 1.0096 1.0539 1.0207 1.0063 1.0056 1.0692 1.0225 1.0565 1.0541 1.0681 
3 1.1653 0.9834*** 1.0260 1.0137 1.1749 1.1579 1.3767 1.1520 1.0041 1.1533 
6 1.0695 3.6724 2.8853 1.5703 1.0828 1.0428 0.9909*** 1.0160 1.7642 2.5774 
9 1.0097 1.0775 1.0009 1.0102 1.0289 1.0012 1.0055 1.0082 1.0198 1.1721 

12 1.0426 1.1246 1.0181 0.9767*** 1.0041 0.9960*** 1.0777 1.0577 1.0481 1.0280 
18 1.0415 0.9319*** 1.0219 0.9984** 1.0093 1.0224 1.0306 1.0739 0.9909*** 0.9967** 
24 1.1414 1.1748 1.0304 1.2822 1.0970 1.0810 1.0539 1.0424 0.9874*** 0.9849*** 

           
France (FR) 

Horizon Linear 
Quantile 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
1 1.0313 1.0527 1.0000 1.0215 1.0231 1.1059 1.0470 1.0838 1.1175 1.1217 
3 1.1494 0.9469*** 0.9420*** 1.1186 1.1266 1.1617 1.1589 1.0852 1.1215 1.0157 
6 1.0095 1.0188 0.9864*** 1.0475 1.0057 1.0044 1.0184 0.9977** 0.9696*** 1.0002 
9 1.0015 1.0973 1.0783 1.0000 0.9929*** 0.9913*** 1.0098 0.9977** 0.9986** 1.1446 

12 0.9937*** 1.0030 0.9432*** 0.9674*** 1.0113 1.0188 0.9883*** 0.9917*** 1.0205 1.0648 
18 1.0137 0.9867*** 1.1046 1.0585 1.0279 1.0175 1.0282 0.9880*** 1.1046 0.9785*** 
24 1.3594 1.1084 1.0417 1.5507 1.3332 1.3228 1.3951 1.4304 1.2986 2.5698 

           
Germany (DE) 

Horizon Linear 
Quantile 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
1 1.0279 1.1018 0.9898*** 1.0360 1.0204 1.0448 1.1372 1.0048 1.1026 1.0208 
3 1.1151 0.9379*** 1.0549 1.2953 1.1239 1.1144 1.0876 1.0256 1.0308 1.0686 
6 1.0230 1.0046 0.9894*** 1.0064 1.0024 1.0043 1.0321 1.0120 1.0740 1.0010 
9 1.0030 1.2079 0.9989* 1.0230 1.0217 0.9938*** 0.9912*** 0.9995 1.0267 0.9872*** 

12 0.9980** 1.0389 0.9968** 1.0012 0.9947*** 0.9985** 0.9969** 1.0231 0.9805*** 1.0071 
18 1.0313 0.9988* 1.0337 1.0673 1.0675 1.0283 1.0253 1.0513 0.9915*** 0.9369*** 
24 1.9997 1.2953 1.3754 1.6164 1.7809 2.1678 2.3916 2.3820 3.2277 4.1536 

           
India (IN) 

Horizon Linear 
Quantile 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
1 1.0978 1.4814 1.0274 1.2574 1.1813 1.1473 1.1468 1.0286 1.1446 1.0188 
3 1.0085 1.0727 1.0415 1.4281 1.1178 1.0832 0.9824*** 0.9711*** 1.0006 1.0187 
6 1.0248 1.0924 0.9995 1.0007 1.0071 1.0155 1.0914 1.0631 1.0370 0.9494*** 
9 1.0184 1.0396 1.0065 1.0293 1.0306 0.9973** 0.9981** 0.9995 0.9757*** 1.1052 

12 0.9998 1.0349 0.9828*** 0.9998 1.0011 1.0048 1.0216 0.9920*** 0.9639*** 1.0069 
18 1.0422 0.9695*** 0.9801*** 1.0793 1.1084 1.0888 1.1171 1.0380 0.9846*** 1.0141 
24 1.0024 1.0503 0.9541*** 1.0345 1.0017 1.0018 1.0207 1.0009 1.0319 1.0166 
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Italy (IT) 

Horizon Linear 
Quantile 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
1 1.1823 0.7720*** 1.1620 1.5118 1.4267 1.2264 1.1427 1.1004 1.1092 1.0123 
3 1.1822 1.0281 1.7459 1.4004 1.3863 1.0002 1.0119 0.9681*** 1.0874 1.0138 
6 1.0074 0.8750*** 1.0080 1.0002 1.0014 0.9872*** 1.0717 1.0194 1.0022 1.0442 
9 1.2124 1.0220 1.1897 1.1015 1.0460 1.0197 1.1358 1.4979 1.2484 1.3853 

