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Abstract: In this paper we want to shed some light on what we mean by backward induction

and forward induction reasoning in dynamic games. To that purpose, we take the concepts of

common belief in future rationality (Perea [1]) and extensive form rationalizability (Pearce

[2], Battigalli [3], Battigalli and Siniscalchi [4]) as possible representatives for backward

induction and forward induction reasoning. We compare both concepts on a conceptual,

epistemic and an algorithm level, thereby highlighting some of the crucial differences

between backward and forward induction reasoning in dynamic games.

Keywords: epistemic game theory; backward induction; forward induction; algorithms

1. Introduction

The ideas of backward induction and forward induction play a prominent role in the literature on

dynamic games. Often, terms like backward and forward induction reasoning, and backward and forward

induction concepts, are used to describe a particular pattern of reasoning in such games. But what exactly

do we mean by backward induction and forward induction?

The literature offers no precise answer here. Only for the class of dynamic games with perfect

information there is a clear definition of backward induction (based on Zermelo [5]), but otherwise

there is no consensus on how to precisely formalize backward and forward induction. In fact, various

authors have presented their own, personal interpretation of these two ideas. Despite this variety, there

seems to be a common message in the authors’ definitions of backward and forward induction, which

can be described as follows:
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Backward induction represents a pattern of reasoning in which a player, at every stage of the

game, only reasons about the opponents’ future behavior and beliefs, and not about choices

that have been made in the past. So, he takes the opponents’ past choices for granted, but

does not draw any new conclusions from these.

In contrast, forward induction requires a player, at every stage, to think critically about the

observed past choices by his opponents. He should always try to find a plausible reason

for why his opponents have made precisely these choices in the past, and he should use

this to possibly reconsider his belief about the opponents’ future, present, and unobserved

past choices.

In order to illustrate these two ideas, let us consider the game in Figure 1. So, at the beginning of

the game, ∅, player 1 chooses between a and b. If he chooses b, the game ends and the players’ utilities

are 3 and 0. If he chooses a, the game moves to information set h1 where players 1 and 2 simultaneously

choose from {c, d} and {e, f, g} respectively.

Figure 1. Backwards induction and forward induction may lead to opposite choices.
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If player 1 believes that player 2 chooses rationally, then he anticipates that player 2 will not choose

g, and will therefore choose b at the beginning. But suppose now that the game actually reaches h1, and

that player 2 must make a choice there. What should player 2 believe or do at h1?

According to backward induction, player 2 should at h1 only reason about player 1’s behavior and

beliefs at h1, and take his past choice a for granted. In that case, it is reasonable for player 2 to believe

that player 1 still believes that player 2 will not choose g. Hence, player 2 will expect player 1 to choose

c at h1, and player 2 would thus go for strategy e.

According to forward induction, player 2 should at h1 try to make sense of player 1’s past choice a.

So, what reason could player 1 have to choose a, and not b, at the beginning? The only plausible reason

could be that player 1 actually believed that player 2, with sufficiently high probability, would choose g.

But if that were the case, then player 2 must conclude at h1 that player 1 will choose d there, since that

is his only chance to obtain more than 3. So, player 2 should then go for f, and not e.

So we see that backward and forward induction lead to opposite choices for player 2 in this game:

backward induction leads to e, whereas forward induction leads to f. The crucial difference between the

two ideas is that under backward induction, player 2 should at h1 not draw any new conclusions from
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player 1’s past choice a. Under forward induction, player 2 should at h1 use player 1’s past choice a

to form a new belief about player 1, namely that he believes that player 2 will (with sufficiently high

probability) go for g.

Up to this stage we have only given some very broad, and rather unprecise, descriptions of backward

and forward induction. Sometimes such descriptions are enough to analyze a game, like the one in

Figure 1, but for other games it may be necessary to have a precise description of these two ideas, or to

have them incorporated formally in some concept.

The literature actually offers a broad spectrum of formal concepts—most of these being equilibrium

concepts—that incorporate the ideas of backward and forward induction. Historically, the equilibrium

concept of sequential equilibrium (Kreps and Wilson [6]) is regarded as an important backward induction

concept. Its main condition, sequential rationality, states that a player, at every stage, should believe that

his opponents will make optimal choices at present and future information sets, given their beliefs there.

No strategic conditions are imposed on beliefs about the opponents’ past behavior. As such, sequential

equilibrium only requires a player to reason about his opponents’ future behavior, and may therefore be

seen as a backward induction concept.

A problem with this concept, however, is that it incorporates an equilibrium condition which is

hard to justify if the game is only played once, especially when there is no communication between

the players before the game starts (see Bernheim [7] for a similar critique to Nash equilibrium). The

equilibrium condition entails that a player believes that his opponents are correct about his own beliefs,

and that he believes that two different players share the same belief about an opponent’s future behavior.

Aumann and Brandenburger [8], Asheim [9] and Perea [10] discuss similar conditions that lead to Nash

equilibrium. Another drawback of the sequential equilibrium concept—and this is partially due to the

equilibrium condition—is that the backward induction reasoning is somewhat hidden in the definition of

sequential equilibrium, and not explicitly formulated as such.

In contrast, a backward induction concept that does not impose such equilibrium conditions, and

which is very explicit about the backward induction reasoning being used, is common belief in future

rationality (Perea [1]). It is a belief-based concept which states that a player should always believe

that his opponents will choose rationally now and in the future, that a player always believes that

every opponent always believes that his opponents will choose rationally now and in the future, and

so on. No other conditions are imposed. The concept is closely related to sequential rationalizability

(Dekel, Fudenberg and Levine [11,12] and Asheim and Perea [13]) and to backwards rationalizability

(Penta [14]). (See Perea [1] for more details on this). Moreover, sequential equilibrium constitutes a

refinement of common belief in future rationality, the main difference being the equilibrium condition

that sequential equilibrium additionally imposes. In a sense, common belief in future rationality can

be regarded as a backward induction concept that is similar to, but more basic and transparent than,

sequential equilibrium. It can therefore serve as a basic representative of the idea of backward induction

in general dynamic games, and we will use it as such in this paper.

Let us now turn to forward induction reasoning. In the 1980’s and 1990’s, forward induction has

traditionally be modeled by equilibrium refinements. Some of these have been formulated as refinements

of sequential equilibrium, by restricting the players’ beliefs about the opponents’ past behavior as

well. Examples are justifiable sequential equilibrium (McLennan [15]), forward induction equilibrium
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(Cho [16]) and stable sets of beliefs (Hillas [17]) for general dynamic games, and the intuitive criterion

(Cho and Kreps [18]) and its various refinements for signaling games. By doing so, these authors have

actually been incorporating a forward induction argument inside a backward induction concept, namely

sequential equilibrium. So in a sense we are combining backward induction and forward induction in one

and the same concept, and the result is a concept which does not purely represent the idea of backward

induction nor forward induction.

As a consequence, these forward induction refinements of sequential equilibrium may fail to

select intuitive forward induction strategies in certain games. Reconsider, for instance, the game in

Figure 1. We have seen above that a natural forward induction argument uniquely selects strategy f for

player 2. However, any forward induction refinement of sequential equilibrium necessarily selects only

e for player 2. The reason is that e is the only sequential equilibrium strategy for player 2, so refining the

sequential equilibrium concept will not be of any help here.

There are other forward induction equilibrium concepts that are not refinements of sequential

equilibrium. Examples are stable sets of equilibria (Kohlberg and Mertens [19]), explicable equilibrium

(Reny [20]) and Govindan and Wilson’s [21] definition of forward induction—the latter two concepts

being refinements of weak sequential equilibrium (Reny [20]) rather than sequential equilibrium.

As before, a problem with these equilibrium refinements is that it incorporates an equilibrium

assumption which is problematic from an epistemic viewpoint. Moreover, the forward induction

reasoning in these concepts is often not as transparent as it could be, partially due to this equilibrium

assumption. In addition, the example in Figure 1 shows that in order to define a “pure” forward induction

concept, we must step outside sequential equilibrium, and in fact step outside any backward induction

concept, and simply build a new concept “from scratch”.

This is exactly what Pearce [2] did when he presented his extensive form rationalizability concept.

The main idea is that a player, at each of his information sets, asks whether this information set could

have been reached by rational1 strategy choices by the opponents. If so, then he must believe that his

opponents indeed do play rational strategies. In that case, he also asks whether this same information set

could also have been reached by opponents who do not only choose rationally themselves, but who also

believe that the other players choose rationally as well. If so, then he must believe that his opponents

believe that the other players choose rationally as well. Iterating this argument finally leads to extensive

form rationalizability.

This concept has many appealing properties. First, it is purely based on some very intuitive forward

induction arguments, and not incorporated into some existing backward induction concept. In that sense,

it is a very pure forward induction concept. Also, it has received a very appealing epistemic foundation

in the literature (Battigalli and Siniscalchi [4]), and there is nowadays an easy elimination procedure

supporting it (Shimoji and Watson [22]). So, the concept is attractive on an intuitive, an epistemic, and a

practical level. That is why we will use this concept in this paper as a possible, appealing representative

of the idea of forward induction.

The main objective of this paper is to compare the concept of common belief in future

rationality—as a representative of backward induction reasoning—with the concept of extensive form

1Here, by a rational strategy we mean a strategy that is optimal, at every information set, for some probabilistic belief

about the opponents’ strategy choices.
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rationalizability—as a representative of forward induction reasoning. By doing so, we hope this paper

will contribute towards better understanding the differences and similarities between backward induction

and forward induction reasoning in dynamic games.

The outline of this paper is as follows. In Section 2 we formally present the class of dynamic games

we consider, and develop an epistemic model for such games in order to formally represent the players’

belief hierarchies. In Section 3 we define the concept of common belief in future rationality and present

an elimination procedure, backward dominance, that supports it. Section 4 presents the concept of

extensive form rationalizability, discusses Battigalli and Siniscalchi’s [4] epistemic foundation, and

presents Shimoji and Watson’s [22] iterated conditional dominance procedure that supports it. In

Section 5 we explicitly compare the two concepts with each other on a conceptual, epistemic and an

algorithmic level.

2. Model

In this section we formally present the class of dynamic games we consider, and explain how to build

an epistemic model for such dynamic games.

2.1. Dynamic Games

As we expect the reader to be familiar with the model of a dynamic game (or, extensive form game),

we only list the relevant ingredients and introduce some pieces of notation. By I we denote the set of

players, by X the set of non-terminal histories (or nodes) and by Z the set of terminal histories. By ∅

we denote the beginning (or root) of the game. For every player i, we denote by Hi the collection of

information sets for that player. Every information set h ∈ Hi consists of a set of non-terminal histories.

At every information set h ∈ Hi , we denote by Ci(h) the set of choices (or actions) for player i at h.

We assume that all sets mentioned above are finite, and hence we restrict to finite dynamic games in this

paper. Finally, for every terminal history z and player i, we denote by ui(z) the utility for player i at z.

As usual, we assume that there is perfect recall, meaning that a player never forgets what he previously

did, and what he previously knew about the opponents’ past choices.

We explicitly allow for simultaneous moves in the dynamic game. That is, we allow for non-terminal

histories at which several players make a choice. Formally, this means that for some non-terminal

histories x there may be different players i and j, and information sets hi ∈ Hi and hj ∈ Hj, such that

x ∈ hi and x ∈ hj. In this case, we say that the information sets hi and hj are simultaneous. Explicitly

allowing for simultaneous moves is important in this paper, especially for describing the concept of

common belief in future rationality. We will come back to the issue of simultaneous moves in Section 3,

when we formally introduce common belief in future rationality.

Say that an information set h follows some other information set h′ if there are histories x ∈ h and

y ∈ h′ such that y is on the unique path from the root to x. Finally, we say that information set h weakly

follows h′ if either h follows h′, or h and h′ are simultaneous.
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2.2. Strategies

A strategy for player i is a complete choice plan, prescribing a choice at each of his information sets

that can possibly be reached by this choice plan. Formally, for every h, h′ ∈ Hi such that h precedes h′,

let ci(h, h′) be the choice at h for player i that leads to h′. Note that ci(h, h′) is unique by perfect recall.

Consider a subset Ĥi ⊆ Hi, not necessarily containing all information sets for player i, and a function si

that assigns to every h ∈ Ĥi some choice si(h) ∈ Ci(h). We say that si possibly reaches an information

set h if at every h′ ∈ Ĥi preceding h we have that si(h
′) = ci(h

′, h). By Hi(si) we denote the collection

of player i information sets that si possibly reaches. A strategy for player i is a function si, assigning to

every h ∈ Ĥi ⊆ Hi some choice si(h) ∈ Ci(h), such that Ĥi = Hi(si).

Notice that this definition slightly differs from the standard definition of a strategy in the literature.

Usually, a strategy for player i is defined as a mapping that assigns to every information set h ∈ Hi

some available choice—also to those information sets h that cannot be reached by si. The definition of

a strategy we use corresponds to what Rubinstein [23] calls a plan of action. One can also interpret it

as the equivalence class of strategies (in the classical sense) that are outcome-equivalent. Hence, taking

for every player the set of strategies as we use it corresponds to considering the pure strategy reduced

normal form. However, for the concepts and results in this paper it does not make any difference which

notion of strategy we use.

For a given information set h, denote by Si(h) the set of strategies for player i that possibly

reach h. By S−i(h) we denote the strategy profiles for i’s opponents that possibly reach h, that is,

s−i ∈ S−i(h) if there is some si ∈ Si(h) such that (si, s−i) reaches some history in h. By S(h) we

denote the set of strategy profiles (si)i∈I that reach some history in h. By perfect recall we have that

S(h) = Si(h) × S−i(h) for every player i and every information set h ∈ Hi.

2.3. Epistemic Model

We now wish to model the players’ beliefs in the game. At every information set h ∈ Hi, player i

holds a belief about (a) the opponents’ strategy choices, (b) the beliefs that the opponents have, at their

information sets, about the other players’ strategy choices, (c) the beliefs that the opponents have, at

their information sets, about the beliefs their opponents have, at their information sets, about the other

players’ strategy choices, and so on. A possible way to represent such conditional belief hierarchies is

as follows.

(Epistemic model) Consider a dynamic game Γ. An epistemic model for Γ is a tuple

M = (Ti, bi)i∈I where

(a) Ti is a compact topological space, representing the set of types for player i,

(b) bi is a function that assigns to every type ti ∈ Ti, and every information set h ∈ Hi, a probability

distribution bi(ti, h) ∈ ∆(S−i(h) × T−i).

Recall that S−i(h) represents the set of opponents’ strategy combinations that possibly reach h. By

T−i :=
∏

j 6=i Tj we denote the set of opponents’ type combinations. For a topological space X, we

denote by ∆(X) the set of probability distributions on X with respect to the Borel σ-algebra. So, if

there are more than two players in the game, we allow the players to hold correlated beliefs about the

opponents’ strategy choices (and types) at each of their information sets.
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This model can be seen as an extension of the epistemic model in Ben-Porath [24], which was

constructed specifically for games with perfect information. A similar model can also be found in

Battigalli and Siniscalchi [25]. It is an implicit model, since we do not write down the belief hierarchies

for the types explicitly, but these can rather be derived from the model. Namely, at every information

set h ∈ Hi a type ti holds a conditional probabilistic belief bi(ti, h) about the opponents’ strategies

and types. In particular, type ti holds conditional beliefs about the opponents’ strategies. As every

opponent’s type holds conditional beliefs about the other players’ strategies, every type ti holds at every

h ∈ Hi also a conditional belief about the opponents’ conditional beliefs about the other players’ strategy

choices. And so on. So, in this way we can derive for every type the associated infinite conditional belief

hierarchy. Since a type may hold different beliefs at different histories, a type may, during the game,

revise his belief about the opponents’ strategies, but also about the opponents’ conditional beliefs.

To formally describe the concept of common strong belief in rationality, we need epistemic models

that are complete, which means that every possible belief hierarchy must be present in the model.

(Complete epistemic model) An epistemic model M = (Ti, bi)i∈I is complete if for every conditional

belief vector (bi(h))h∈Hi
in

∏
h∈Hi

∆(S−i(h) × T−i) there is some type ti ∈ Ti with bi(ti, h) = bi(h) for

every h ∈ Hi.

So, a complete epistemic model must necessarily be infinite. Battigalli and Siniscalchi [25] have

shown that a complete epistemic model always exists for finite dynamic games, such as the ones we

consider in this paper.

3. Common Belief in Future Rationality

We now present the concept of common belief in future rationality (Perea [1]), which is a typical

backward induction concept. The idea is that a player always believes that (a) his opponents will choose

rationally now and in the future, (b) his opponents always believe that their opponents will choose

rationally now and in the future, and so on. After giving a precise epistemic formulation of this concept,

we describe an algorithm, backward dominance, that supports it, and we illustrate this algorithm by

means of an example.

3.1. Epistemic Formulation

We first define what it means for a strategy si to be optimal for a type ti at a given information set

h. Consider a type ti, a strategy si and an information set h ∈ Hi(si) that is possibly reached by si. By

ui(si, ti | h) we denote the expected utility from choosing si under the conditional belief that ti holds at

h about the opponents’ strategy choices.

(Optimality at a given information set) Consider a type ti, a strategy si and a history h ∈ Hi(si).

Strategy si is optimal for type ti at h if ui(si, ti | h) ≥ ui(s
′
i, ti | h) for all s′i ∈ Si(h).

Remember that Si(h) is the set of player i strategies that possibly reach h. We can now define belief

in the opponents’ future rationality.

(Belief in the opponents’ future rationality) Consider a type ti, an information set h ∈ Hi, and an

opponent j 6= i. Type ti believes at h in j’s future rationality if bi(ti, h) only assigns positive probability

to j’s strategy-type pairs (sj, tj) where sj is optimal for tj at every h′ ∈ Hj(sj) that weakly follows
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h. Type ti believes in the opponents’ future rationality if at every h ∈ Hi, type ti believes in every

opponent’s future rationality.

So, to be precise, a type that believes in the opponents’ future rationality believes that every opponent

chooses rationally now (if the opponent makes a choice at a simultaneous information set), and at every

information set that follows. As such, the correct terminology would be “belief in the opponents’

present and future rationality”, but we stick to “belief in the opponents’ future rationality” as to keep the

name short.

Next, we formalize the requirement that a player should not only believe in the opponents’ future

rationality, but should also always believe that every opponent believes in his opponents’ future

rationality, and so on.

(Common belief in future rationality) Type ti expresses common belief in future rationality if (a)

ti believes in the opponents’ future rationality, (b) ti assigns, at every information set, only positive

probability to opponents’ types that believe in their opponents’ future rationality, (c) ti assigns, at every

information set, only positive probability to opponents’ types that, at every information set, only assign

positive probability to opponents’ types that believe in the opponents’ future rationality, and so on.