12 1.0000 1.0521 1.0373 0.9943*** 1.0061 0.9979** 1.0209 1.0349 1.0578 1.1765 
18 1.0291 1.0006 1.0080 1.0531 1.0765 1.1013 1.0739 1.0585 1.0108 0.9812*** 
24 1.0053 1.0635 1.0201 1.0394 1.0173 1.0704 1.0097 0.9958*** 1.0163 1.0753 

           
Japan (JP) 

Horizon Linear 
Quantile 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
1 1.2420 0.9940*** 1.2484 1.7484 1.6886 1.3154 1.1184 1.0560 1.0853 1.0603 
3 1.2625 1.7774 1.7937 1.0878 1.0151 1.0109 1.0547 1.1246 1.0573 1.1131 
6 1.0223 0.9873*** 1.0180 1.0746 1.0076 1.0391 1.0806 1.0392 0.9947*** 1.0003 
9 1.0012 1.0090 1.0027 1.0031 1.0031 1.0054 0.9999 1.0020 1.0002 1.0206 

12 0.9974** 1.0620 1.0324 0.9806*** 1.0010 0.9980** 1.0126 1.0178 1.0751 1.1429 
18 1.0002 1.5033 1.0417 1.0012 1.0367 1.1547 1.0448 0.9856*** 0.9976** 1.0058 
24 1.0025 1.1077 1.0006 1.0076 1.1255 1.0761 1.0774 1.0424 1.0013 0.9898*** 

           
South Africa (ZA) 

Horizon Linear 
Quantile 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
1 1.4650 0.9945*** 1.8966 2.1014 1.9733 1.8073 1.9312 1.2950 1.0204 0.9817*** 
3 1.0708 1.4051 1.3542 1.1024 0.9813*** 1.0104 1.0200 1.0921 1.0107 1.0261 
6 0.9947*** 1.0304 1.0222 0.9977** 1.0135 0.9369*** 0.9627*** 1.0376 1.0192 1.0136 
9 0.9999 1.0205 1.0358 0.9965*** 1.0090 0.9984** 1.0001 1.0009 0.9941*** 1.0138 

12 1.0070 1.0895 0.9975** 0.9957*** 0.9749*** 0.9918*** 1.0050 0.9994* 1.0011 0.9736*** 
18 1.0216 1.0691 1.1364 1.0466 1.0634 1.0373 1.0168 1.0039 0.9895*** 1.0167 
24 1.0402 1.1938 1.0024 1.0669 1.1141 1.1288 1.1311 1.1342 0.9889*** 1.0083 

           
Switzerland (CH) 

Horizon Linear 
Quantile 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
1 1.0279 1.0496 1.0018 1.0119 1.0090 0.9998 1.0692 1.1040 1.1118 1.1047 
3 0.9998 1.2222 1.1021 1.0053 1.0216 1.1108 1.0138 0.8667*** 1.0533 1.0154 
6 1.0565 0.9798*** 1.0370 1.0100 0.9812*** 1.1639 1.1867 1.0328 1.0160 1.0183 
9 1.0301 1.1459 1.0247 1.0025 1.0043 1.0047 1.0113 1.0100 1.0238 1.0247 

12 1.0419 0.9803*** 0.9976** 1.0122 1.0058 1.1001 1.0572 1.0242 1.0173 0.9930*** 
18 1.0600 1.0691 1.0739 1.1491 1.0879 1.0784 1.0828 1.0381 0.9783*** 1.0375 
24 1.0990 0.9874*** 0.9947*** 1.1388 1.2852 1.2089 1.1239 1.0596 1.0010 1.1398 
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UK 

Horizon Linear 
Quantile 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
1 1.0434 1.0109 1.0136 1.0100 0.9996 1.0531 1.0868 1.2331 1.1611 1.0767 
3 1.0323 1.4793 1.0448 1.0267 1.0649 1.0963 1.0343 0.9485*** 0.9670*** 0.9797*** 
6 1.0012 1.2523 1.0781 1.0078 1.0069 1.0031 1.0022 0.9990* 1.0072 1.1252 
9 1.0847 1.0446 1.0154 1.0109 1.0584 1.0510 1.0718 1.0722 1.0875 1.0844 