Finally, we define those strategies that can rationally be chosen under common belief in future

rationality. We say that a strategy si is rational for a type ti if si is optimal for ti at every h ∈ Hi(si). In

the literature, this is often called sequential rationality. We say that strategy si can rationally be chosen

under common belief in future rationality if there is some epistemic model M = (Ti, bi)i∈I , and some

type ti ∈ Ti, such that ti expresses common belief in future rationality, and si is rational for ti.

For the concept of common belief in future rationality, it is crucial how we model the chronological

order of moves in the game! Consider, for instance, the three games in Figure 2.

Figure 2. Chronological order of moves matters for “common belief in future rationality”.
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In game Γ1 player 1 moves before player 2, in game Γ2 player 2 moves before player 1, and in

game Γ3 both players choose simultaneously. In Γ1 and Γ2, the second mover does not know which
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choice has been made by the first mover. So, all three games represent a situation in which both players

choose in complete ignorance of the opponent’s choice. Since the utilities in the games are identical,

one can argue that these three games are in some sense “equivalent”. In fact, the three games above only

differ by applying the transformation of interchange of decision nodes2, as defined by Thompson [26].

However, for the concept of common belief in future rationality it crucially matters which of the three

representations Γ1, Γ2 or Γ3 we choose.

In the game Γ1, common belief in future rationality does not restrict player 2’s belief at all, as

player 1 moves before him. So, player 2 can rationally choose d and e under common belief in future

rationality here. On the other hand, player 1 may believe that player 2 chooses d or e under common

belief in future rationality, and hence player 1 himself may rationally choose a or b under common belief

in future rationality.

In the game Γ2, common belief in future rationality does not restrict player 1’s beliefs as he moves

after player 2. Hence, player 1 may rationally choose a or b under common belief in future rationality.

Player 2 must therefore believe that player 1 will either choose a or b in the future, and hence player 2

can only rationally choose d under common belief in future rationality.

In the game Γ3, finally, player 1 can only rationally choose a, and player 2 can only rationally choose

d under common belief in future rationality. Namely, if player 2 believes in player 1’s (present and)

future rationality, then player 2 believes that player 1 does not choose c, since player 1 moves at the

same time as player 2. Therefore, player 2 can only rationally choose d under common belief in future

rationality. If player 1 believes in player 2’s (present and) future rationality, and believes that player 2

believes in player 1’s (present and) future rationality, then player 1 believes that player 2 chooses d, and

therefore player 1 can only rationally choose a under common belief in future rationality.

Hence, the precise order of moves is very important for the concept of common belief in future

rationality! In particular, this concept is not invariant with respect to Thompson’s [26] transformation of

interchange of decision nodes. We will come back to this issue in Section 5.3.

3.2. Algorithm

Perea [1] presents an algorithm, backward dominance, that selects exactly those strategies than can

rationally be chosen under common belief in future rationality. The algorithm proceeds by successively

eliminating, at every information set, some strategies for the players. In the first round we eliminate,

at every information set, those strategies for player i that are strictly dominated at a present or future

information set for player i. In every further round k we eliminate, at every information set, those

strategies for player i that are strictly dominated at a present or future information set h for player i,

given the opponents’ strategies that have survived until round k at that information set h. We continue

until we cannot eliminate anything more.

In order to formally state the backward dominance procedure, we need the following definitions.

Consider an information set h ∈ Hi for player i, a subset Di ⊆ Si(h) of strategies for player i that

possibly reach h, and a subset D−i ⊆ S−i(h) of strategy combinations for i’s opponents possibly

reaching h. Then, (Di, D−i) is called a decision problem for player i at h, and we say that player i

2For a formal description of this transformation, the reader may consult Thompson [25], Elmes and Reny [26] or

Perea [27].
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is active at this decision problem. Note that several players may be active at the same decision problem,

since several players may make a simultaneous move at the associated information set. Within a decision

problem (Di, D−i) for player i, a strategy si ∈ Di is called strictly dominated if there is some randomized

strategy µi ∈ ∆(Di) such that ui(µi, s−i) > ui(si, s−i) for all s−i ∈ D−i. A decision problem at h is

said to weakly follow an information set h′ if h weakly follows h′. For a given information set h ∈ Hi,

the full decision problem at h is the decision problem (Si(h), S−i(h)) where no strategies have been

eliminated yet.

Backward dominance procedure

Initial step. For every information set h, let Γ0(h) be the full decision problem at h.

Inductive step. Let k ≥ 1, and suppose that the decision problems Γk−1(h) have been defined for

every information set h. Then, at every information set h delete from the decision problem Γk−1(h)

those strategy combinations that involve a strategy si of some player i that is strictly dominated

within some decision problem Γk−1(h′) for player i that weakly follows h. This yields the new

decision problems Γk(h). Continue this procedure until no further strategies can be eliminated in

this way.

Say that a strategy si survives the backward dominance procedure if si is in Γk(∅) for every k. That

is, si is never eliminated in the decision problem at the beginning of the game, ∅. Since we only have

finitely many strategies in the game, and the decision problems can only become smaller at every step,

this procedure must converge after finitely many steps. Perea [1] has shown that the algorithm always

yields a nonempty set of strategies at every information set, and that the set of strategies surviving the

algorithm is exactly the set of strategies that can rationally be chosen under common belief in future

rationality. Combining these two insights then guarantees that common belief in future rationality is

always possible—for every player we can always construct a type that expresses common belief in

future rationality.

Note than the backward dominance procedure can be alternatively formulated as follows: If at a given

decision problem Γk−1(h) for player i strategy si is strictly dominated, then we eliminate si at Γk−1(h)

and at all decision problems Γk−1(h′) that come before h—that is, we eliminate si from h backwards.

So, we can say that the backward dominance procedure, which characterizes the backward induction

concept of common belief in future rationality, works by backward elimination. This, in turn, very

clearly explains the word backward in backward induction concept.

3.3. Example

We will now illustrate the backward dominance procedure by means of an example. Consider again

the game in Figure 1. At the beginning of the procedure we start with two decision problems, namely

the full decision problem Γ0(∅) at ∅ where only player 1 is active, and the full decision problem Γ0(h1)

at h1 where both players are active. These decision problems can be found in Table 1.
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Table 1. The full decision problems in Figure 1.

Player 1 active

Γ0(∅) e f g

(a, c) 2, 2 2, 1 0, 0

(a, d) 1, 1 1, 2 4, 0

b 3, 0 3, 0 3, 0

Players 1 and 2 active

Γ0(h1) e f g

(a, c) 2, 2 2, 1 0, 0

(a, d) 1, 1 1, 2 4, 0

The backward dominance procedure does the following: In the first round, we eliminate from Γ0(∅)

strategy (a, c) as it is strictly dominated by b at player 1’s decision problem Γ0(∅), and we eliminate from

Γ0(∅) and Γ0(h1) strategy g as it is strictly dominated by e and f at player 2’s decision problem Γ0(h1).

In the second round, we eliminate from Γ1(∅) strategy (a, d) as it strictly dominated by b at Γ1(∅), and

we eliminate strategy (a, d) also from Γ1(h1) as it is strictly dominated by (a, c) at Γ1(h1). In the third

round, finally, we eliminate from Γ2(∅) and Γ2(h1) strategy f, as it is strictly dominated by e in Γ2(h1).

So, only strategies b and e remain at ∅. Hence, only strategies b and e can rationally be chosen under

common belief in future rationality.

4. Extensive Form Rationalizability

We next turn to extensive form rationalizability (Pearce [2], Battigalli [3], Battigalli and

Siniscalchi [4]), which is a typical forward induction concept. The idea is as follows: At every

information set the corresponding player first asks whether this information set can be reached if his

opponents would all choose rationally, that is, would choose optimally for some vectors of conditional

beliefs. If so, then at that information set he must only assign positive probability to rational opponents’

strategies. In that case, he then asks: Can this information set also be reached by opponents’ strategies

that are optimal if the opponents believe, whenever possible, that their opponents choose rationally? If

so, then at that information set he must only assign positive probability to such opponents’ strategies.

And so on. So, in a sense, at every information set the associated player looks for the highest degree

of mutual belief in rationality that makes reaching this information set possible, and his beliefs at that

information set should reflect this highest degree. We first provide a precise epistemic formulation of

this concept, and then present an algorithm, iterated conditional dominance, that supports it. We finally

illustrate the algorithm by means of an example.

4.1. Epistemic Formulation

The starting point in extensive form rationalizability is that a player, whenever possible, must believe

that his opponents choose rationally. That is, if player i is at information set h ∈ Hi, he first asks

whether h could have been reached by rational opponents’ strategies. If so, then at h he must assign

positive probability only to rational opponents’ strategies. We say that player i strongly believes in the

opponents’ rationality (Battigalli and Siniscalchi [4]).

In order to formalize this idea within an epistemic model, we must make sure that there are “enough”

types in the model. To be more precise, if for a given information set h ∈ Hi there is a rational strategy
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sj for opponent j that possibly reaches h, then there must be a type for player j inside the model for

which sj is optimal. Consider, for instance, the game in Figure 1, and suppose that our epistemic model

would contain only one type for player 1, which believes that player 2 will choose e. Then, on the one

hand, there is a rational strategy for player 1 that reaches h1, namely (a, d). But the epistemic model

does not contain a type for player 1 for which (a, d) is optimal. So, in this case, we must make sure that

the epistemic model contains at least one type for player 1 for which (a, d) is optimal.

To guarantee this, it is enough to have a complete epistemic model. Namely, a complete model

contains all possible belief hierarchies, so every potentially optimal strategy can be rationalized by at

least one type in this model.

To formally define strong belief in the opponents’ rationality, we need the following piece of notation:

For every player i, information set h ∈ Hi, and subset of opponents’ types T̃−i ⊆ T−i, let

(S−i(h) × T̃−i)
rat := {(sj, tj)j 6=i ∈ S−i(h) × T̃−i : sjrationalfortjforallj 6= i}

Recall that strategy sj is rational for type tj if sj is optimal for tj at every information set in Hj(sj).

(Strong belief in the opponents’ rationality) Consider a complete epistemic model M = (Ti, bi)i∈I . A

type ti strongly believes in the opponents’ rationality if at every h ∈ Hi with (S−i(h) × T−i)
rat 6= ∅, it

holds that bi(ti, h)((S−i(h) × T−i)
rat) = 1.

That is, if for every opponent j there is strategy sj leading to h and a type for which sj is rational,

then type ti must at h only consider strategy-type pairs (sj, tj) where sj is rational for type tj. Let us

define by T 1
i the set of types ti ∈ Ti that strongly believe in the opponents’ rationality.

Now, suppose that player i is at h ∈ Hi, and that (S−i(h) × T−i)
rat 6= ∅. So, h could have been

reached by rational opponents’ strategies. The next question that extensive form rationalizability asks

is: Could h have been reached by opponents’ strategies sj that are optimal for opponents’ types tj that

strongly believe in their opponents’ rationality? If so, then player i at h should only consider such pairs

(sj, tj). In other words, if (S−i(h) × T 1
−i)

rat 6= ∅, then player i must at h only consider opponents’

strategy-type combinations in (S−i(h) × T 1
−i)

rat. By iterating this argument, we arrive at the following

recursive definition of common strong belief in rationality (Battigalli and Siniscalchi [4]).

(Common strong belief in rationality) Consider a complete epistemic model M = (Ti, bi)i∈I . Let

T 0
i := Ti for every player i. For every k ≥ 1 and every player i, let T k

i contain those types ti ∈ T k−1

i

such that at every h ∈ Hi with (S−i(h) × T k−1

−i )rat 6= ∅, it holds that bi(ti, h)((S−i(h) × T k−1

−i )rat) = 1.

A type ti expresses common strong belief in rationality if ti ∈ T k
i for all k.

We say that strategy si can rationally be chosen under common strong belief in rationality if there

is some complete epistemic model M = (Ti, bi)i∈I , and some type ti ∈ Ti expressing common strong

belief in rationality, such that si is rational for ti.

4.2. Algorithm

The concept of extensive form rationalizability has originally been proposed in Pearce [2] by means

of an iterated reduction procedure. Later, Battigalli [3] has simplified this procedure and has shown

that it delivers the same output as Pearce’s procedure. Both procedures refine at every round the sets of

strategies and conditional beliefs of the players. Battigalli and Siniscalchi [4] have shown that common

strong belief in rationality selects exactly the extensive form rationalizable strategies for every player.
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In this section we will consider yet another procedure leading to extensive form rationalizability,

namely the iterated conditional dominance procedure developed by Shimoji and Watson [22]. The

reason is that this procedure is closer to the backward dominance algorithm for common belief in future

rationality, and therefore easier to compare.

The iterated conditional dominance procedure, like the backward dominance procedure, iteratedly

removes strategies from decision problems. However, the criteria for removing a strategy in a particular

decision problem are different. Remember that in the backward dominance procedure we remove a

strategy for player i in the decision problem at h whenever it is strictly dominated in some decision

problem for player i that weakly follows h. In the iterated conditional dominance procedure we remove

a strategy for player i at the decision problem at h if there is some decision problem for player i,

not necessarily weakly following h, at which it is strictly dominated. So, in the iterated conditional

dominance procedure we would remove strategy si at h also if it is strictly dominated at some decision

problem for player i that comes before h. Formally, the procedure can be formulated as follows.

Iterated conditional dominance procedure

Initial step. For every information set h, let Γ0(h) be the full decision problem at h.

Inductive step. Let k ≥ 1, and suppose that the decision problems Γk−1(h) have been defined for

every information set h. Then, at every information set h delete from the decision problem Γk−1(h)

those strategy combinations that involve a strategy si for some player i that is strictly dominated within

some decision problem Γk−1(h′) for player i, not necessarily weakly following h. This yields the new

decision problems Γk(h). Continue this procedure until no further strategies can be eliminated in this

way.

A strategy si is said to survive this procedure if si ∈ Γk(∅) for all k. Shimoji and Watson [22] have

shown that this procedure delivers exactly the set of extensive form rationalizable strategies. Hence, by

Battigalli and Siniscalchi’s [4] result, the iterated conditional dominance procedure selects exactly those

strategies that can rationally be chosen under common strong belief in rationality.

Note that in the iterated conditional dominance procedure, it is possible that at a given decision

problem Γk−1(h) all strategies of a player i will be eliminated in step k—something that can never

happen in the backward dominance procedure. Consider, namely, some information set h ∈ Hi, and

some information set h′ following h. Then, it is possible that within the decision problem Γk−1(h), all

strategies for player i in Γk−1(h′) are strictly dominated. In that case, we would eliminate in Γk−1(h′)

all remaining strategies for player i! Whenever this occurs, it is understood that at every further step

nothing can be eliminated from the decision problem at h′ anymore.

The iterated conditional dominance procedure thus has the following property: If at a given decision

problem Γk−1(h) for player i the strategy si is strictly dominated, then we eliminate si at Γk−1(h),

and at all decision problems Γk−1(h′) that come before and after it—that is, we eliminate si from

h backwards and forward. So this algorithm, which characterizes the forward induction concept of

extensive form rationalizability, proceeds by backward and forward elimination. From this perspective,

the name “forward induction” is actually a bit misleading, as it would suggest the concept to work only

in a forward fashion. This is not true: Extensive form rationalizability, when considered algorithmically,

works both backwards and forward.
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4.3. Example

To illustrate the iterated conditional dominance procedure, consider again the game from

Figure 1, with its full decision problems Γ0(∅) and Γ0(h1) as depicted in Table 1. The iterated conditional

dominance procedure works as follows here:

In the first round, we eliminate strategy (a, c) from Γ0(∅) and Γ0(h1) as it is strictly dominated by b

at player 1’s decision problem Γ0(∅), and we eliminate from Γ0(∅) and Γ0(h1) strategy g as it is strictly

dominated by e and f at player 2’s decision problem Γ0(h1). In the second round, we eliminate (a, d)

from Γ1(∅) and Γ1(h1) as it is strictly dominated by b at Γ1(∅), and we eliminate e from Γ1(∅) and

Γ1(h1) as it is strictly dominated by f in Γ1(h1). This only leaves strategies b and f at ∅, and hence only

strategies b and f can rationally be chosen under extensive form rationalizability.

Recall that the backward dominance procedure uniquely selected strategies b and e, and hence only

e can rationally be chosen by player 2 under common belief in future rationality. So, we see that both

procedures (and hence their associated epistemic concepts) lead to unique but different strategy choices

for player 2 in this example.

The crucial difference between both concepts lies in how player 2 at h1 explains the surprise that

player 1 has not chosen b. Under common belief in future rationality, player 2 believes at h1 that player

1 has simply made a mistake, but he still believes that player 1 will choose rationally at h1, and he still

believes that player 1 believes that he will not choose g at h1. So, player 2 believes at h1 that player

1 will choose (a, c), and therefore player 2 will choose e at h1. Under extensive form rationalizability,

player 2 believes at h1 that player 1’s decision not to choose b was a rational decision, but this is only

possible if player 2 believes at h1 that player 1 believes that player 2 will irrationally choose g at h1 (with

sufficiently high probability). In that case, player 2 will believe at h1 that player 1 will go for (a, d), and

therefore player 2 will choose f at h1.

5. Comparision Between the Concepts

In this section we will compare the concepts of common belief in future rationality and extensive

form rationalizability (common strong belief in rationality) on a conceptual, epistemic, algorithmic and

behavioral level.

5.1. Conceptual Comparison: The Role of Rationality Orderings

An appealing way to look at extensive form rationalizability is by means of rationality orderings over

strategies (Battigalli [29]). The idea is that for every player i we have an ordered partition (S1
i , ..., S

K
i )

of his strategy set, where S1
i represents the set of “most rational” strategies, SK

i the set of “least rational”

strategies, and every strategy in Sk
i is deemed “more rational” than every strategy in Sk+1

i . At every

information set h ∈ Hi, player i then looks for the most rational opponents’ strategies that reach h,

and assigns positive probability only to such opponents’ strategies. Important is that these rationality

ordering are global, that is, the players always use the same rationality orderings over the opponents’

strategies to form their conditional beliefs.

To illustrate this, consider the game in Figure 3.
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Figure 3. Rationality orderings.
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Among player 1’s strategies, (a, c), (a, e) and b are optimal for some belief, whereas (a, d) is not

optimal for any belief. So, (a, d) may be considered the “least rational” strategy for player 1. So, for

player 1 we have the “tentative” rationality ordering

RO1

1 = ({(a, c), (a, e), b}, {(a, d)})

For player 2, strategies f and g are optimal at h1 for some belief, whereas h is not optimal at h1 for any

belief. Hence, for player 2 we have the tentative rationality ordering

RO1

2 = ({f, g}, {h})

Now, if player 1 believes that player 2 does not choose his least rational strategy h, then only (a, c) and

b can be optimal, and not (a, e). So, we obtain a refined rationality ordering

RO2

1 = ({(a, c), b}, {(a, e)}, {(a, d)})

for player 1. Similarly, if player 2 believes at h1 that player 1 will not choose his least rational strategy

(a, d), then only f can be optimal, and not g. So, for player 2 we obtain the refined rationality ordering

RO2

2 = ({f}, {g}, {h})

But then, if player 1 believes that player 2 will choose his most rational strategy f, then player 1 will

choose b. So, the final rationality orderings for the players are

RO1 = ({b}, {(a, c)}, {(a, e)}, {(a, d)})andRO2 = ({f}, {g}, {h})

Hence, if player 2 finds himself at h1, he believes that player 1 has chosen the most rational strategy that

reaches h1, which is (a, c). Player 2 must therefore choose f, and player 1, anticipating on this, should

choose b. This is exactly what extensive form rationalizability does for this game.