12 1.3548 1.2745 1.2623 1.3162 1.3016 1.2363 1.2374 1.1294 1.0468 1.0564 
18 1.0766 1.1655 1.0600 1.0944 1.1366 1.1212 1.0326 1.0043 1.0045 1.0186 
24 1.1771 1.0165 1.4577 1.2638 1.1698 1.1418 1.2222 1.1263 1.0788 0.9917*** 

           
US 

Horizon Linear 
Quantile 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
1 1.0497 1.0348 1.0002 0.9872*** 0.9995 1.1256 1.0973 1.1177 1.1432 1.0528 
3 1.3280 0.9840*** 1.3684 1.0353 1.0276 1.0337 1.0000 2.7862 1.4646 1.3231 
6 1.0004 1.0385 0.9756*** 0.9718*** 0.9942*** 1.0033 1.0291 1.0555 1.0440 1.0169 
9 1.0755 0.9941*** 0.9895*** 0.9877*** 1.0202 1.0466 1.0866 1.0581 1.0790 1.0206 

12 1.0067 1.0155 1.0299 1.0278 1.0109 1.0037 0.9989* 0.9788*** 1.0072 1.0008 
18 1.0942 1.1269 1.1496 1.1291 1.1904 1.0899 1.0626 1.0094 1.0057 1.0084 
24 1.4691 1.8355 1.9966 1.5954 1.4648 1.3589 1.2509 1.2500 1.2216 1.0107 

Note: See Note to Table 1. In-sample: 1920:08-1930:07; Out-of-sample: 1930:08-2021:09.  
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Table A5. Regime dependent connectedness based on TVAR model 
 

 Lower regime 
 CA FR DE IN IT JP ZA CH UK US OIL_UNC From 

CA 26.75 7.13 5.38 5.24 5.59 2.09 1.48 6.80 0.79 13.46 25.29 73.25 FR 3.28 24.97 4.25 0.44 5.70 1.71 0.09 4.20 0.34 2.06 52.95 75.03 DE 1.49 2.48 71.54 0.24 2.63 1.49 0.04 2.75 0.23 1.24 15.88 28.46 IN 2.16 0.37 0.35 36.20 0.33 0.08 5.44 0.68 2.73 3.90 47.76 63.80 IT 0.96 1.88 1.95 0.14 23.71 1.04 0.01 1.26 0.16 0.89 67.98 76.29 JP 1.84 3.31 2.41 0.16 5.59 69.87 0.06 2.48 0.72 1.15 12.41 30.13 ZA 1.63 0.11 0.09 11.89 0.04 0.04 65.67 0.42 7.13 6.96 6.03 34.33 CH 6.16 8.74 9.54 1.54 7.16 2.63 0.33 20.06 0.38 4.88 38.59 79.94 UK 0.15 0.45 0.13 2.85 0.52 0.48 4.43 0.06 21.22 2.26 67.45 78.78 US 4.64 1.53 1.36 3.52 1.90 0.47 2.90 1.71 1.83 7.59 72.55 92.41 OU 0.01 0.01 0.01 0.01 0.03 0.08 0.01 0.00 0.00 0.00 99.85 0.15 To 22.33 26.00 25.49 26.02 29.49 10.10 14.78 20.37 14.31 36.80 406.88 57.51 Net -50.91 -49.03 -2.97 -37.78 -46.80 -20.03 -19.55 -59.57 -64.47 -55.61 406.73  
 Upper regime 

 CA FR DE IN IT JP ZA CH UK US OIL_UNC From 
CA 2.20 0.61 0.43 0.40 0.51 0.19 0.13 0.55 0.13 1.05 93.80 97.80 FR 0.48 3.58 0.55 0.07 0.89 0.31 0.01 0.62 0.10 0.45 92.96 96.42 DE 0.37 0.61 18.72 0.20 0.73 0.18 0.02 0.69 0.04 0.28 78.16 81.28 IN 0.37 0.09 0.07 7.21 0.12 0.02 0.99 0.14 0.42 0.69 89.88 92.79 IT 0.25 0.51 0.47 0.11 6.04 0.32 0.00 0.32 0.03 0.26 91.70 93.96 JP 0.16 0.33 0.36 0.04 0.49 6.40 0.00 0.25 0.05 0.11 91.80 93.60 ZA 0.57 0.09 0.04 4.87 0.02 0.03 27.08 0.20 2.88 2.70 61.52 72.92 CH 0.31 0.44 0.44 0.07 0.38 0.15 0.02 0.99 0.03 0.29 96.88 99.01 UK 0.01 0.09 0.04 0.60 0.08 0.08 0.82 0.01 4.53 0.54 93.20 95.47 US 2.03 0.76 0.62 1.59 0.98 0.20 1.34 0.79 0.79 3.40 87.51 96.60 OU 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00 To 4.55 3.53 3.01 7.95 4.21 1.46 3.33 3.55 4.47 6.36 877.42 83.62 Net -93.25 -92.89 -78.27 -84.83 -89.75 -92.14 -69.58 -95.46 -91.00 -90.24 877.42  