Important is that both players agree on these specific rationality orderings RO1 and RO2, and that

player 2 uses the rationality ordering RO1 throughout the game, in particular at h1 to form his conditional

belief there.
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In contrast, the concept of common belief in future rationality cannot be described in terms of

rationality orderings, or at least not by global rationality orderings that are used throughout the whole

game. Consider again the game in Figure 3. Common belief in future rationality reasons as follows here:

Player 1, at ∅ and at h1, must believe that player 2 chooses rationally at h1, and hence must believe that

player 2 will not choose h. Player 2, at h1, believes that player 1, at h1, believes in 2’s rationality at h1.

Hence, player 2 believes at h1 that player 1 believes that 2 will not choose h. Also, player 2 believes at

h1 that player 1 chooses rationally at h1, and hence player 2 believes at h1 that player 1 will not choose

(a, e). No further conclusions can be drawn at h1. Hence, player 2 can choose f or g at h1. But then,

player 1 can choose (a, c) or b. So, common belief in future rationality selects strategies (a, c) and b for

player 1, and strategies f and g for player 2.

Can this reasoning be represented by global rationality orderings on the players’ strategies? The

answer is “no”. Suppose, namely, that such rationality orderings RO1 and RO2 would exist. As

common belief in future rationality selects only the strategies (a, c) and b for player 1, strategies (a, c)

and b should both be most rational under RO1. But then, if player 2 is at h1, he should conclude that

player 1 has chosen (a, c), as it is the most rational strategy under RO1 that reaches h1. Consequently,

player 2 should choose f, rendering (a, c) a suboptimal strategy for player 1. This, however, would

contradict RO1, where (a, c) is considered to be a most rational strategy for player 1. Hence, there is no

global rationality ordering on strategies that supports common belief in future rationality.

Rather, under common belief in future rationality, player 2 changes his rationality ordering over 1’s

strategies as the game proceeds. At the beginning, player 2 deems (a, c) and b more rational then (a, d)

and (a, e). However, at h1 player 2 deems (a, c) and (a, d) “equally” rational, as under common belief in

future rationality player 2 may at h1 believe that player 1 chooses (a, c) or (a, d).

5.2. Epistemic Comparison

By definition, a type ti for player i is said to express common belief in future rationality if it always

believes in the opponents’ future rationality, always only assigns positive probability to opponents’ types

that always believe in their opponents’ future rationality, always only assigns positive probability to

opponents’ types that always only assign positive probability to other players’ types that always believe

in their opponents’ future rationality, and so on. As a consequence, type ti always only assigns positive

probability to opponents’ types that express common belief in future rationality too. Hence, every type

that expresses common belief in future rationality believes at every stage of the game that each of his

opponents expresses common belief in future rationality as well. We may thus say that the concept of

common belief in future rationality is “closed under belief”.

Formally, “closed under belief” can be defined in the following way. Consider some epistemic model

with sets of types Ti for every player i. Let T̂i ⊆ Ti be a subset of types for every player i. Then, the

combination (T̂i)i∈I of subsets of types is said to be closed under belief if for every player i, every type

ti ∈ T̂i, and every information set h ∈ Hi, the conditional belief bi(t̂i, h) only assigns positive probability

to opponents’ types tj that are in T̂j. So if we take an epistemic model with sets of types (Ti)i∈I , and

define T
cbfr
i ⊆ Ti to be the subset of types for player i that express common belief in future rationality,

then the combination (T cbfr
i )i∈I of type subsets expressing common belief in future rationality is closed

under belief in the sense above.
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The same cannot be said about common strong belief in rationality—the epistemic foundation for

extensive form rationalizability. Consider for instance the game from Figure 1. If player 2’s type t2

strongly believes in player 1’s rationality, then t2 must at h1 believe that player 1 has rationally chosen

(a, d). More precisely, type t2 must at h1 only assign positive probability to strategy-type pairs ((a, d), t1)

for player 1 where (a, d) is optimal for type t1. This, however, can only be the case if t1 assigns positive

probability to player 2’s irrational strategy g. But then, t1 does certainly not strongly believe in 2’s

rationality. So we see that a type t2 for player 2 who strongly believes in 1’s rationality, must at h1

necessarily assign positive probability to a type t1 for player 1 who does not strongly believe in 2’s

rationality. In particular, a type t2 for player 2 that expresses common strong belief in rationality,

must at h1 attach positive probability to a player 1 type t1 that does not express common strong

belief in rationality. Hence, the concept of common strong belief in rationality is certainly not closed

under belief.

The latter is not surprising, as it follows from the very character of common strong belief in rationality.

As we have seen in the previous subsection, this concept orders the players’ strategies, and also types,

from “most rational” to “least rational”. Most rational are the types that express common strong belief in

rationality, and least rational are the types that do not even strongly believe in the opponents’ rationality,

and there may be some subclasses in between. The idea of common strong belief in rationality is that

at every information set, the corresponding player searches for the “most rational” opponents’ types

that could have been responsible for reaching this information set, and these opponents’ types do not

necessarily express common strong belief in rationality. In fact, typically these opponents’ types are

“less rational” than the “most rational types around”, which are the ones expressing common strong

belief in rationality. So, it is no surprise that the concept of common strong belief in rationality is not

“closed under belief”.

The fact that common belief in future rationality is closed under belief, and common strong belief

in rationality is not, is also reflected in the completeness of the epistemic model needed for these two

concepts. Note that for defining common strong belief in rationality we required a complete epistemic

model (meaning that every possible belief hierarchy is present in the model), whereas for common belief

in future rationality we did not. In fact, for the concept of common belief in future rationality a model

with finitely many types is enough (see Perea [1]). So why do we have this difference?

The reason is that under common strong belief in rationality, player i must ask at every information

set h ∈ Hi whether h could have been reached by opponents’ strategies that are optimal for some

beliefs. To answer this question, he must consider all possible opponents’ types—also those that do

not express common strong belief in rationality—and see whether some of these types would support

strategy choices that could lead to h. So, a complete epistemic model is needed here.

In contrast, under common belief in future rationality it is sufficient for player i to only consider

opponents’ types that express common belief in future rationality as well. In other words, there is no

need for player i to step outside the sets of types expressing common belief in future rationality, and that

is why we do not need a complete epistemic model here.
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5.3. Algorithmic Comparison

In Sections 3 and 4 we have described two elimination procedures, backward dominance and iterated

conditional dominance, that respectively lead to common belief in future rationality and extensive form

rationalizability. A natural question is: Does the order and speed in which we eliminate strategies from

the decision problems matter for the eventual result of these procedures? The answer is that it does not

matter for the backward dominance procedure (see Perea [1]), whereas the order and speed of elimination

is crucial for the iterated conditional dominance procedure.

Consider, namely, the game from Figure 1. Suppose that, in the first round of the iterated conditional

dominance procedure, we would only eliminate strategy g, but not (a, c), from Γ0(∅) and Γ0(h1). Then,

in Γ1(h1), strategy (a, d) is strictly dominated by (a, c). Suppose that in round 2 we would only eliminate

strategy (a, d) from Γ1(∅) and Γ1(h1). Suppose that in round 3 we would eliminate strategy f for

player 2 at ∅ and h1, as it has become strictly dominated at h1. Suppose that, finally, we would eliminate

(a, c) at ∅ and h1. So, for player 2 only strategy e would survive the procedure in this case. Recall,

however, that if we eliminate “all that we can” at every round of the iterated conditional dominance

procedure, then only strategy f would survive for player 2. Hence, the order and speed of elimination

affects the outcome of the iterated conditional dominance procedure—it is absolutely crucial to eliminate

at every round, and at every information set, all strategies we can.

Now, why is the order and speed of elimination relevant for the iterated conditional dominance

procedure, but not for the backward dominance procedure? The reason has to do with rationality

orderings as we have discussed them above. We have seen that extensive form rationalizability can

be described by global rationality orderings on the players’ strategies, ranking them from “most

rational” to “least rational”. At every information set, the corresponding player identifies the most

rational opponents’ strategies that reach this information set, and assigns positive probability only to

these strategies. For this construction to work, it is essential that all players agree on these specific

rationality orderings.

The iterated conditional dominance procedure in fact generates these rationality orderings: All

strategies that do not survive the first round are deemed “least rational”. All strategies that survive the

first round, but not the second round, are deemed “second least rational” and so on. Finally, the strategies

that survive all rounds are deemed “most rational”. So, this procedure does not only deliver the extensive

form rationalizable strategies, it also delivers the rationality orderings on players’ strategies that support

extensive form rationalizability. Since it is crucial that players agree on these rationality orderings,

players must agree on the strategies that are eliminated at every round of the procedure: If at a certain

round not all strategies that could be eliminated are in fact eliminated, then this would lead to a “coarser”

rationality ordering in that round, which in turn could lead to completely different rationality orderings

in the end.

This problem cannot occur for backward dominance: If at a certain information set a strategy that

could have been eliminated is not in fact eliminated, then it will be eliminated at some later round

anyhow. So, even if players would disagree on the order and speed of elimination, it would not affect

their final strategy choices in the game.
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We have seen in Section 3 that the concept of common belief in future rationality is sensitive to the

transformation of interchange of decision nodes, as defined by Thompson [26]. This can be seen very

clearly from its associated algorithm—the backward dominance procedure. In this algorithm, namely,

whenever a strategy si is strictly dominated at a decision problem Γk−1(h) for player i, we eliminate

it from Γk−1(h) and all decision problems Γk−1(h′) that come before h, but we do not eliminate it

at decision problems Γk−1(h′) that come after h. By applying the transformation of interchange of

decision nodes, we may interchange the chronological order of two information sets h and h′. So, before

the transformation h comes before h′, whereas after the transformation h′ comes before h. Hence it

is possible that before the transformation we eliminate si at h because it is strictly dominated at h′,

whereas after the transformation we can no longer do so because h now comes after h′. That is, the

transformation of interchange of decision nodes may have important consequences for the output of the

backward dominance procedure—and hence for the concept of common belief in future rationality.

It can be verified that the transformation of interchange of decision nodes has no consequences for

the concept of extensive form rationalizability. This is most easily seen by studying the associated

algorithm—the iterated conditional dominance procedure. In that procedure, whenever a strategy si is

strictly dominated at a decision problem Γk−1(h) for player i, we eliminate it at all decision problems

Γk−1(h′) in the game. Hence, the precise chronological order of the information sets does not play a

role, only the structure of the various decision problems Γk−1(h) in the game. Since the transformation

of interchange of decision nodes does not change this structure of the decision problems Γk−1(h) in the

game, it easily follows that the iterated conditional dominance procedure—and hence the concept of

extensive form rationalizability—is invariant under the transformation of interchange of decision nodes.

5.4. Behavioral Comparison

In this section we ask whether there is any logical relationship between the strategy choices selected

by common belief in future rationality, and those selected by extensive form rationalizability. The

answer is “no”. This can already be concluded from the example in Figure 1. There, we have seen

that common belief in future rationality uniquely selects strategy e for player 2, whereas extensive form

rationalizability uniquely selects strategy f for this player. Hence, in this example both concepts yield

completely opposite strategy selections for player 2.

There are other examples where common belief in future rationality is more restrictive than extensive

form rationalizability, and yet other examples where it is exactly the other way around. Consider, for

instance, the game from Figure 3. There, common belief in future rationality yields strategy choices

(a, c) and b for player 1, and strategy choices f and g for player 2. Extensive form rationalizability,

on the other hand, uniquely selects strategies b and f. So here extensive form rationalizability is

more restrictive.

Now, replace in the example in Figure 1 the outcome 3, 0 by 5, 0. Then, common belief in future

rationality would select strategy b for player 1, and strategy e for player 2, whereas extensive form

rationalizability would select strategy b for player 1, and strategies e and f for player 2. So here common

belief in future rationality is more restrictive.

Note, however, that in each of these examples the set of outcomes induced by extensive form

rationalizability is always a subset of the set of outcomes induced by common belief in future rationality.



Games 2010, 1 187

My conjecture is that this is true in general, but I could not find a formal proof yet. (In fact we know that

it is true for all generic games with perfect information – see the paragraph below). So I leave this here

as an interesting open problem.

An important special class of dynamic games, both for theory and applications, is the class of games

with perfect information. These are games where at every stage only one player moves, and he always

observes the choices made by others so far. Such a game is called generic if, for every player i and every

information set h ∈ Hi, two different choices at h always lead to outcomes with different utilities for i.

In Perea [1] it has been shown that for the class of generic dynamic games with perfect information,

the concept of common belief in future rationality leads to the unique backward induction strategies for

the players. Battigalli [3] has proved that extensive form rationalizability, and hence common strong

belief in rationality, leads to the backward induction outcome, but not necessarily to the backward

induction strategies, in such games. As a consequence, for generic games with perfect information

both concepts lead to the same outcome, namely the backward induction outcome, but not necessarily to

the same strategies for the players.
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Abstract: It is well-known that in finite strategic games true common belief (or common

knowledge) of rationality implies that the players will choose only strategies that survive

the iterated elimination of strictly dominated strategies. We establish a general theorem

that deals with monotonic rationality notions and arbitrary strategic games and allows to

strengthen the above result to arbitrary games, other rationality notions, and transfinite

iterations of the elimination process. We also clarify what conclusions one can draw for

the customary dominance notions that are not monotonic. The main tool is Tarski’s Fixpoint

Theorem.

Keywords: true common beliefs; arbitrary games; monotonicity; Tarski’s Fixpoint Theorem

1. Introduction

1.1. Contributions

In this paper we provide an epistemic analysis of arbitrary strategic games based on possibility

correspondences. We prove a general result that is concerned with monotonic program properties1 used

by the players to select optimal strategies.

1The concept of a monotonic property is introduced in Section 2.
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More specifically, given a belief model for the initial strategic game, denote by RAT(φ) the property

that each player i uses a property φi to select his strategy (‘each player i is φi-rational’). We establish in

Section 3 the following general result:

Assume that each property φi is monotonic. The set of joint strategies that the players choose in the

states in which RAT(φ) is a true common belief is included in the set of joint strategies that remain after

the iterated elimination of the strategies that for player i are not φi-optimal.

In general, transfinite iterations of the strategy elimination are possible. For some belief models the

inclusion can be reversed.

This general result covers the usual notion of rationalizability in finite games and a ‘global’ version

of the iterated elimination of strictly dominated strategies used in [1] and studied for arbitrary games

in [2]. It does not hold for the ‘global’ version of the iterated elimination of weakly dominated strategies.

For the customary, ‘local’ version of the iterated elimination of strictly dominated strategies we justify

in Section 4 the statement

true common belief (or common knowledge) of rationality implies that the players will

choose only strategies that survive the iterated elimination of strictly dominated strategies

for arbitrary games and transfinite iterations of the elimination process. Rationality refers here to the

concept studied in [3]. We also show that the above general result yields a simple proof of the well-known

version of the above result for finite games and strict dominance by a mixed strategy.

The customary, local, version of strict dominance is non-monotonic, so the use of monotonic

properties has allowed us to provide epistemic foundations for a non-monotonic property. However,

weak dominance, another non-monotonic property, remains beyond the reach of this approach. In

fact, we show that in the above statement we cannot replace strict dominance by weak dominance.

A mathematical reason is that its global version is also non-monotonic, in contrast to strict dominance,

the global version of which is monotonic. To provide epistemic foundations of weak dominance the

only currently known approaches are [4] based on lexicographic probability systems and [5] based on a

version of the ‘all I know’ modality.

1.2. Connections

The relevance of monotonicity in the context of epistemic analysis of finite strategic games has already

been pointed out in [6]. The distinction between local and global properties is from [7] and [8].

To show that for some belief models an equality holds between the set of joint strategies chosen in the

states in which RAT(φ) is true common belief and the set of joint strategies that remain after the iterated

elimination of the strategies that for player i are not φi-rational requires use of transfinite ordinals. This

complements the findings of [9] in which transfinite ordinals are used in a study of limited rationality,

and [10], where a two-player game is constructed for which the ω0 (the first infinite ordinal) and ω0 + 1

iterations of the rationalizability operator of [3] differ.

In turn, [11] show that arbitrary ordinals are necessary in the epistemic analysis of arbitrary strategic

games based on partition spaces. Further, as shown in [2], the global version of the iterated elimination

of strictly dominated strategies, when used for arbitrary games, also requires transfinite iterations of the

underlying operator.
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Finally, [12] invokes Tarski’s Fixpoint Theorem, in the context of what the author calls “general

systems”, and uses this to prove that the set of rationalizable strategies in a finite non-cooperative

game is the largest fixpoint of a certain operator. That operator coincides with the global version of

the elimination of never-best-responses.

Some of the results presented here were initially reported in a different presentation, in [13].

2. Preliminaries

2.1. Strategic Games

Given n players (n > 1) by a strategic game (in short, a game) we mean a sequence

(S1, . . ., Sn, p1, . . ., pn), where for all i ∈ {1, . . ., n}

• Si is the non-empty set of strategies available to player i,

• pi is the payoff function for the player i, so pi : S1 × . . . × Sn →R, where R is the set of

real numbers.

We denote the strategies of player i by si, possibly with some superscripts. We call the elements

of S1 × . . . × Sn joint strategies. Given a joint strategy s we denote the ith element of s by si, write

sometimes s as (si, s−i), and use the following standard notation:

• s−i := (s1, . . ., si−1, si+1, . . ., sn),

• S−i := S1 × . . .× Si−1 × Si+1 × . . .× Sn.

Given a finite non-empty set A we denote by ∆A the set of probability distributions over A and call

any element of ∆Si a mixed strategy of player i.

In the remainder of the paper we assume an initial strategic game

H := (H1, . . ., Hn, p1, . . ., pn)

A restriction of H is a sequence (G1, . . ., Gn) such that Gi ⊆Hi for all i ∈ {1, . . ., n}. Some of Gis can

be the empty set. We identify the restriction (H1, . . ., Hn) with H . We shall focus on the complete lattice

that consists of the set of all restrictions of the game H ordered by the componentwise set inclusion:

(G1, . . ., Gn)⊆ (G′
1, . . ., G

′
n) iff Gi ⊆G′

i for all i ∈ {1, . . ., n}

So in this lattice H is the largest element in this lattice.

2.2. Possibility Correspondences

In this and the next subsection we essentially follow the survey of [14]. Fix a non-empty set Ω of

states. By an event we mean a subset of Ω.

A possibility correspondence is a mapping from Ω to the powerset P(Ω) of Ω. We consider three

properties of a possibility correspondence P :
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(i) for all ω, P (ω) 6= ∅,

(ii) for all ω and ω′, ω′ ∈ P (ω) implies P (ω′) = P (ω),

(iii) for all ω, ω ∈ P (ω).

If the possibility correspondence satisfies properties (i) and (ii), we call it a belief correspondence

and if it satisfies properties (i)–(iii), we call it a knowledge correspondence.2 Note that each knowledge

correspondence P yields a partition {P (ω) | ω ∈ Ω} of Ω.

Assume now that each player i has at its disposal a possibility correspondence Pi. Fix an event E.

We define

�E := �
1E := {ω ∈ Ω | ∀i ∈ {1, . . ., n} Pi(ω)⊆ E}

by induction on k ≥ 1

�
k+1E := ��

kE

and finally

�
∗E :=

∞
⋂

k=1

�
kE

If all Pis are belief correspondences, we usually write B instead of � and if all Pis are knowledge

correspondences, we usually write K instead of �. When ω ∈ B∗E, we say that the event E is common

belief in the state ω and when ω ∈ K∗E, we say that the event E is common knowledge in the state ω.

An event F is called evident if F ⊆�F . That is, F is evident if for all ω ∈ F we have Pi(ω)⊆ F for

all i ∈ {1, . . ., n}. In what follows we shall use the following alternative characterizations of common

belief and common knowledge based on evident events:

ω ∈ �
∗E iff for some evident event F we have ω ∈ F ⊆�E (1)

where � = B or � = K (see [16], respectively Proposition 4 on page 180 and Proposition on

page 174), and

ω ∈ K∗E iff for some evident event F we have ω ∈ F ⊆ E (2)

([17], page 1237).

2.3. Models for Games

We now relate these considerations to strategic games. Given a restriction G := (G1, . . ., Gn) of

the initial game H , by a model for G we mean a set of states Ω together with a sequence of functions

si : Ω→Gi, where i ∈ {1, . . ., n}. We denote it by (Ω, s1, . . ., sn).

In what follows, given a function f and a subset E of its domain, we denote by f(E) the range of f

on E and by f |E the restriction of f to E.

By the standard model M for G we mean the model in which

2Note that the notion of a belief has two meanings in the literature on epistemic analysis of strategic games, so also in this

paper. From the context it is always clear which notion is used. In the modal logic terminology a belief correspondence is a

frame for the modal logic KD45 and a knowledge correspondence is a frame for the modal logic S5, see, e.g. [15].
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• Ω := G1 × . . .×Gn

• si(ω) := ωi, where ω = (ω1, . . ., ωn)

So the states of the standard model for G are exactly the joint strategies in G, and each si is a projection

function. Since the initial game H is given, we know the payoff functions p1, . . ., pn. So in the context

of H the standard model is an alternative way of representing a restriction of H .

Given a (not necessarily standard) model M := (Ω, s1, . . ., sn) for a restriction G and a sequence of

events E = (E1, . . ., En) in M (i.e., of subsets of Ω) we define

GE := (s1(E1), . . ., sn(En))

and call it the restriction of G to E. When each Ei equals E we write GE instead of GE .

Finally, we extend the notion of a model for a restriction G to a belief model for G by assuming that

each player i has a belief correspondence Pi on Ω. If each Pi is a knowledge correspondence, we refer

then to a knowledge model. We write each belief model as

(Ω, s1, . . ., sn, P1, . . ., Pn)

2.4. Operators

Consider a fixed complete lattice (D, ⊆ ) with the largest element ⊤. In what follows we use ordinals

and denote them by α, β, γ. Given a, possibly transfinite, sequence (Gα)α<γ of elements of D we denote

their join and meet respectively by
⋃

α<γ Gα and
⋂

α<γ Gα.

Let T be an operator on (D, ⊆ ), i.e., T : D→D.

• We call T monotonic if for all G,G′, G⊆G′ implies T (G)⊆ T (G′), and contracting if for all G,

T (G)⊆G.

• We say that an element G is a fixpoint of T if G = T (G) and a post-fixpoint of T if G⊆ T (G).

• We define by transfinite induction a sequence of elements T α of D, where α is an ordinal,

as follows:

– T 0 := ⊤,

– T α+1 := T (T α),

– for all limit ordinals β, T β :=
⋂

α<β T
α.

• We call the least α such that T α+1 = T α the closure ordinal of T and denote it by αT . We call

then T αT the outcome of (iterating) T and write it alternatively as T∞.

So an outcome is a fixpoint reached by a transfinite iteration that starts with the largest element. In

general, the outcome of an operator does not need to exist but we have the following classic result due

to [18].3

3We use here its ‘dual’ version in which the iterations start at the largest and not at the least element of a complete lattice.
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Tarski’s Fixpoint Theorem Every monotonic operator T on (D, ⊆ ) has an outcome, i.e., T∞ is

well-defined. Moreover,

T∞ = νT = ∪{G | G⊆ T (G)}

where νT is the largest fixpoint of T .

In contrast, a contracting operator does not need to have a largest fixpoint. But we have the following

obvious observation.

Note 1. Every contracting operator T on (D, ⊆ ) has an outcome, i.e., T∞ is well-defined. ✷

In Section 4 we shall need the following lemma, that modifies the corresponding lemma from [8]

from finite to arbitrary complete lattices.

Lemma 1. Consider two operators T1 and T2 on (D, ⊆ ) such that

• for all G, T1(G)⊆ T2(G),

• T1 is monotonic,

• T2 is contracting.

Then T∞
1 ⊆ T∞

2 .

Proof. We first prove by transfinite induction that for all α

T α
1 ⊆ T α

2 (3)

By the definition of the iterations we only need to consider the induction step for a successor ordinal.

So suppose the claim holds for some α. Then by the first two assumptions and the induction hypothesis

we have the following string of inclusions and equalities:

T α+1
1 = T1(T

α
1 )⊆ T1(T

α
2 )⊆ T2(T

α
2 ) = T α+1

2

This shows that for all α (3) holds. By Tarski’s Fixpoint Theorem and Note 1 the outcomes of T1 and

T2 exist, which implies the claim. ✷

2.5. Iterated Elimination of Non-Rational Strategies

In this paper we are interested in analyzing situations in which each player pursues his own notion

of rationality and this information is common knowledge or true common belief. As a special case we

cover then the usually analyzed situation in which all players use the same notion of rationality.

Given player i in the initial strategic game H := (H1, . . ., Hn, p1, . . ., pn) we formalize his notion of

rationality using an optimality property φ(si, Gi, G−i) that holds between a strategy si ∈ Hi, a set Gi of

strategies of player i and a set G−i of joint strategies of his opponents. Intuitively, φi(si, Gi, G−i) holds

if si is an ‘optimal’ strategy for player i within the restriction G := (Gi, G−i), assuming that he uses

the property φi to select optimal strategies. In Section 4 we shall provide several natural examples of

such properties.
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We say that the property φi used by player i is monotonic if for all G−i, G
′
−i ⊆H−i and si ∈ Hi

G−i ⊆G′
−i and φ(si, Hi, G−i) imply φ(si, Hi, G

′
−i)

So monotonicity refers to the situation in which the set of strategies of player i is set to Hi and the set of

joint strategies of player i’s opponents is increased.

Each sequence of properties φ := (φ1, . . ., φn) determines an operator Tφ on the restrictions of H

defined by

Tφ(G) := G′

where G := (G1, . . ., Gn), G
′ := (G′

1, . . ., G
′
n), and for all i ∈ {1, . . ., n}

G′
i := {si ∈ Gi | φi(si, Hi, G−i)}

Note that in defining the set of strategies G′
i we use in the second argument of φi the set Hi of player’s

i strategies in the initial game H and not in the current restriction G. This captures the idea that at every

stage of the elimination process player i analyzes the status of each strategy in the context of his initial

set of strategies.

Since Tφ is contracting, by Note 1 it has an outcome, i.e., T∞
φ is well-defined. Moreover, if each φi

is monotonic, then Tφ is monotonic and by Tarski’s Fixpoint Theorem its largest fixpoint νTφ exists and

equals T∞
φ . Finally, G is a fixpoint of Tφ iff for all i ∈ {1, . . ., n} and all si ∈ Gi, φi(si, Hi, G−i) holds.

Intuitively, Tφ(G) is the result of removing from G all strategies that are not φi-rational. So the

outcome of Tφ is the result of the iterated elimination of strategies that for player i are not φi-rational.

3. Two Theorems

We now assume that each player i employs some property φi to select his strategies, and we analyze

the situation in which this information is true common belief or common knowledge. To determine

which strategies are then selected by the players we shall use the Tφ operator.

We begin by fixing a belief model (Ω, s1, . . ., sn, P1, . . ., Pn) for the initial game H . Given

an optimality property φi of player i we say that player i is φi-rational in the state ω if

φi(si(ω), Hi, (GPi(ω))−i) holds. Note that when player i believes (respectively, knows) that the state

is in Pi(ω), the set (GPi(ω))−i represents his belief (respectively, his knowledge) about other players’

strategies. That is, (Hi, (GPi(ω))−i) is the restriction he believes (respectively, knows) to be relevant to

his choice.

Hence φi(si(ω), Hi, (GPi(ω))−i) captures the idea that if player i uses φi to select his strategy in the

game he considers relevant, then in the state ω he indeed acts ‘rationally’.

To reason about common knowledge and true common belief we introduce the event

RAT(φ) := {ω ∈ Ω | each player i is φi-rational in ω}

and consider the following two events constructed out of it: K∗RAT(φ) and RAT(φ) ∩B∗RAT(φ). We

then focus on the corresponding restrictions GK∗RAT(φ) and GRAT(φ)∩B∗RAT(φ).

So strategy si is an element of the ith component of GK∗RAT(φ) if si = si(ω) for some ω ∈ K∗RAT(φ).

That is, si is a strategy that player i chooses in a state in which it is common knowledge that each player

j is φj-rational, and similarly for GRAT(φ)∩B∗RAT(φ).
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The following result then relates for arbitrary strategic games the restrictions GRAT(φ)∩B∗RAT(φ) and

GK∗RAT(φ) to the outcome of the iteration of the operator Tφ.

Theorem 1.

(i) Suppose that each property φi is monotonic. Then for all belief models for H

GRAT(φ)∩B∗RAT(φ) ⊆ T∞
φ

(ii) Suppose that each property φi is monotonic. Then for all knowledge models for H

GK∗RAT(φ) ⊆ T∞
φ

(iii) For some standard knowledge model for H

T∞
φ ⊆GK∗RAT(φ)

So part (i) (respectively, (ii)) states that true common belief (respectively, common knowledge) of

φi-rationality of each player i implies that the players will choose only strategies that survive the iterated

elimination of non-φ-rational strategies.

Proof.

(i) Fix a belief model (Ω, s1, . . ., sn, P1, . . ., Pn) for H . Take a strategy si that is an element of the ith

component of GRAT(φ)∩B∗RAT(φ). Thus we have si = si(ω) for some state ω such that ω ∈ RAT(φ) and

ω ∈ B∗RAT(φ). The latter implies by (1) that for some evident event F

ω ∈ F ⊆ {ω′ ∈ Ω | ∀i ∈ {1, . . ., n} Pi(ω
′)⊆ RAT(φ)} (4)

Take now an arbitrary ω′ ∈ F ∩ RAT(φ) and i ∈ {1, . . ., n}. Since ω′ ∈ RAT(φ), it holds that

player i is φi-rational in ω′, i.e., φi(si(ω
′), Hi, (GPi(ω′))−i) holds. But F is evident, so Pi(ω

′)⊆ F .

Moreover by (4) Pi(ω
′)⊆ RAT(φ), so Pi(ω

′)⊆ F ∩ RAT(φ). Hence (GPi(ω′))−i ⊆ (GF∩RAT(φ))−i and

by the monotonicity of φi we conclude that φi(si(ω
′), Hi, (GF∩RAT(φ))−i) holds.

By the definition of Tφ this means that GF∩RAT(φ) ⊆ Tφ(GF∩RAT(φ)), i.e. GF∩RAT(φ) is a post-fixpoint

of Tφ. But Tφ is monotonic since each property φi is. Hence by Tarski’s Fixpoint Theorem

GF∩RAT(φ) ⊆ T∞
φ . But si = si(ω) and ω ∈ F ∩ RAT(φ), so we conclude by the above inclusion that si

is an element of the ith component of T∞
φ . This proves the claim.

(ii) By the definition of common knowledge for all events E we have K∗E ⊆ E. Hence for all φ we

have K∗RAT(φ)⊆ RAT(φ) ∩K∗RAT(φ) and consequently GK∗RAT(φ) ⊆GRAT(φ)∩K∗RAT(φ).

So part (ii) follows from part (i).

(iii) Suppose T∞
φ = (G1, . . ., Gn). Consider the event F := G1 × . . . × Gn in the standard model for

H . Then GF = T∞
φ . Define each possibility correspondence Pi by

Pi(ω) :=

{

F if ω ∈ F

Ω \ F otherwise
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Each Pi is a knowledge correspondence (also when F = ∅ or F = Ω) and clearly F is an evident event.

Take now an arbitrary i ∈ {1, . . ., n} and an arbitrary state ω ∈ F . Since T∞
φ is a fixpoint of Tφ and

si(ω) ∈ Gi we have φi(si(ω), Hi, (T
∞
φ )−i), so by the definition of Pi we have φi(si(ω), Hi, (GPi(ω))−i).

This shows that each player i is φi-rational in each state ω ∈ F , i.e., F ⊆ RAT(φ).

Since F is evident, we conclude by (2) that in each state ω ∈ F it is common knowledge that each

player i is φi-rational, i.e., F ⊆K∗RAT(φ). Consequently

T∞
φ = GF ⊆GK∗RAT(φ)

✷

Items (i) and (ii) show that when each property φi is monotonic, for all belief models of H it holds

that the joint strategies that the players choose in the states in which each player i is φi-rational and it is

common belief that each player i is φi-rational (or in which it is common knowledge that each player i

is φi-rational) are included in those that remain after the iterated elimination of the strategies that are not

φi-rational.

Note that monotonicity of the φi properties was not needed to establish item (iii).

By instantiating the φi’s with specific properties we get instances of the above result that refer to

specific definitions of rationality. This will allow us to relate the above result to the ones established

in the literature. Before we do this we establish a result that identifies a large class of properties φi for

which Theorem 1 does not apply.

Theorem 2. Suppose that a joint strategy s 6∈ T∞
φ exists such that

φi(si, Hi, ({sj}j 6=i))

holds all i ∈ {1, . . ., n}. Then for some knowledge model for H the inclusion

GK∗RAT(φ) ⊆ T∞
φ

does not hold.

Proof. We extend the standard model for H by the knowledge correspondences P1, . . ., Pn where for all

i ∈ {1, . . ., n}, Pi(ω) = {ω}. Then for all ω and all i ∈ {1, . . ., n}

GPi(ω) = ({s1(ω)}, . . ., {sn(ω)})

Let ω′ := s. Then for all i ∈ {1, . . ., n}, GPi(ω′) = ({s1}, . . ., {sn}), so by the assumption each

player i is φi-rational in ω′, i.e., ω′ ∈ RAT(φ). By the definition of Pis the event {ω′} is evident and

ω′ ∈ KRAT(φ). So by (1) ω′ ∈ K∗RAT(φ). Consequently s = (s1(ω
′), . . ., sn(ω

′)) ∈ GK∗RAT(φ).

This yields the desired conclusion by the choice of s. ✷

4. Applications

We now analyze to what customary game-theoretic properties the above two results apply. By a belief

of player i about the strategies his opponents play given the set G−i of their joint strategies we mean one

of the following possibilities:
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• a joint strategy of the opponents of player i, i.e., s−i ∈ G−i, called a point belief ,

• or, in the case the game is finite, a joint mixed strategy of the opponents of player i

(i.e., (m1, . . .,mi−1,mi+1, . . .,mn), where mj ∈ ∆Gj for all j 6= i), called an independent belief ,

• or, in the case the game is finite, an element of ∆G−i, called a correlated belief .

In the second and third case the payoff function pi can be lifted in the standard way to an expected

payoff function pi : Hi × Bi(G−i)→R, where Bi(G−i) is the corresponding set of beliefs of player i

held given G−i.

We use below the following abbreviations, where si, s
′
i ∈ Hi and G−i is a set of the strategies of the

opponents of player i:

• (strict dominance) s′i ≻G−i
si for

∀s−i ∈ G−i pi(s
′
i, s−i) > pi(si, s−i)

• (weak dominance) s′i ≻
w
G−i

si for

∀s−i ∈ G−i pi(s
′
i, s−i) ≥ pi(si, s−i) ∧ ∃s−i ∈ G−i pi(s

′
i, s−i) > pi(si, s−i)

In the case of finite games the relations ≻G−i
and ≻w

G−i
between a mixed strategy and a pure strategy

are defined in the same way.

We now introduce natural examples of the optimality notion.

• sdi(si, Gi, G−i) ≡ ¬∃s′i ∈ Gi s
′
i ≻G−i

si

• (assuming H is finite) msdi(si, Gi, G−i) ≡ ¬∃m′
i ∈ ∆Gi m

′
i ≻G−i

si

• wdi(si, Gi, G−i) ≡ ¬∃s′i ∈ Gi s
′
i ≻

w
G−i

si

• (assuming H is finite) mwdi(si, Gi, G−i) ≡ ¬∃m′
i ∈ ∆Gi m

′
i ≻

w
G−i

si

• bri(si, Gi, G−i) ≡ ∃µi ∈ Bi(G−i) ∀s
′
i ∈ Gi pi(si, µi) ≥ pi(s

′
i, µi)

So sdi and wdi are the customary notions of strict and weak dominance and msdi and mwdi are their

counterparts for the case of dominance by a mixed strategy. Note that the notion bri of best response,

comes in three ‘flavours’ depending on the choice of the set Bi(G−i) of beliefs.

Consider now the iterated elimination of strategies as defined in Subsection 2.5, so with the repeated

reference by player i to the strategy set Hi. For the optimality notion sdi such a version of iterated

elimination was studied in [2], for mwdi it was used in [4], while for bri it corresponds to the

rationalizability notion of [3].

In [10], [2] and [7] examples are provided showing that for the properties sdi and bri in general

transfinite iterations (i.e., iterations beyond ω0) of the corresponding operator are necessary to reach

the outcome. So to establish for them part (iii) of Theorem 1 transfinite iterations of the Tφ operator

are necessary.

The following lemma holds.
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Lemma 2. The properties sdi, msdi and bri are monotonic.

Proof. Straightforward. ✷

So Theorem 1 applies to the above three properties. In contrast, Theorem 1 does not apply to the

remaining two properties wdi and mwdi, since, as indicated in [8], the corresponding operators Twd and

Tmwd are not monotonic, and hence the properties wdi and mwdi are not monotonic.

In fact, the desired inclusion does not hold and Theorem 2 applies to these two optimality properties.