Note: See Note to Table A1. The table reports the regime dependent connectedness measures computed in similar manner to 
Diebold and Yilmaz (2012). The lag order of the TVAR models is 1 which is selected by the Bayesian information criterion 
(BIC) in a linear VAR model. The threshold variable is the oil uncertainty. Lower regime corresponds to regime periods below 
the estimated threshold (low uncertainty) while upper regime corresponds to periods above the threshold (high uncertainty). 
The TVAR threshold parameter estimate is 55.961. Boldface denotes overall spillover index.  
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Table A6. Regime dependent connectedness based on MSVAR model 
 

 Regime 1 
 CA FR DE IN IT JP ZA CH UK US OIL_UNC From 

CA 83.24 0.21 0.04 0.07 0.21 0.01 0.64 1.47 0.18 8.58 5.33 16.76 FR 1.61 58.10 0.13 0.05 0.90 0.02 0.12 9.52 0.22 0.57 28.76 41.90 DE 1.16 0.00 55.40 0.09 2.67 0.18 0.54 0.59 0.62 1.99 36.77 44.60 IN 0.05 0.03 0.80 35.89 0.04 0.01 0.00 0.65 0.22 0.18 62.13 64.11 IT 1.19 0.00 0.13 0.01 88.78 2.07 0.67 2.13 0.01 0.22 4.78 11.22 JP 0.20 0.07 0.10 0.71 0.91 50.52 0.18 1.26 0.89 4.86 40.30 49.48 ZA 0.14 0.06 0.03 0.17 0.02 0.08 31.56 0.00 0.24 0.14 67.56 68.44 CH 1.80 0.03 0.02 0.10 0.12 0.00 0.20 94.26 0.07 0.82 2.58 5.74 UK 7.07 0.02 0.38 4.45 0.49 0.26 0.24 0.16 55.44 10.80 20.68 44.56 US 5.68 0.02 0.01 0.28 0.02 0.03 0.03 2.85 1.02 37.80 52.25 62.20 OU 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 99.99 0.01 To 18.90 0.45 1.65 5.93 5.40 2.67 2.62 18.62 3.47 28.18 321.13 37.18 Net 2.15 -41.45 -42.95 -58.18 -5.82 -46.81 -65.82 12.88 -41.09 -34.02 321.12  
 Regime 2 

 CA FR DE IN IT JP ZA CH UK US OIL_UNC From 
CA 18.84 0.03 0.03 0.13 0.01 0.06 1.62 2.49 0.01 0.16 76.63 81.16 FR 0.92 9.37 0.05 0.01 0.67 0.21 0.97 0.17 0.00 0.48 87.16 90.63 DE 1.14 0.04 23.32 0.52 0.01 0.55 3.17 9.05 1.48 3.28 57.43 76.68 IN 5.83 0.64 0.06 49.80 0.14 0.52 7.67 0.17 3.49 14.80 16.89 50.20 IT 28.46 4.85 2.62 0.24 26.22 10.02 0.62 0.31 1.62 10.91 14.13 73.78 JP 3.87 0.56 4.10 0.38 0.35 23.42 1.30 4.52 0.21 31.14 30.15 76.58 ZA 0.34 0.40 0.00 0.56 0.02 0.23 13.32 0.76 1.62 2.23 80.51 86.68 CH 2.03 0.27 0.07 0.03 0.06 0.02 6.65 63.14 0.31 2.50 24.91 36.86 UK 19.76 2.31 0.02 0.31 0.44 0.05 4.82 6.48 34.87 6.61 24.34 65.13 US 6.10 0.03 0.01 0.11 0.01 0.52 2.11 4.74 1.10 23.65 61.62 76.35 OU 0.04 0.01 0.00 0.05 0.02 0.02 0.02 0.01 0.11 0.06 99.66 0.34 To 68.50 9.13 6.97 2.35 1.72 12.19 28.94 28.69 9.95 72.18 473.76 64.94 Net -12.66 -81.50 -69.71 -47.85 -72.06 -64.39 -57.74 -8.17 -55.18 -4.17 473.42  