Indeed, consider the following game:

L R

U 1, 1 0, 1

D 1, 0 1, 1

Then the outcome of iterated elimination for both wdi and mwdi yields G := ({D}, {R}). Further,

we have wd1(U, {U,D}, {L}) and wd2(L, {L,R}, {U}), and analogously for mwd1 and mwd2.

So the joint strategy (U,L) satisfies the conditions of Theorem 2 for both wdi and mwdi. Note that

this game also furnishes an example for non-monotonicity of wdi since wd1(U, {U,D}, {L,R}) does

not hold.

This shows that the optimality notions wdi and mwdi cannot be justified in the used epistemic

framework as ‘stand alone’ concepts of rationality.

5. Consequences of Common Knowledge of Rationality

In this section we show that common knowledge of rationality is sufficient to entail the customary

iterated elimination of strictly dominated strategies. We also show that weak dominance is not amenable

to such a treatment.

Given a sequence of properties φ := (φ1, . . ., φn), we introduce an operator Uφ on the restrictions of

H defined by

Uφ(G) := G′,

where G := (G1, . . ., Gn), G
′ := (G′

1, . . ., G
′
n), and for all i ∈ {1, . . ., n}

G′
i := {si ∈ Gi | φi(si, Gi, G−i)}.

So when defining the set of strategies G′
i we use in the second argument of φi the set Gi of player’s i

strategies in the current restriction G. That is, Uφ(G) determines the ‘locally’ φ-optimal strategies in

G. In contrast, Tφ(G) determines the ‘globally’ φ-optimal strategies in G, in that each player i must

consider all of his strategies s′i that occur in his strategy set Hi in the initial game H .

So the ‘global’ form of optimality coincides with rationality, as introduced in Subsection 2.5, while

the customary definition of iterated elimination of strictly (or weakly) dominated strategies refers to the

iterations of the appropriate instantiation of the ‘local’ Uφ operator.

Note that the Uφ operator is non-monotonic for all non-trivial optimality notions φi such that

φi(si, {si}, ({sj}j 6=i)) for all joint strategies s, so in particular for bri, sdi,msdi, wdi and mwdi. Indeed,

given s let Gs denote the corresponding restriction in which each player i has a single strategy si.
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Each restriction Gs is a fixpoint of Uφ. By non-triviality of φis we have Uφ(H) 6= H , so for each

restriction Gs with s including an eliminated strategy the inclusion Uφ(Gs)⊆ Uφ(H) does not hold, even

though Gs ⊆H . In contrast, as we saw, by virtue of Lemma 2 the Tφ operator is monotonic for bri, sdi

and msdi.

First we establish the following consequence of Theorem 1. When each property φi equals bri, we

write here RAT(br) and similarly with Usd.

Corollary 1.

(i) For all belief models

GRAT(br)∩B∗RAT(br) ⊆ U∞
sd

(ii) for all knowledge models

GK∗RAT(br) ⊆ U∞
sd

where in both situations we use in bri the set of poinr beliefs.

Proof.

(i) By Lemma 2 and Theorem 1(i) GRAT(br)∩B∗RAT(br) ⊆ T∞
br Each best response to a joint strategy of the

opponents is not strictly dominated, so for all restrictions G

Tbr(G)⊆ Tsd(G)

Also, for all restrictions G, Tsd(G)⊆ Usd(G). So by Lemma 1 T∞
br ⊆ U∞

sd , which concludes the proof.

(ii) By part (i) and the fact that K∗RAT(br)⊆ RAT(br). ✷

Part (ii) formalizes and justifies in the epistemic framework used here the often used statement:

common knowledge of rationality implies that the players will choose only strategies that

survive the iterated elimination of strictly dominated strategies

for games with arbitrary strategy sets and transfinite iterations of the elimination process, and where

best response means best response to a point belief.

In the case of finite games Theorem 1 implies the following result. For the case of independent

beliefs it is implicitly stated in [19], explicitly formulated in [20] (see [14, page 181]) and proved using

Harsanyi type spaces in [21].

Corollary 2. Assume the initial game H is finite.

(i) For all belief models for H

GRAT(br)∩B∗RAT(br) ⊆ U∞
msd,

(ii) for all knowledge models for H

GK∗RAT(br) ⊆ U∞
msd,

where in both situations we use in bri either the set of point beliefs or the set of independent beliefs or

the set of correlated beliefs.
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Proof. The argument is analogous as in the previous proof but relies on a subsidiary result and runs

as follows.

(i) Denote respectively by brpi, brii and brci the best response property w.r.t. point, independent and

correlated beliefs of the opponents. Below φ stands for either brp, bri or brc.

By Lemma 2 and Theorem 1 GRAT(φ)∩B∗RAT(φ) ⊆ T∞
φ . Further, for all restrictions G we have

both Tφ(G)⊆ Uφ(G) and Ubr(G)⊆ Ubri(G)⊆ Ubrc(G). So by Lemma 1 T∞
φ ⊆ U∞

brc. But by the result

of [22], (page 60) (that is a modification of the original result of [23]), for all restrictions G we have

Ubrc(G) = Umsd(G), so U∞
brc = U∞

msd, which yields the conclusion.

(ii) By (i) and the fact that K∗RAT(br)⊆ RAT(br). ✷

Finally, let us clarify the situation for the remaining two optimality notions, wdi and mwdi. For them

the inclusions of Corollaries 1 and 2 do not hold. Indeed, it suffices to consider the following initial

game H:

L R

U 1, 0 1, 0

D 1, 0 0, 0

Here every strategy is a best response but D is weakly dominated by U . So both U∞
wd and U∞

mwd

are proper subsets of T∞
br . On the other hand by Theorem 1(iii) for some standard knowledge

model for H we have GK∗RAT(br) = T∞
br . So for this knowledge model neither GK∗RAT(br) ⊆ U∞

wd nor

GK∗RAT(br) ⊆ U∞
mwd holds.
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1. Introduction

Battigalli and Sinischalchi [1] constructed the space of hierarchies of conditional beliefs and used it

to provide epistemic foundations for solution concepts in dynamic games. We consider the question of

consistency of beliefs in the space of hierarchies of conditional beliefs. In the space of hierarchies

of beliefs, Aumann [2], Aumann and Brandenburger [3] and Barelli [4], among others, have used

consistency of beliefs to provide epistemic foundations for solution concepts in games in normal

form. Here we provide an analogous analysis for multi-stage games with observable actions, in the

corresponding space of hierarchies of conditional beliefs. In particular, we show that consistency of

beliefs and extensive form rationality provide epistemic foundations for correlated subgame perfect

equilibrium (correlated SPE), and these two conditions, plus a notion of constancy of conjectures,

provide epistemic foundations for subgame perfect equilibrium (SPE).1

1For simplicity we deal only with finite multi-stage games with with observed actions, so sequential rationality is well

captured by subgame perfection; the analysis can be generalized to include incomplete information and/or more complex

information structures, where sequential equilibrium is the relevant equilibrium concept to capture sequential rationality.
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The following simple example helps understand the ideas involved. Consider the standard Battle of

Sexes game, with the payoff matrix below,

F O

F 2, 1 0, 0

O 0, 0 1, 2

The story is that the players decide simultaneously where to meet (either at a football game, F , or an

opera house, O), and each player would rather go to the same place as the other, but has a preference for

one venue over the other. Let Ai = {F,O} for i = 1, 2 and A = A1 × A2. A correlated equilibrium for

such a simultaneous move game is a Nash equilibrium of the game augmented by some payoff irrelevant

state space, which is understood by both players. Consider, for instance, that each player chooses F if

the weather is good, and chooses O otherwise (that is, they go to the outdoor event if the weather is good,

and to the indoor event if the weather is not good). It is clear that such a strategy is a Nash equilibrium

of the game augmented by the state space {good weather, weather not good}: if the other player uses

the strategy, it is in the given player’s interest use it as well (if the weather is good (not good), a given

player knows that the other will go to the football game (opera house), and will do well to go there too).

Let p be the probability of the weather being good. Then the pair of strategies above gives rise to the

distribution of joint actions η ∈ ∆(A) given by η(F, F ) = p and η(O,O) = 1− p, and it is without loss

to focus directly on such distributions in describing a correlated equilibrium. It suffices that, for each

ai ∈ Ai, the expected payoff of ai given η(ai, ·) ∈ ∆(Aj), j 6= i, is not smaller than the expected payoff

of any other action a′i, for i = 1, 2.

Now consider that the players play the game twice. That is, the players play the game once, observe

its outcome, play it again, and get the sum of the payoffs obtained in each round. Let H = {∅}∪A denote

the set of histories. The empty history represents the first round, and each of the four joint strategies in

A represents a possible second round. Recall that a SPE is a Nash equilibrium of the entire game that

induces Nash equilibria at each subgame. Analogously, a correlated SPE is a correlated equilibrium of

the entire game that induces correlated equilibria at each subgame. It can be described as follows. Let

η ∈ ∆(A) be a correlated equilibrium of the original Battle of the Sexes game, like the η described above.

A correlated SPE is a list of probability distributions (νh)h∈H with νh ∈ ∆(A) for each h ∈ H , where

νh a correlated equilibrium for the continuation game at history h ∈ A and ν∅ a correlated equilibrium

of the one shot game given by the first round outcome and the contingent second round outcome, given

νh with h ∈ A. That is, each of the four continuation games is simply the original Battle of the Sexes

game played after the first round. So a correlated equilibrium for a continuation game is a probability

distribution η ∈ ∆(A). In the first round, on the other hand, each joint action gives rise to a (potentially)

different continuation strategy. So it is not a simple stage game as the games in the second round. But it

can be viewed as an one-shot game, with payoffs given by the sum of what is obtained in the first round

and of the conditional payoffs in the second round, given the correlated equilibria of the four potential

continuation games. Then, for instance, νh = η for all h ∈ H is a correlated SPE, because νa (= η) is a

correlated equilibrium of the continuation game after history h = a for each a ∈ A, and given the four

continuation correlated moves (νa)a∈A, ν∅ (= η) is a correlated equilibrium of the game with payoffs

ui(a) + ui(η), where ui is player i’s stage game payoff and ui(η) is the expected payoff given η (so, in
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particular, the expected payoff given ν∅ is simply ui(η)+ui(η)). More complex correlated SPE involving

different correlated continuation strategies can be constructed analogously.

Likewise, let η ∈ ∆(A1) × ∆(A2) be a joint distribution associated with a Nash equilibrium of the

stage game. For instance, η(F, F ) = η(O,O) = 2
9
, η(F,O) = 4

9
and η(O,F ) = 1

9
, which is the

joint distribution associated with the Nash equilibrium of the original Battle of the Sexes game in non

degenerate mixed strategies. Then a list (νh)h∈H with νh = η for all h ∈ H is a SPE of the game, for the

same reason as above. More complex SPE with different Nash equilibria of the continuation games can

be constructed analogously.

Now let’s perform an epistemic analysis on the game, that is, an analysis of knowledge and beliefs

of the players. In order to do so, we append a type structure (T1, T2, g1, g2) with gi,h ∈ ∆(S × Tj) for

each h ∈ H , where S = S1 × S2 with Si = {F,O}H for i = 1, 2. The beliefs of a type ti, (gi,h(ti))h∈H

form a conditional probability system (CPS), (the formal definitions are provided below). A “state” for

a player is a strategy-type pair (si, ti), describing the player’s strategy choice and beliefs. Epistemic

statements can now be stated in terms of the states of the players. For instance, let Si(h) be player i’s set

of strategies consistent with history h ∈ H . Let η = η(·|Sj(h))h∈H , where η(·|Sj(h)) ∈ ∆(Sj(h)) for

each h ∈ H . We say that si is a best response to η, written si ∈ ri(η), if si maximizes the expected utility

with respect to η(·|Sj(h)) for every history h consistent with si. And we say that the strategy-type pair

(si, ti) ∈ Si × Ti is rational if si ∈ ri((margSj
gi,h(ti))h∈H). Statements like “rationality is

common knowledge among the players” can be described by a type structure where in each state

(s, t) ∈ S1 × S2 × T1 × T2 both players are rational. Note that a type of a player determines the

conditional beliefs at every history, and rationality captures sequentially rational choices, after every

history (given the conditional beliefs).

Assume that the beliefs of the players are consistent in the following sense. There is a CPS (µh)h∈H

with µh ∈ ∆(S(h) × T ) for each h ∈ H , such that gi,h(ti)(E × Tj) = µh(E × T |ti) for all E ⊂ S,

ti ∈ Ti and i = 1, 2. The idea is analogous to action-consistency in Barelli [4], which is a generalization

of the standard common prior assumption. Because strategies are in principle verifiable entities, we can

conceive of an outside observer offering bets on S, conditional on each history, where the payouts of the

bets are measured in utils. The two players will be in a no-bets situation if there does not exist a bet that

yields a sure gain to an outsider. In Barelli [4] it is shown that this is equivalent to consistency of beliefs,

as defined above.

Now, if consistency and rationality obtain at every (s, t) ∈ S × T ,2 then we can identify a correlated

SPE (νh)h∈H from the CPS (µh)h∈H by putting νh(a) = µh({s : sh = a} × T ), for all a ∈ A. Indeed, if

it is the case that beliefs are consistent and the CPS (µh)h∈H satisfies µh({s : sh = (F, F )}×T ) = p and

µh({s : sh = (O,O)} × T ) = 1− p for every h ∈ H , then it is straightforward to verify that rationality

is obtained at every state, and that we obtain the correlated SPE described above. Indeed, rationality

implies that no player wants to deviate from the recommended action, as required in a correlated SPE,

and (νh)h∈H is exactly the correlated SPE above. Other correlated SPE are analogously obtained as we

vary the consistent CPS (µh)h∈H . The key observation here is that, under consistency, rationality ensures

that the system of inequalities defining a correlated SPE is met.

2More precisely, if throughout the support of the CPS (µh)h∈H defined above we have rational strategy-type pairs.
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If instead µh({s : sh = (F, F )}×T ) = µh({s : sh = (O,O)}×T ) = 2
9
, µh({s : sh = (F,O)}×T ) =

4
9

and µh({s : sh = (O,F )} × T ) = 1
9

for every h ∈ H , then we again have rationality at every

state, and the SPE described above is obtained. As in Aumann and Brandenburger [3] and Barelli [4],

the key observation is that constancy of conjectures in the support of the CPS (µh)h∈H ensures that

(µh({s : sh = a} × T ))a∈A is the product of its marginals, just as above. So rationality, consistency and

constancy of conjectures in the support of the CPS are sufficient conditions for a SPE. It is important

to note that constancy of conjectures is implied by (but does not imply) conjectures being commonly

known among the players.

2. Set Up

The set up is as in Battigalli and Siniscalchi [1]. Let X be a Polish space, and let A be its Borel

sigma algebra. Let B ∈ A be a countable collection of clopen sets, with ∅ /∈ B. The collection B

represents the relevant hypotheses. A CPS on (X,A,B) is a mapping µ(·|·) : A×B → [0, 1] satisfying:

(i) µ(B|B) = 1 for all B ∈ B, (ii) µ(·|B) ∈ ∆(X), and (iii) for all A ∈ A, B,C ∈ B, if A ⊂ B ⊂ C

then µ(A|B)µ(B|C) = µ(A|C).3 The set of CPSs on (X,A,B) is a closed subset of [∆(X)]B, and it

denoted by ∆B(X) .

Consider a finite multi-stage game G with observable actions (Fudenberg and Tirole [5], Chap. 3).

Let H be the set of histories and let Si be the set of strategies si : H → Ai, where Ai is the set of all

possible actions for player i ∈ I , and si(h) ∈ Ai(h) for each h ∈ H, where Ai(h) is the set of actions

available at h. Let ui : S → R denote player i’s utility function, with S = ×i∈ISi. As usual, we use

A−i = ×j 6=iAj and A = ×i∈IAi (likewise for other sets, like Ti, T−i and T below.)

A correlated equilibrium of a finite normal form game (Ai, ui)i∈I is a probability distribution

η ∈ ∆(A) satisfying

∑
a
−i∈A−i

[ui(ai, a−i)− ui(a
′
i, a−i)]η(a) ≥ 0

for all i ∈ I and all ai, a
′
i ∈ Ai. The interpretation is the one provided in the Introduction: the players

use some external random device to peg their actions to, and assuming that the other players follow

the recommended choices with the implied likelihoods, a given player has no incentive to deviate from

his/her recommended choices. Because any such equilibrium generates a probability distribution over the

joint actions, it is convenient to focus directly on such distributions (in the same way that a mixed strategy

Nash equilibrium is defined directly on distributions, and not on the random variables that generate the

distributions).

A correlated SPE of a finite multi-stage game with observed actions is given by ν = (νh)h∈H, with

νh ∈ ∆(A(h)), which induces correlated equilibria at every subgame. That is, for each history h we

have a continuation game G(h) where the payoffs are defined for the histories that are consistent with

h. Given h, we have a continuation correlated strategy ν|h, given by the restriction of ν to histories

consistent with h. Then a correlated SPE is ν such that ν|h is a correlated equilibrium of G(h) for

every h ∈ H. Standard dynamic programming arguments show that this is equivalent to the description

provided in the Introduction. An SPE is a correlated SPE ν with νh ∈ ×i∈I∆(Ai(h)) for each h ∈ H.

3∆(X) denotes the space of probability measures on (X,A).
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Let Si(h) be player i’s set of strategies consistent with history h ∈ H, and let H(si) be the

set of histories consistent with si. The relevant hypotheses for the players are thus the collection

B = {S(h) : h ∈ H}. For a given player i, the hypotheses that are consistent with i’s strategies

are Bi = {Si(h) : h ∈ H}. As in Battigalli and Siniscalchi [1], we simplify notation by writing ∆Bi(·)

and ∆B(·) as ∆H(·).

In order to perform an epistemic analysis, we append a type structure to the game, describing the

beliefs of the players. A type space is a tuple T = (Ti, gi)i∈I with gi : Ti → ∆H(S × T−i)

for each i ∈ I . Again, to simplify notation we write (gi,h(ti))h∈H ∈ ∆H(S × T−i) instead of

(gi,S(h)(ti))S(h)∈B ∈ ∆B(S × T−i).

Let η = η(·|S−i(h))h∈H ∈ ∆H(S−i). We say that si is a best response to η, written si ∈ ri(η), if for

all h ∈ H(si) and s′i ∈ Si(h), we have

∑
s
−i∈S−i(h)

[ui(si, s−i)− ui(s
′
i, s−i)]η(s−i|S−i(h)) ≥ 0

We then say that a strategy-type pair (si, ti) is rational if si ∈ ri((margS
−i
gi,h(ti))h∈H), and if si ∈ Si(h)

then gi,h(ti)({(si} × S−i × T−i) = 1. We say that player i is rational at state (s, t) ∈ S × T if the

strategy-type pair (si, ti) ∈ Si × Ti is rational.