Note: See Notes to Table A1. The table reports the regime dependent connectedness measures computed in similar manner to 
Diebold and Yilmaz (2012). The lag order of the MSVAR models is 1 which is selected by the Bayesian information criterion 
(BIC) in a linear VAR model. Regime 1 corresponds to lower variance (low uncertainty) estimates while upper Regime 2 
corresponds to higher variance (high uncertainty) estimates. Boldface denotes overall spillover index.  
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Table A7. Regime dependent connectedness based on QVAR model 
 

 The 0.10-th quantile of oil uncertainty 
 CA FR DE IN IT JP ZA CH UK US OIL_UNC From 

CA 43.17 8.03 2.70 4.29 3.82 1.88 1.59 11.86 0.42 22.18 0.05 56.83 FR 9.78 53.01 3.97 0.64 7.10 3.01 0.11 15.01 0.91 6.44 0.01 46.99 DE 4.42 5.14 71.77 0.45 3.66 1.12 0.07 9.80 0.13 3.41 0.02 28.23 IN 5.74 0.86 0.77 61.60 0.63 0.29 10.11 2.13 5.22 12.57 0.09 38.40 IT 5.44 8.40 3.22 0.44 64.02 3.63 0.04 8.80 0.54 5.43 0.03 35.98 JP 3.79 4.60 1.46 0.10 4.53 76.43 0.05 5.91 0.82 2.30 0.01 23.57 ZA 2.04 0.11 0.06 10.48 0.04 0.03 64.76 0.55 8.83 13.03 0.08 35.24 CH 12.64 12.41 5.91 1.78 6.19 3.21 0.50 47.34 0.16 9.79 0.05 52.66 UK 2.98 1.38 0.58 6.44 0.77 0.80 9.97 1.25 63.92 11.88 0.04 36.08 US 20.44 5.10 2.13 8.32 3.79 1.02 7.48 9.15 5.50 37.03 0.04 62.97 OU 0.05 0.01 0.00 0.00 0.05 0.00 0.01 0.10 0.05 0.01 99.73 0.27 To 67.32 46.04 20.80 32.95 30.58 15.00 29.93 64.54 22.59 87.04 0.42 37.93 Net 10.49 -0.95 -7.43 -5.45 -5.39 -8.57 -5.30 11.88 -13.50 24.07 0.15  
 The 0.90-th quantile of oil uncertainty 

 CA FR DE IN IT JP ZA CH UK US OIL_UNC From 
CA 19.21 11.79 6.23 3.22 9.45 8.73 4.50 12.71 5.31 15.22 3.63 80.79 FR5 11.35 19.54 6.43 5.14 10.31 9.16 6.37 12.89 7.57 10.16 1.07 80.46 DE 5.04 5.03 11.88 4.76 4.05 4.67 4.31 5.82 3.76 4.55 46.12 88.12 IN 5.39 6.59 5.57 21.46 6.29 7.80 12.03 6.38 10.03 3.93 14.52 78.54 IT 9.40 10.21 6.13 5.13 18.95 8.69 5.98 10.30 6.72 9.06 9.44 81.05 JP 9.93 10.31 6.02 6.41 9.82 21.70 7.41 10.61 7.89 8.99 0.90 78.30 ZA 7.73 8.76 5.81 11.54 7.36 8.34 20.16 8.62 11.05 5.38 5.26 79.84 CH 12.65 12.10 7.80 4.09 9.92 9.18 5.34 19.76 6.47 11.61 1.08 80.24 UK 6.84 9.25 4.74 11.06 8.40 8.80 12.46 8.07 24.74 3.11 2.51 75.26 US 16.22 11.41 6.65 2.64 9.98 8.82 3.01 13.25 3.88 19.57 4.58 80.43 OU 3.79 3.58 6.52 4.77 2.68 3.75 4.02 4.14 3.14 3.41 60.21 39.79 To 88.34 89.05 61.90 58.76 78.26 77.93 65.43 92.78 65.83 75.42 89.12 76.62 Net 7.55 8.59 -26.22 -19.77 -2.79 -0.37 -14.41 12.54 -9.43 -5.01 49.33  

Note: See Notes to Table A1. The table reports the regime dependent connectedness measures computed in similar manner to 
Diebold and Yilmaz (2012). The lag order of the QVAR models is 1 which is selected by the Bayesian information criterion 
(BIC) in a linear VAR model. Boldface denotes overall spillover index.  
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Figure A1.  Stock returns and oil uncertainty series 
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Figure A2.  Full-sample quantiles-based response of stock returns to oil price uncertainty 
(OIL_UNC) 
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