A CPS µ ∈ ∆H(S × T ) is called a consistent prior if

µh(E × T ) =
∫
Ti

gi,h(ti)(E × T−i)margTi
µh(dti)

for all i ∈ I , all h ∈ H and all E ⊂ S. It then follows that gi,h(ti)(E × T−i) = µh(E × T |ti) for all

i ∈ I , all h ∈ H, all E ⊂ S and margTi
µh-a.e. ti. Let supp µ =

⋃
h∈H supp µh denote the support of the

consistent prior. As advanced above, consistency is founded on players being in a no-bets situation, that

is, a situation where an outside observer cannot make a sure gain on the group of players by offering bets

on the strategy choices of the players. Proposition 5.3 in Barelli [4] establishes the equivalence between

consistency and no-bets, and the reader is referred to that paper for further details.

For the sake of comparison with the literature, consider a finite normal form game G = (Ai, ui)i∈I

and a type space T = (Ti, λi)i∈I , with λi(ti) ∈ ∆(A × T−i) capturing hierarchies of beliefs. Player

i is rational at state (a, t) if ai is a best response to his conjecture margA
−i
λi(ti) and λi(ti)({ai} ×

A−i × T−i) = 1. A common prior is a probability measure p ∈ ∆(A × T ) such that λi(ti) = p(·|ti)

for margTi
p-a.e. ti. An action-consistent prior is a probability measure π ∈ ∆(A × T ) such that

margAλi(ti) = margAπ(·|ti) for margTi
π-a.e. ti. Aumann [2] showed that, when there is a common

prior, common knowledge of rationality implies that players play a correlated equilibrium. Aumann and

Brandenbuger [3] showed that common knowledge of rationality and of conjectures and the existence

of a common prior are sufficient conditions for players to play a Nash equilibrium. These results were

extended in Barelli [4] with the use of action-consistency in the place of common prior, rationality

in the support of the action-consistent prior in the place of common knowledge of rationality and

constancy of conjectures in the support of the action-consistent prior in the place of common knowledge

of conjectures.

Note that the notion of consistency used here is much more demanding than using action-consistency

in the normal form of the game. Consistency requires that players be at a no-bets situation after every
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history h ∈ H, whereas action-consistency allows for players to not be at a no-bets situation after

histories that are not compatible with the strategy profiles in the support of the action-consistent prior.

Players are required to be aware of a potential outsider at every counter factual that they envisage while

choosing their strategies.

3. Results

For a given consistent prior µ, let ν = (νh)h∈H be given by νh(a) = margSµh(s : sh = a) for each

a ∈ A(h), so that νh ∈ ∆(A(h)). We have:

Proposition 1. Let G be a finite multi-stage game with observed actions, and let T be a type space

associated with G. Assume that there exists a consistent prior µ ∈ ∆H(S × T ) such that player i is

rational at all (s, t) ∈ supp µ, for every i ∈ I . Then ν defined above is a correlated SPE.

Proof. By consistency, we have margS
−i
gi,h(ti) = margS

−i
µh(·|ti) for every i ∈ I , h ∈ H and

ti ∈ supp margTi
µh. By rationality we then have for each i ∈ I and every h ∈ H(si)

∑
s
−i∈S−i(h)

[ui(si, s−i)− ui(s
′
i, s−i)]margS

−i
µh(s−i|ti) ≥ 0

for every (si, ti) and every s′i ∈ Si(h). Let η = (ηh)h∈H with ηh ∈ ∆(S(h)) be given by

ηh(s) =
∫
Ti(si)

margS
−i
µh(s−i|ti)margTi

µh(dti)

where Ti(si) = {t′i ∈ Ti : (si, t
′
i) is rational}, so that

∑
s
−i∈S−i(h)

[ui(si, s−i)− ui(s
′
i, s−i)]ηh(s) ≥ 0

for every i ∈ I , si, s
′
i in Si(h) and h ∈ H(si). Now notice that the restriction of ν to a history h ∈ H,

ν|h, is the behavioral representation of ηh. By Kuhn’s Theorem, the distribution over final outcomes

induced by ηh is the same as that induced by ν|h, so ν|h is a correlated equilibrium of the continuation

game G(h) for every history h ∈ H, and we are done.

Let φi,h(ti) = margS
−i
gi,h(ti) denote the conjecture of type ti at h ∈ H. We have:

Proposition 2. Let G be a finite multi-stage game with observed actions, and let T be a type space

associated with G. Assume that there exists a consistent prior µ ∈ ∆H(S × T ) such that (i) player i

is rational at all (s, t) ∈ supp µ for every i ∈ I and (ii) φi,h(ti) = φi,h(t
′
i) for every i ∈ I for every

ti, t
′
i ∈ supp margTi

µh, for each h ∈ H. Then ν defined above is a SPE.

Proof. Fix h ∈ H and let φi,h be player i’s constant conjecture in the support of margTi
µh. By

consistency and rationality, we have for each s ∈ S(h)

margSµh(s) = margTi
µh(Ti(si))φi,h(s−i)

where Ti(si) is as in Proposition 1. Hence

margSµh = margSi
µh ⊗ margS

−i
µh

Now induction in the number of players shows that margSµh = ⊗i∈ImargSi
µh, and a fortiori

νh ∈ ×i∈I∆(Ai(h)), for all h ∈ H. The result then follows from Proposition 1.
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4. Conclusion

The results in section 3 tell us the following: under consistency, rationality yields correlated SPE

and adding constancy of conjectures to these two conditions yield SPE. These results are analogous

to the results in Aumann [2], Aumann and Brandenburger [3] and Barelli [4]. As in the latter, beliefs

are required to be consistent only at events that are potentially observable by an outsider, who could

in principle force beliefs to be consistent by offering bets on the observable events. Rationality and

constancy of conjectures have to hold in the support of the consistent prior. Because rationality

and/or constancy of conjectures are implied by (but do not imply) rationality and/or conjectures being

commonly known among the players, we have that rationality need not be common knowledge for

players to play a correlated SPE, and neither do conjectures have to be common knowledge for players

to play a SPE.
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Abstract: We propose some variants of a multi-modal of joint action, preference and

knowledge that support reasoning about epistemic games in strategic form. The first part

of the paper deals with games with complete information. We first provide syntactic proofs

of some well-known theorems in the area of interactive epistemology that specify some

sufficient epistemic conditions of equilibrium notions such as Nash equilibrium and Iterated

Deletion of Strictly Dominated Strategies (IDSDS). Then, we present a variant of the logic

extended with dynamic operators of Dynamic Epistemic Logic (DEL). We show that it

allows to express the notion IDSDS in a more compact way. The second part of the paper

deals with games with weaker forms of complete information. We first discuss several

assumptions on different aspects of perfect information about the game structure (e.g., the

assumption that a player has perfect knowledge about the players’ strategy sets or about the

preference orderings over strategy profiles), and show that every assumption is expressed by

a corresponding logical axiom of our logic. Then we provide a proof of Harsanyi’s claim that

all uncertainty about the structure of a game can be reduced to uncertainty about payoffs.

Sound and complete axiomatizations of the logics are given, as well as some complexity

results for the satisfiability problem.

Keywords: game theory; modal logic; dynamic epistemic logic

1. Introduction

The aim of this article is to propose a modal logic framework that allows to reason about epistemic

games in strategic form. In this kind of games players decide what to do according to some general
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principles of rationality while being uncertain about several aspects of the interaction such as other

agents’ choices, other agents’ preferences, etc.

While epistemic games have been extensively studied in economics (in the so-called interactive

epistemology area, see e.g., [1–6]) and while there have been few analyses of epistemic games in modal

logic (see, e.g., [3,7–9]), no modal logic approach to epistemic games has been proposed up to now that

addresses all the following issues at the same time:

• to provide a logic, and a corresponding formal semantics, which is sufficiently general:

– to express solution concepts like Nash Equilibrium or Iterated Deletion of Strictly Dominated

Strategies (IDSDS) and to derive syntactically the epistemic and rationality conditions on

which such solution concepts are based,

– to study epistemic games both with complete information and with incomplete information;

• to prove its soundness and completeness;

• to study its computational properties like decidability and complexity.

In this article, we try to fill this gap by proposing some variants of a multi-modal logic of joint action,

preference and knowledge interpreted on a Kripke-style semantics, that allow to represent both epistemic

games with complete information and epistemic games with different forms of incomplete information

about the game structure. We give sound and complete axiomatizations of all these logics as well as

some complexity results for the satisfiability problem.

The article is organized in two parts: the first part is focused on strategic games with complete

information, while the second one extends the analysis to strategic games with incomplete information.

In Section 2 we present a modal logic, called MLEG (Modal Logic of Epistemic Games), that

supports reasoning about epistemic games with complete information in which an agent can only have

uncertainty about other agents’ current choices. A complete axiomatization and complexity results for

this logic are given.

Section 3 is devoted to the analysis in MLEG of the epistemic conditions of Nash equilibrium and

IDSDS. We use the logic MLEG in order to provide syntactic proofs of some well-known theorems

in the area of interactive epistemology such as the theorem that specifies some sufficient epistemic

conditions of Nash equilibrium in terms of players’ rationality and knowledge about other players’

choices, and the theorem characterizing IDSDS in terms of common knowledge of rationality.

In Section 4 we make MLEG dynamic by extending it with constructions of Dynamic Epistemic

Logic (DEL) [10–12], and we show that this dynamic version of MLEG allows to express the notion

IDSDS in a more compact way than in the static MLEG. A complete axiomatization for this dynamic

extension of the logic MLEG is given.

In Section 5 we show how our logical framework can be easily adapted in order to study strategic

interaction with incomplete information about the game structure. In Section 6 we discuss several

assumptions on different aspects of complete information about the game structure (e.g., the assumption

that a player has perfect knowledge about the players’ strategy sets or about the players’ preference

ordering over strategy profiles). We show that every assumption is expressed by a corresponding
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logical axiom. Consequently, a class of epistemic games characterized by a specific aspect of complete

information about the game structure corresponds to a specific variant of the logic MLEG. We

present some complexity results for these variants of the logic MLEG, that are interesting because

they show how complexity of our logic varies from games with complete information to games with

incomplete information.

We also provide a formal proof of Harsanyi’s claim that all uncertainty about the structure of a game

can be reduced to uncertainty about payoffs. The novel aspect of our contribution is that we prove

Harsanyi’s claim in a purely qualitative setting with no probabilities, while existing proofs are given in a

quantitative setting with probabilities (see, e.g., [13]).

Proofs of theorems are given in an Annex at the end of the article.

Before concluding this introduction, we would like to emphasize an aspect of our work that could be

interesting for a game-theorist.

As the logics presented in this paper are sound and complete, they allow to study strategic interaction

both at the semantic level and at the syntactic level. In this sense, they provide a formal framework

which unifies two approaches traditionally opposed by authors working in the area of formal interactive

epistemology: the semantic approach and the syntactic approach.1 However, it is worth noting that

syntactic derivations of various results concerning the epistemic foundations of game theory are not

interesting in itself. Instead, this kind of analysis is useful to identify specific features that are important

for the foundations of game theory, for example whether certain assumptions on the players’ knowledge

are indeed necessary to prove results concerning the epistemic conditions of equilibrium notions such

as Nash equilibrium and IDSDS. Typical assumptions on players’ knowledge are for example the

assumption that knowledge is positively and negatively introspective (i.e. if I know that ϕ is true then I

know that I know that ϕ is true, and if I do not know that ϕ is true then I know that I do not know that ϕ

is true), the factivity principle that knowing that ϕ implies that ϕ is true, or the assumption that a player

has perfect knowledge about some aspects of the game such as the players’ strategy sets and the players’

preference ordering over strategy profiles.

2. A Logic of Joint Actions, Knowledge and Preferences

We present in this section the multi-modal logic MLEG (Modal Logic of Epistemic Games)

integrating the concepts of joint action, knowledge and preference. This logic supports reasoning about

epistemic games in strategic form in which an agent might be uncertain about the current choices of the

other agents.

2.1. Syntax

The syntactic primitives of MLEG are the finite set of agents Agt , the set of atomic formulas Atm,

a nonempty finite set of atomic action names Act = {a1, a2, . . . , a|Act |}. Non-empty sets of agents are

called coalitions or groups, noted C1, C2, . . .. We note 2Agt∗ = 2Agt \ {∅} the set of coalitions.

To every agent i ∈ Agt we associate the set Act i of all possible ordered pairs agent/action i:a, that is,

Act i = {i:a | a ∈ Act}. Besides, for every coalition C we note ∆C the set of all joint actions of this

1See [2] for an analysis of the relation between the two approaches.
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coalition, that is, ∆C =
∏

i∈C Act i. Elements in ∆C are C-tuples noted αC , βC , γC , δC , . . .. If C = Agt ,

we write ∆ instead of ∆Agt . Elements in ∆ are also called strategy profiles. Given δ ∈ ∆, we note δi the

element in δ corresponding to agent i. Moreover, for notational convenience, we write δ−i = δAgt\{i}.

The language LMLEG of the logic MLEG is given by the following rule:

ϕ ::= p | ¬ϕ | (ϕ ∨ ϕ) | [δC ]ϕ | �ϕ | Kiϕ | [good]i ϕ

where p ranges over Atm, i ranges over Agt , and δC ranges over
⋃

C∈2Agt∗ ∆C . The classical Boolean

connectives ∧, →, ↔, ⊤ (tautology) and ⊥ (contradiction) are defined from ∨ and ¬ in the usual manner.

We also follow the standard rules for omission of parentheses.

The formula [δC ]ϕ reads “if coalition C chooses the joint action δC then ϕ holds”. Therefore, [δC ]⊥

reads “coalition C does not choose the joint action δC ”.

� is a necessity operator which enables to quantify over possible joint actions of all agents, that

is, over the strategy profiles of the current game (the terms “joint actions of all agents” and “strategy

profiles” are supposed here to be synonymous). �ϕ reads “ϕ holds for every alternative strategy profile

of the current game”, or simply “ϕ is necessarily true”.

Operators Ki are standard epistemic modal operators. Construction Kiϕ is read as usual “agent i

knows that ϕ is true”, whereas the construction [good]i ϕ is read “ϕ is true in all worlds which are for

agent i at least as good as the current one concerning the strategy profile that is chosen”. We define

〈good〉iϕ as an abbreviation of ¬ [good]i ¬ϕ. Operators [good]i are used in MLEG to define agents’

preference orderings over the strategy profiles of the current game. Similar operators are studied by [14]

(see Section 3.1 for a discussion).

We use EKCϕ as an abbreviation of
∧

i∈C Kiϕ, i.e. every agent in C knows ϕ (if C = ∅ then EKCϕ is

equivalent to ⊤). Then we define by induction EKk
Cϕ for every natural number k ∈ N:

EK0
Cϕ

def
= ϕ

and for all k ≥ 1,

EKk
Cϕ

def
= EKC(EK

k−1
C ϕ)

We define for all natural numbers n ∈ N, MKn
Cϕ as an abbreviation of

∧
1≤k≤n EK

k
Cϕ. MKn

Cϕ expresses

C’s mutual knowledge that ϕ up to n iterations, i.e., everyone in C knows ϕ, everyone in C knows that

everyone in C knows ϕ, and so on until level n.

Finally, 〈δC〉ϕ abbreviates ¬ [δC ]¬ϕ, ♦ϕ abbreviates ¬�¬ϕ and K̂iϕ abbreviates ¬Ki¬ϕ. ♦ϕ means

“ϕ is possibly true”. Therefore 〈δC〉ϕ reads “coalition C chooses the joint action δC and ϕ holds”, and

〈δC〉⊤ simply reads “coalition C chooses the joint action δC”.

The operator ♦ and the operators 〈δC〉 can be combined in order to express what a coalition of agents

can do. In particular, ♦〈δC〉⊤ has to be read “coalition C can choose the joint action δC”. For the

individual case, ♦〈i:a〉⊤ has to be read “agent i can choose action a” or also “action a is in the strategy

set (action repertoire) of agent i”. Furthermore, ♦〈δ〉⊤ is read “coalition Agt can choose the joint action

(strategy profile) δ” or also “δ is a strategy profile of the current game”.
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2.2. Semantics

In this subsection, we introduce a Kripke-style possible world semantics of our logic MLEG.

Definition 1 (MLEG-frames). MLEG-frames are tuples F = 〈W,∼, R, E,�〉 where:

• W is a nonempty set of possible worlds or states;

• ∼ is an equivalence relation on W ;

• R is a collection of total functions RC : W −→ ∆C one for every coalition C ∈ 2Agt∗, mapping

every world in W to a joint action of the coalition such that:

C1 RC(w) = δC if and only if for every i ∈ C, Ri(w) = δi,
2

C2 if for every i ∈ Agt there is vi such that w ∼ vi and Ri(vi) = δi then there is a v such that

w ∼ v and RAgt(v) = δ;

• E : Agt −→ 2W×W maps every agent i to an equivalence relation Ei on W such that:

C3 if wEiv, then Ri(w) = i:a if and only if Ri(v) = i:a,

C4 if wEiv then w ∼ v;

• �: Agt −→ 2W×W maps every agent i to a reflexive, transitive relation �i on W such that:

C5 if w �i v then w ∼ v,

C6 if w ∼ v and w ∼ u then v �i u or u �i v.

RC(w) = δC means that coalition C performs the joint action δC at world w.

If w ∼ v then w and v correspond to alternative strategy profiles of the same game. For short, we

say that v is alternative to w. Given a world w, we use the notation ∼(w) = {v | w ∼ v} to denote

the equivalence class made up of those worlds corresponding to alternative strategy profiles of the game

of which w is one of the strategy profile. Consider e.g., Agt = {1, 2} and Act = {c, d}. In the frame

in Figure 1 we have w1 ∼ w2. This means that the joint action performed at w1 (viz. 〈1:c, 1:c〉) and the

one performed at w2 (viz. 〈1:c, 1:d〉) are alternative strategy profiles of the same game defined by the

equivalence class ∼(w1) = {w1, w2, w3, w4}.

For every C ⊆ Agt , if there exists v ∈ ∼(w) such that C performs δC at v then we say that δC is

possible at w (or δC can be performed at w).

wEiv means that, for agent i, world v is (epistemically) possible at w, whilst w �i v means that for

agent i, world v is at least as good as world w. We write w =i v iff w �i v and v �i w, and w <i v iff

w �i v and not v �i w.

Let us discuss the semantic constraints in Definition 1.

2Note that for notational convenience we write Ri instead of R{i}.
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Figure 1. The equivalence class {w1, w2, w3, w4} represents the Prisoner’s Dilemma

game [15] between two players 1 and 2 (action c stands for ‘cooperate’ and action d stands

for ‘defect’). Thick ellipses are epistemic relations for 1, thin ellipses are epistemic relations

for 2 (both 1 and 2 are uncertain about the other’s action).

✈ ✈

✈✈

w1 w2

w3 w4

2 : c 2 : d

1 : c

1 : d

w2 <1 w4 <1 w1 <1 w3
w3 <2 w4 <2 w1 <2 w2

According to Constraint C1, at world w coalition C chooses the joint action δC if and only if, every

agent i in C chooses the action δi at w. In other words, a certain joint action is performed by a coalition if

and only if every agent in the coalition does his part of the joint action. According to the Constraint C2,

if all individual actions in a joint action δ are possible at world w, then their simultaneous occurrence is

also possible at world w.

Constraint C3 just says that an agent knows what he has decided to do. This is a standard assumption

in interactive epistemology and epistemic analysis of games (see [3] for instance).

We suppose complete information about the specification of the game, including the players’ strategy

sets (or action repertoires) and the players’ preference ordering over strategy profiles. This assumption is

formally expressed by the Constraint C4: if world v is epistemically possible for agent i at w, then w and

v correspond to alternative strategy profiles of the same game. Complete information about the structure

of the game is a standard assumption in game theory. In Section 5, this assumption will be relaxed in

order to deal with realistic situations in which an agent might be uncertain about his own utility and

other agents’ utilities associated to a certain strategy profile, as well as about his own action repertoire

and other agents’ action repertoires.

Finally, we have two constraints over the relations �i. We suppose that a world v is for agent i at least

as good as w only if v is a world which is possible at w, i.e., only if v and w correspond to alternative

strategy profiles of the same game (Constraint C5). Furthermore, we suppose that every agent has a

complete preference ordering over the strategy profiles of the current game (Constraint C6).

REMARK. Note that in the case of complete information (Constraint C4) the relation ∼ is superfluous

because all other relations are included into ∼ (Constraints C5 and C6). So in this case we can suppose

∼ to be the universal relation W ×W and � to be the well-known universal modality.3 We decided to

3 The universal modality has been used since the dawning of modal logic (it is just a plain old S5 operator [16]). More

recently, it has been used in several modal logic analysis of preferences and games (see, e.g., [14,17,18]).
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introduce the relation ∼ in this part of the paper in order to be able to generalize the definition of model

in the case of incomplete information (see Section 5). In fact, in the case of games with incomplete

information, a player can imagine alternative games and there is no one-to-one correspondence between

models and games (i.e., every model does not necessarily correspond to a unique strategic game).

Therefore, the relation ∼ can no longer be supposed to be the universal relation.

Definition 2 (MLEG-models). MLEG-models are couples F = 〈F, π〉 where:

• F is a MLEG-frame;

• π : Atm −→ 2W is a valuation function.

The truth conditions for Boolean operators and for operators [δC ], �, Ki and [good]i are:

• M,w |= p iff w ∈ π(p);

• M,w |= ¬ϕ iff not M,w |= ϕ;

• M,w |= ϕ ∨ ψ iff M,w |= ϕ or M,w |= ψ ;

• M,w |= [δC ]ϕ iff if RC(w) = δC then M,w |= ϕ;

• M,w |= �ϕ iff M, v |= ϕ for all v such that w ∼ v;

• M,w |= Kiϕ iff M, v |= ϕ for all v such that wEiv;

• M,w |= [good]i ϕ iff M, v |= ϕ for all v such that w �i v.

A formula ϕ is true in an MLEG-model M iff M,w |= ϕ for every world w in M . A formula ϕ is

MLEG-valid (noted |= ϕ) iff ϕ is true in all MLEG-models. A formula ϕ is MLEG-satisfiable iff ¬ϕ

is not MLEG-valid.

2.3. Axiomatization and Complexity Results

We call MLEG the logic that is axiomatized by the principles given in Figure 2.

Note that the principles of modal logic S5 for the operator � are: the four axiom schemas (K)

(�ϕ ∧ �(ϕ → ψ)) → �ψ, (T) �ϕ → ϕ, (4) �ϕ → ��ϕ, (B) ϕ → �♦ϕ, and the rule of

inference (Necessitation) ϕ

�ϕ
. The principles of modal logic S5 for the operators Ki are: the four axiom

schemas (K) (Kiϕ ∧ Ki(ϕ → ψ)) → Kiψ, (T) Kiϕ → ϕ, (4) Kiϕ → KiKiϕ, (B) ϕ → KiK̂iϕ, and

the rule of inference (Necessitation) ϕ

K̂iϕ
. The principles of modal logic S4 for the operators [good]i

are: the three axiom schemas (K) ([good]i ϕ ∧ [good]i (ϕ → ψ)) → [good]i ψ, (T) [good]i ϕ → ϕ, (4)

[good]i ϕ→ [good]i [good]i ϕ, and the rule of inference (Necessitation) ϕ

[good]iϕ
.

Note also that Axiom Indep is the MLEG counterpart of the so-called axiom of independence of

agents of STIT logic (the logic of Seeing to it that) [19]. This axiom enables to express the basic game

theoretic assumption that the set of strategy profiles of a game in strategic form is the cartesian product

of the sets of individual actions for the agents in Agt .
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Figure 2. Axiomatization of MLEG

All principles of classical propositional logic(CPL)

All principles of modal logic S5 for �(S5�)

All principles of modal logic S5 for every Ki(S5Ki
)

All principles of modal logic S4 for every [good]i(S4[good]i
)

[δC ]ϕ↔ (〈δC〉⊤ → ϕ)(Def[δC ])

〈δC〉⊤ ↔
∧

i∈C

〈δi〉⊤(JointAct)

∨

δC∈∆C

〈δC〉⊤(Active)

〈δC〉⊤ → [δ′C ]⊥ if δC 6= δ′C(Single)
(
∧

i∈Agt

♦〈δi〉⊤

)
→ ♦〈δ〉⊤(Indep)

〈i:a〉⊤ → Ki〈i:a〉⊤(Aware)

�ϕ→ [good]i ϕ(Incl[good]i,�)

(♦ϕ ∧ ♦ψ) → (♦(ϕ ∧ 〈good〉iψ) ∨ ♦(ψ ∧ 〈good〉iϕ))(PrefConnect)

�ϕ→ Kiϕ(CompleteInfo)

ϕ, ϕ→ ψ

ψ
(ModusPonens)

We write ⊢MLEG ϕ if ϕ is a theorem of MLEG, that is, if ϕ can be deduced by applying the axioms

and the rules of inference of the logic MLEG.

As the following Theorem 1 highlights, we can prove that the logic MLEG is sound and complete

with respect to the class of MLEG-models.

Theorem 1. MLEG is determined by the class of MLEG-models.

Moreover we can prove a result about complexity of the satisfiability problem of the logic

MLEG, that is, the complexity of the problem of deciding whether a given MLEG formula ϕ is

MLEG-satisfiable or not. Here, we give a lower-bound and upper-bound for the complexity of the

satisfiability problem (for more information about complexity theory, the reader may refer to [20]):

Theorem 2. If the number of agents is greater of equal to 2, the satisfiability problem of MLEG is

EXPTIME-hard and in NEXPTIME.

We conjecture that the satisfiability problem of MLEG is EXPTIME-complete. Indeed, we think

that this can be proved by the argument used for proving that the satisfiability problem of S52 with

common knowledge [21] and the satisfiability problem of propositional dynamic logic (PDL) [22] are

EXPTIME-complete.
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2.4. A Variant of with Joint Determinism

We present here a variant of MLEG where models have an additional constraint of determinism

for the joint actions of all agents: different worlds in an equivalence class ∼ (w) correspond to the

occurrences of different strategy profiles:

CD if w ∼ v and RAgt(w) = δ and RAgt(v) = δ, then w = v;

A MLEG-model satisfying the constraint CD is called a MLEGdet-model.

The axiom corresponding to the Constraint CD is:

(〈δ〉⊤ ∧ ϕ) → �(〈δ〉⊤ → ϕ)(JointDet)

We call MLEGdet the logic that is axiomatized by the principles given in Figure 2 plus

axiom JointDet.

Theorem 3. MLEGdet is determined by the class of MLEGdet-models.

Although the Constraint CD excludes pure uncertainty about uncertainty (i.e., cases where the same

profile is played at two states on the basis of different information), it is interesting because it allows

to establish a connection between our logical framework and Coalition Logic (CL) [23,24], where it is

assumed that if every agent in Agt opts for an action the next state of the world is uniquely determined.

As shown in [25], the logic MLEGdet extended by the operator next of linear temporal logic (LTL)

embeds Coalition Logic (CL) [23,24]. In particular, if we extend MLEGdet by the temporal operator X

(where Xϕ means “ϕ will be true in the next state”) CL cooperation modalities of the form [C] can be

reconstructed in our logic MLEG as follows.

tr([C]ϕ) =
∨

δ∈∆ (♦〈δC〉⊤ ∧�(〈δC〉⊤ → Xϕ))

That is, the CL expression “coalition C can enforce an outcome state satisfying ϕ” (noted [C]ϕ) is

translated in our logic as “there exists a joint action δC of the agents in C such that the agents in C can

perform δC , and necessarily if the agents in C perform δC then ϕ will be true in the next state, no matter

what the agents outside C do”.

REMARK. It is worth noting that, while MLEGdet embeds Coalition Logic, the basic logic MLEG

embeds Chellas’ STIT logic with agents and groups [26], under the hypothesis that the number of agents’

choices is bounded (see [27] for more details). In fact, differently from Coalition Logic, in STIT joint

actions of all agents are not necessarily deterministic. STIT logic has formulas of the form [C cstit: ϕ]

that are read “group C sees to it that ϕ”. The translation of STIT modalities of the form [C cstit:] into

MLEG would be the following:

tr([C cstit: ϕ]) =
∨

δ∈∆(〈δC〉⊤ ∧�(〈δC〉⊤ → ϕ))

That is, the STIT expression “group C sees to it that ϕ” is translated into DLA as “there exists a joint

action δC of the agents in C such that the agents in C perform δC , and necessarily if the agents in C

perform δC then ϕ will be true, no matter what the agents outside C do”.

The constraint of joint determinism CD is also useful for complexity reasons. Indeed, if we add CD

to our logic, the complexity of the satisfiability problem drops to NP.
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Theorem 4. The satisfiability problem of MLEGdet is NP-complete.

3. A Logical Account of Epistemic Games

This section is devoted to the analysis in the modal logic MLEG of the epistemic aspects of strategic

games. We first consider the basic game-theoretic concepts of best response and Nash equilibrium, and

their relationships with the notion of epistemic rationality assumed in classical game theory. Finally, we

provide an analysis of Iterated Deletion of Strictly Dominated Strategies (IDSDS).

3.1. Best Response and Nash Equilibrium

The modal operators [good]i and � enable to capture in MLEG a notion of comparative goodness

over formulas of the kind “ϕ is for agent i at least as good as ψ”, noted ψ ≤i ϕ:

ψ ≤i ϕ
def
= � (ψ → 〈good〉iϕ)

According to the previous definition, ϕ is for agent i at least as good as ψ if and only if, for every world v

corresponding to a strategy profile of the current game in which ψ is true, there is a world u corresponding

to a strategy profile of the current game in which ϕ is true and which is for agent i at least as good as

world v. We can prove that ψ ≤i ϕ is a total preorder. Indeed, the formulas ψ ≤i ψ (reflexivity),

(ϕ1 ≤i ϕ2)∧ (ϕ2 ≤i ϕ3) → (ϕ1 ≤i ϕ3) (transitivity) and (ϕ1 ≤i ϕ2)∨ (ϕ2 ≤i ϕ1) (connectedness, also

called completeness) are valid in MLEG. We define the corresponding strict ordering over formulas:

ψ <i ϕ
def
= (ψ ≤i ϕ) ∧ ¬(ϕ ≤i ψ)

Formula ψ <i ϕ has to read “ϕ is for agent i strictly better than ψ”. Finally, we define a notion of

comparative goodness over strategy profiles and the corresponding strict ordering over strategy profiles:

δ ≤i δ
′ def
= 〈δ〉⊤ ≤i 〈δ

′〉⊤ and δ <i δ
′ def
= (δ ≤i δ

′) ∧ ¬(δ′ ≤i δ)

Formula δ ≤i δ
′ has to be read “strategy profile δ′ is for agent i at least as good as strategy profile δ” and

formula δ <i δ
′ has to be read “strategy profile δ′ is for agent i strictly better than strategy profile δ”.

Some basic concepts of game theory can be expressed in MLEG in terms of comparative goodness.

We first consider best response. Agent i’s action a is said to be a best response to the other agents’ joint

action δ−i, noted BR(i:a,δ−i), if and only if i cannot improve his utility by deciding to do something

different from a while the others choose the joint action δ−i, that is:

BR(i:a,δ−i)
def
=

∧

b∈Act

(〈i:b,δ−i〉 ≤i 〈i:a,δ−i〉)

REMARK. Note that the definition of best response BR(i:a,δ−i) given above only works for a complete

preference relation �i. To see why, suppose that Agt = {i, j} and Act = {a, b}, and consider the

model M = 〈W,∼, R, E,�, π〉 such that W = {w1, w2}, ∼= W × W , RAgt(w1) = 〈i:a, j:a〉,

RAgt(w2) = 〈i:b, j:a〉 and Ei = Ej =�i=�j= {(w1, w1), (w2, w2)}. Here the relation �i does not

satisfy the constraint C6 (i.e., �i is not complete). Intuitively, BR(i:a, j:a) should be true at any world

of M because if i plays a while j plays a, he does not improve his utility by playing b. Nevertheless, as
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〈i:b,j:a〉 ≤i 〈i:a,j:a〉 is false at any world of M, we have that BR(i:a, j:a) is also false at every world

of M.

Given a certain strategic game, the strategy profile (or joint action) δ is said to be a Nash equilibrium

if and only if for every agent i ∈ Agt , i’s action δi is a best response to the other agents’ joint action δ−i:

Nash(δ)
def
=
∧

i∈Agt

BR(δi,δ−i)

From Axiom CompleteInfo, S5 for �, Axioms K and T for Ki the five MLEG-theorems in

Lemma 1 are provable. They express complete information about the players’ preferences ordering

over strategy profiles, complete information about the existence of a Nash equilibrium, and complete

information about the players’ action repertoires. Surprisingly formulas of Lemma 1 are kinds of

introspection properties, but they are provable without axioms of positive and negative introspections

for knowledge: (4) Kiϕ→ KiKiϕ or (5) ¬Kiϕ→ Ki¬Kiϕ.

Proposition 1. For all i ∈ Agt and n ∈ N:

• ⊢MLEG (ψ ≤i ϕ) ↔ MKn
Agt(ψ ≤i ϕ)

• ⊢MLEG (ψ <i ϕ) ↔ MKn
Agt(ψ <i ϕ)

• ⊢MLEG Nash(δ) ↔ MKn
AgtNash(δ)

• ⊢MLEG ♦〈δi〉⊤ ↔ MKn
Agt♦〈δi〉⊤

• ⊢MLEG �[δi]⊥ ↔ MKn
Agt�[δi]⊥

It has to be noted that weak preference operators [good]i, used here to define some basic concepts

of game theory, have been studied before by [14,17] and by [18], where complete axiomatizations

for different kinds of preference logics and for a combination of preference logic with epistemic logic

are given. In [14,17] Liu proposed a complete modal logic of knowledge and preference extended by

dynamic operators of knowledge update and preference upgrade in the style of dynamic epistemic logic

(DEL). In [18] van Benthem et al. studied different variants of preference logic that allow to express

different readings of ceteris paribus preferences [28]. They first present a basic modal logic of weak and

strict preference which allows to express the “all other things being normal” reading of ceteris paribus

preferences. Then they present a more general modal logic in which modal operators of weak and strict

preference are relativized to sets of formulas representing conditions to be kept equal. They show that

this logic allows to express the “all other things being equal” reading of ceteris paribus preferences and

to characterize the notion of Nash equilibrium as a preference for a given strategy profile for a game,

given that others keep the same strategy.4 One of the main contribution of our work is to propose a modal

logic which integrates the notion of weak preference studied by Liu and van Benthem et al. with notions

of action and knowledge, and which provides a suitable framework for a logical analysis of epistemic

strategic games both with perfect information and with weaker forms of perfect information. The latter

are the subject of the second part of the paper (Sections 5 and 6).

4The normality reading of ceteris paribus preferences expresses preferences which hold under certain normal conditions,

whereas the equality reading expresses preferences which hold when certain facts are kept constant.
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3.2. Epistemic Rationality

The following MLEG formula characterizes a notion of rationality which is commonly supposed in

the epistemic analysis of games (see, e.g., [4,7]):∧
a,b∈Act

(
〈i:a〉⊤ →

∨
δ∈∆

(
K̂i〈δ−i〉⊤ ∧ (〈δ−i, i:b〉 ≤i 〈δ−i, i:a〉)

))

This means that an agent i is rational if and only if, if he chooses a particular action a then for every

alternative action b, there exists a joint action δ−i of the other agents that he considers possible such

that, playing a while the others play δ−i is for i at least as good as playing b while the others play δ−i.

This means that epistemic rationality simply consists in not choosing a strategy that is strictly dominated

within the agent’s set of epistemic alternatives.

As formula δ ≤i δ
′ and formula Ki(δ ≤i δ

′) are equivalent in MLEG, the previous definition of

rationality can be rewritten in the following equivalent form:

Rati
def
=

∧

a,b∈Act

(
〈i:a〉⊤ →

∨

δ∈∆

(
K̂i〈δ−i〉⊤ ∧ Ki (〈δ−i, i:b〉 ≤i 〈δ−i, i:a〉)

))

Theorem 5. For all i ∈ Agt:

⊢MLEG Rati ↔ KiRati(5a)

⊢MLEG ¬Rati ↔ Ki¬Rati(5b)

Theorem 5 highlights that the concepts of rationality and irrationality are introspective. That is, an

agent i is (resp. is not) epistemically rational if and only if he knows this. The syntactic proof of

Theorem 5a given in the annex shows that it can be proved either by means of Axioms K, T, 4 and 5

for knowledge or by means of Axioms K, T and 5 for knowledge and a principle of introspection over

preferences of the form “(δ ≤i δ
′) → Ki(δ ≤i δ

′)”. Theorem 5b is provable from Theorem 5a by means

of Axioms T and 5 for knowledge.

The following theorem specifies some sufficient epistemic conditions of Nash equilibrium: if

all agents are rational and every agent knows the choices of the other agents, then the selected

strategy profile is a Nash equilibrium. This theorem has been stated for the first time by Aumann &

Brandeburger [1,5].

Theorem 6. For all δ ∈ ∆:

⊢MLEG

((∧
i∈Agt Rati

)
∧
∧

i∈Agt Ki〈δ−i〉⊤
)
→ Nash(δ)

The syntactic proof of Theorem 6 in the annex at the end of the paper shows that it can be proved

just by means of Axioms K and T for the epistemic modal operators. Axiom CompleteInfo, positive

and negative introspection for knowledge (Kiϕ → KiKiϕ and ¬Kiϕ → Ki¬Kiϕ) are not needed for

the proof.

3.3. Iterated Deletion of Strictly Dominated Strategies

A strategy a for agent i is a strictly dominated strategy, noted SD≤0(i:a), if and only if, if a can be

performed then there is another strategy b such that, no matter what joint action δ−i the other agents



Games 2010, 1 490

choose, playing b is for i strictly better than playing a:

SD≤0(i:a)
def
= ♦〈i:a〉⊤ →

∨

b∈Act

(
♦〈i:b〉⊤ ∧

∧

δ∈∆

(♦〈δ−i〉⊤ → (〈δ−i, i:a〉 <i 〈δ−i, i:b〉))

)

An example of strictly dominated strategy is cooperation in the Prisoner Dilemma (PD) game: whether

one’s opponent chooses to cooperate or defect, defection yields a higher payoff than cooperation.

Therefore, a rational player will never play a dominated strategy. So when trying to predict the behavior

of rational players, we can rule out all strictly dominated strategies. The so-called Iterated Deletion of

Strictly Dominated Strategies (IDSDS) (or iterated strict dominance) [15] is a procedure that starts with

the original game and, at each step, for every player i removes from the game all i’s strictly dominated

strategies, thereby generating a subgame of the original game, and that repeats this process again and

again. IDSDS can be inductively characterized in our logic MLEG by defining a concept of strict

dominance in the subgame of depth at most n, noted SD≤n(i:a). For every n ≥ 1:

SD≤n(i:a)
def
= ¬SD≤n−1(i:a) →

∨

b∈Act

(
¬SD≤n−1(i:b) ∧

∧

δ∈∆

(
¬SD≤n−1(δ−i) → (〈δ−i, i:a〉 <i 〈δ−i, i:b〉)

)
)

where SD≤k(δC) is defined as follows

SD≤k(δC)
def
=
∨

i∈C

SD≤k(δi)

for every k ≥ 0 and for every δC . According to this definition, a is a strictly dominated strategy for agent

i in a subgame of depth at most n, noted SD≤n(i:a), if and only if, if a is not strictly dominated for i in

all subgames of depth k < n then there is another strategy b such that b is not strictly dominated for i in

all subgames of depth k < n and, no matter what joint action δ−i the other agents choose, if the elements

in δ−i are not dominated in all subgames of depth k < n then playing b is for i strictly better than playing

a. In other terms SD≤n(i:a) means that strategy i:a does not survive after n rounds of IDSDS. We can

prove by recurrence on n that the length of the formula SD≤n(δ) is

O(|Act ||Agt |)2n+1)

where O(...) is the “Big Oh Notation” [20], |Act | is the number of actions and |Agt | is the number of

agents and n is the number of rounds of IDSDS. That is, the length of the formula SD≤n(δ) is exponential

in n. In Section 4, we are going to extend the language of MLEG in order to capture the concept of

IDSDS with a more compact formula.

As the following MLEG-theorems highlight, the truth of SD≤n(i:a) depends on the game but does

not depend on the world where the formula is evaluated.

Proposition 2. For all a ∈ Act , for all n ≥ 0, we have:

• ⊢MLEG SD≤n(i:a) ↔ �SD≤n(i:a);

• ⊢MLEG ¬SD≤n(i:a) ↔ �¬SD≤n(i:a).
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The following Theorem 7 is the qualitative version of a probabilistic- based result of Stalnaker [29]

who has been the first to use probabilistic Kripke structures in order to characterize the IDSDS procedure

in terms of common knowledge of rationality (see [3,30] for some recent discussion of Stalnaker’s

results). A similar result was also proved, with differing degrees of formality, by Bernheim [31],

Pearce [32], Brandenburger & Dekel [33], and Tan & Werlang [34]. Note that Stalnaker’s proof is

purely semantic. According to the Theorem 7, if there is mutual knowledge of rationality among the

players to n levels and the agents play the strategy profile δ then, for every agent i, δi survives IDSDS

until the subgame of depth n+1.

Theorem 7. For all positive integer n, for all δ ∈ ∆, we have:

⊢MLEG

((
MKn

Agt

∧

i∈Agt

Rati

)
∧ 〈δ〉⊤

)
→ ¬SD≤n(δ)

(note that ¬SD≤n(δ) is just the abbreviation of
∧

i∈Agt ¬SD
≤k(δi)).

The syntactic proof of Theorem 7 given in the annex shows that, although Axiom CompleteInfo,

positive and negative introspection for knowledge (Kiϕ→ KiKiϕ and ¬Kiϕ→ Ki¬Kiϕ) are not needed

for the proof, we need to assume that a player has complete information about the players’ strategy sets

as well as about the players’ preference ordering over strategy profiles.

Table 1 summarizes the sufficient conditions for the syntactic proof of Theorem 7 together with the

sufficient conditions for the syntactic proofs of Theorems 5 and 6. It highlights an interesting aspect of

our syntactic analysis of games based on modal logic: the fact that we can easily verify whether certain

assumptions about knowledge and information over the game structure are indeed necessary to prove

results concerning the epistemic foundations of game theory.

It has to be noted that Theorem 7 provides only one direction of the characterization result for the

IDSDS procedure as formulated in the game-theoretic literature, according to which IDSDS is fully

characterized by the epistemic condition of common knowledge of rationality between the players (see,

e.g., [3,29,30]).

The other direction states approximately that, for every strategic game, if δ is the strategy profile that

is chosen and that survives to the infinite procedure IDSDS, then there is (a state in) an epistemic model

for that game in which the profile δ is played and the players have common knowledge of rationality.

This statement is formally expressed by the following theorem (a similar result is proved in [3]).

Theorem 8. Consider an arbitrary MLEG-model M = 〈W,∼, R, E,�, π〉, a world w in M and

δ ∈ ∆ such that for all positive integers n we have M,w |= 〈δ〉⊤ ∧ ¬SD≤n(δ). Then, there is a model

M ′ = 〈W,∼, R,E ′,�, π〉 such that for all positive integers n we have M ′, w |= MKn
Agt

∧
i∈Agt Rati.

The idea is that, for every strategic game, if δ is the strategy profile of this game which is chosen and

that survives after n rounds of the procedure IDSDS, for all positive integers n, then it is possible to find

an “epistemic configuration” for the players which satisfies common knowledge of rationality between

the players. In other words, if δ is a strategy profile of a given strategic game that survives after all

rounds of the procedure IDSDS then it is always possible to justify the choice of δ by the fact that the

players have common knowledge of rationality.
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Table 1. Some sufficient conditions for Theorems 5, 6, 7.

Assumptions about knowledge operators Assumptions about information Result

over game structure

KT45 none Theorem 5

KT5 introspection over preferences: Theorem 5

(δ ≤i δ
′) → Ki(δ ≤i δ

′)

KT none Theorem 6

KT complete information about Theorem 7

players’ preference ordering

over strategy profiles:

(δ ≤j δ
′) → Ki(δ ≤j δ

′)

(δ <j δ
′) → Ki(δ <j δ

′)

complete information about

players’ strategy sets:

♦〈j:a〉⊤ → Ki♦〈j:a〉⊤

�[j:a]⊥ → Ki�[j:a]⊥

Note that Theorem 8 is different from stating that the logic MLEG cannot prove the negation of

conjunctions of this type: a given profile δ is played, survives after n rounds of IDSDS and rationality

of players is common knowledge up to degree n. By the completeness of MLEG this just means that

the conjunction (MKn
Agt

∧
i∈Agt Rati) ∧ 〈δ〉⊤ ∧ ¬SD≤n(δ) is consistent in MLEG. Indeed, the latter

trivially holds, as we can always exhibit the trivial model M = 〈W,∼, R, E,�, π〉 such that W = {w},

RAgt(w) = δ and E ′
i(w) = {w} for every i ∈ Agt , and in which M,w |= (MKn

Agt

∧
i∈Agt Rati)∧ 〈δ〉⊤ ∧

¬SD≤n(δ) holds for every n.

3.4. Discussion: Related Works on Modal Logic Analysis of Epistemic Games under Complete

Information

Although several modal logics of games in strategic forms have been proposed in recent times

(see, e.g., [25,35]), few modal logics of epistemic games under complete information exist. Among

them we should mention [3,8,9,36]. Let us compare our modal logic MLEG with some of these

alternative approaches.

De Bruin [8] has developed a logical framework which enables to reason about the epistemic aspects

of strategic games and of extensive games. His system deals with several game-theoretic concepts like

the concepts of knowledge, rationality, Nash equilibrium, iterated strict dominance, backward induction.

Nevertheless, de Bruin’s approach differs from ours in several respects. First of all, our logical approach

to epistemic games is minimalistic since it relies on few primitive concepts: knowledge, action, historical

necessity and preference. All other notions such Nash equilibrium, rationality, iterated strict dominance

are defined by means of these four primitive concepts. On the contrary, in de Bruin’s logic all those

notions are atomic propositions managed by a ad hoc axiomatization (see, e.g., ([8], pp. 61,65) where
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special propositions for rationality and iterated strict dominance are introduced). Secondly, we provide

a semantics and a complete axiomatization for our logic of epistemic games. De Bruin’s approach

is purely syntactic: no model-theoretic analysis of games is proposed nor completeness result for the

proposed logic is given. Finally, de Bruin does not provide any complexity results for his logic while we

provide complexity results for the satisfiability problem of our logic.

In [36] van der Hoek & Pauly investigate how modal logics can be used to describe and reason

about games. They show how epistemic logic can be combined with constructions expressing agents’

preferences over strategy profiles in order to study the epistemic aspects of strategic games and to define

a concept of rationality similar to the one discussed in Section 3.2. Although van der Hoek & Pauly

discuss the combination of action, preference and epistemics for the analysis of epistemic games they do

not provide a unified modal logic framework combining operators for knowledge, for preference and for

action with a complete axiomatization and with a study of its computational properties like decidability

and complexity. The latter is one of the main contribution of our work.

Roy [9] has recently proposed a modal logic integrating preference, knowledge and intention. In his

approach every world in a model is associated to a nominal which directly refers to a strategy profile in

a strategic game. This approach is however limited in expressing formally the structure of a strategic

game. In particular, in Roy’s logic there is no principle like the MLEG Axiom Indep explaining how

possible actions δi of individual agents are combined to form a strategy profile δ of the current game.

Another limitation of Roy’s approach is that it does not allow to express the concept of (weak) rationality

that we have been able to define in Section 3.2 (see [9], pp. 101). As discussed in the previous sections

this is a crucial concept in interactive epistemology since it is used for giving epistemic justifications of

several solution concepts like Nash equilibrium and IDSDS (see Theorems 6 and 7).

Bonanno [3] combines modal operators for belief and common belief with constructions expressing

agents’ preferences over individual actions and strategy profiles, and applies them to the semantic

characterization of solution concepts like Iterated Deletion of Strictly Dominated Strategies (IDSDS)

and Iterated Deletion of Inferior Profiles (IDIP). As in [9], in Bonanno’s logic every world in a model

corresponds to a strategy profile of the current game. Although this logic allows to express the concept of

weak rationality, it is not sufficiently general to enable to express in the object language solution concepts

like Nash equilibrium and IDSDS (note that the latter is defined by Bonanno only in the metalanguage).

It is to be noted that, differently from MLEG, most modal logics of epistemic games in strategic form

(including Roy’s logic and Bonanno’s logic) postulate a one-to-one correspondence between models and

games (i.e. every model of the logic corresponds to a unique strategic game, and worlds in the model are

all strategy profiles of this game). Such an assumption is quite restrictive since it prevents from analyzing

in the logic games with incomplete information about the game structure in which an agent can imagine

alternative games. We will show in Section 5 that this is something we can do in our logical framework

by removing Axiom CompleteInfo from MLEG.

4. Game Transformation

We provide in this section an alternative and more compact characterization of the procedure IDSDS

in our logic MLEG. To this aim, we introduce special events whose effect is to transform the current

game by removing certain strategies from it. In particular, these special events can be used to delete
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a strictly dominated strategy from the current game. These special events are similar to the notion of

announcement in Dynamic Epistemic Logic (DEL) [10–12].

LGT is the set of game transformation formulas and is defined by the following rule:

χ ::= �ψ → [i:a]⊥ | χ ∧ χ

where ψ ∈ LMLEG , i ∈ Agt and a ∈ Act . Thus, game transformation formulas are of the form ‘if

property ψ necessarily holds in the current game, then action a should not be performed by agent i’.

GT is the set of game transformation events and is defined as GT = {χ! | χ ∈ LGT }.

We extend the MLEG language with dynamic operators of the form [χ!] with χ! ∈ GT . The formula

[χ!]ϕ has to be read ‘ϕ holds, after the occurrence of the game transformation event χ!’. We call

MLEGGT the extended logic. The truth condition for [χ!]ϕ is:

M,w |= [χ!]ϕ iff if M,w |= χ then Mχ, w |= ϕ

with Mχ = 〈W χ,∼χ, Rχ, Eχ,�χ, πχ〉 and:

W χ = {u | u ∈ W and M,u |= χ}

∼χ = ∼ ∩(W χ ×W χ)

for every C ∈ 2Agt∗, Rχ
C = RC |Wχ

for every i ∈ Agt , E
χ
i = Ei ∩ (W χ ×W χ)

for every i ∈ Agt , �χ
i = �i ∩(W

χ ×W χ)

for every p ∈ Atm, πχ(p) = π(p) ∩W χ

Thus, an event χ! removes from the model M all worlds in which χ is false. Every epistemic relations

Ei, every preference orderings �i, every function RC , and the valuation π are restricted to the worlds in

which χ is true.

In the resulting structure Mχ, the relations ∼χ, R
χ
δC

, E
χ
i , �χ

i verify the constraints of Definition 1.

This result is summed up in the following theorem.

Theorem 9. Let χ ∈ LGT . If M is a MLEG model then Mχ is a MLEG model.

REMARK. The syntactic restriction on game transformation formulas is given in order to ensure that

the updated model Mχ is still a MLEG model. In fact, Theorem 9 does not hold if we allow χ to

be any formula in LMLEG . For instance suppose M is a MLEG model such that W = {w, v, u, z},

∼ (w) = {w, v, u, z}, R{i,j}(w) = 〈i:a, j:a〉, R{i,j}(v) = 〈i:a, j:b〉, R{i,j}(u) = 〈i:b, j:a〉 and

R{i,j}(z) = 〈i:b, j:b〉. If χ = 〈i:a〉⊤ ∨ 〈j:b〉⊤ then the updated model Mχ is no longer a MLEG-model

because it does not satisfy the constraint C2.

We have reduction axioms for the dynamic operators [χ!].
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Theorem 10. The following schemata are valid in the logic MLEGGT .

R1. [χ!]p↔ (χ→ p)

R2. [χ!]¬ϕ↔ (χ→ ¬[χ!]ϕ)

R3. [χ!](ϕ1 ∧ ϕ2) ↔ ([χ!]ϕ1 ∧ [χ!]ϕ2)

R4. [χ!]�ϕ↔ (χ→ �[χ!]ϕ)

R5. [χ!]Kiϕ↔ (χ→ Ki[χ!]ϕ)

R6. [χ!] [good]i ϕ↔ (χ→ [good]i [χ!]ϕ)

R7. [χ!] [δC ]ϕ↔ (〈δC〉⊤ → [χ!]ϕ)

The principles R1.-R7. are called reduction axioms because, read from left to right, they reduce

the complexity of those operators in a formula. In particular the principles R1.-R7. explains how to

transform any formula ϕ of the language with dynamic operators in a formula without dynamic operators.

More generally, we have an axiomatization result.

Theorem 11. The logic MLEGGT is completely axiomatized by the axioms and inference rules of

MLEG together with the schemata of Theorem 10 together with the following rule of replacement of

proved equivalence:

ψ1 ↔ ψ2

ϕ↔ ϕ[ψ1 := ψ2]

where ϕ[ψ1 := ψ2] is the formula ϕ in which we have replaced all occurrences of ψ1 by ψ2.

Now, consider the following formula:

χSD
def
=

∧

i∈Agt ,a∈Act

(�SD≤0(i:a) → [i:a]⊥)

where SD≤0(i:a) has been defined in Subsection 3.3. The effect of the game transformation event

χSD! is to delete from every game ∼(w) in the model M all worlds in which a strictly dominated strategy

is played by some agent.

As the following Theorem 12 highlights, the procedure IDSDS that we have characterized in

Section 3.3 in the static MLEG can be characterized in a more compact way in MLEGGT . Suppose δ

is the selected strategy profile. Then, δ survives IDSDS until the subgame of depth n+1 if and only if,

the event χSD! can occur n+1 times in sequence.

Theorem 12. For all δ ∈ ∆, for all n ≥ 0,

⊢MLEGGT 〈δ〉⊤ →
(
¬SD≤n(δ) ↔ 〈χSD!〉

n+1⊤
)
.

The above theorem says that if δ is performed, then the formula ¬SD≤n(δ), defined in Subsection 3.3,

whose length is exponential in n and the more compact formula 〈χSD!〉
n+1⊤ are equivalent. Indeed the

length of the formula 〈χSD!〉
n+1⊤ is O(n(|Agt ||Act |)2) where n is the number of IDSDS rounds, |Agt |

is the number of agents and |Act | is the maximal number of actions.

We conjecture that there is no formula ϕ ∈ MLEG more compact than ¬SD≤n(δ) such that ⊢MLEG

〈δ〉⊤ →
(
¬SD≤n(δ) ↔ ϕ

)
. If our conjecture is true, Theorem 12 would imply that the representation
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of IDSDS in MLEGGT is necessarily more succinct than the representation of IDSDS in MLEG (i.e.,

there is no representation of IDSDS in MLEG that is equally or more succinct than the representation

of IDSDS in MLEGGT ). The latter is indeed a variant of the result given in [37] showing that S5 with

public announcements is more succinct than S5.

Finally, here is a compact reformulation of Theorem 7 in MLEGGT :

Theorem 13. For all n ≥ 0, ⊢MLEGGT

(
MKn

Agt

∧
i∈Agt Rati

)
→ 〈χSD!〉

n+1⊤.

It has to be noted that the approach to game dynamics based on Dynamic Epistemic Logic (DEL)

proposed here is inspired by [7] in which strategic equilibrium is defined by fixed-points of operations of

repeated announcement of suitable epistemic statements and rationality assertions. However, the analysis

of epistemic games proposed in [7] is mainly semantical and the author does not provide a full-fledged

modal language for epistemic games which allows to express in the object language solution concepts

like Nash Equilibrium or IDSDS, and the concept of rationality. Moreover, van Benthem’s analysis does

not include any completeness result for the proposed framework and there is no proposal of reduction

axioms for a combination of DEL with a static logic of epistemic games. On the contrary, these two

aspects are central in our analysis.

5. Incomplete Information

We here consider a more general class of games that includes strategic games with incomplete

information about the game structure including the players’ strategy sets (or action repertoires) and the

players’ preference ordering over strategy profiles. This kind of games have been explored in the past by

Harsanyi [38]. A more recent analysis is given by [39].

We are interested here in verifying whether the results obtained in Sections 3.2 and 3.3 can be

generalized to this kind of games, that is:

1. Are rationality of every player and every agent’s knowledge about other agents’ choices still

sufficient to ensure that the selected strategy profile is a Nash equilibrium in a strategic game

with incomplete information about the game structure?

2. Is mutual knowledge of rationality among the players still sufficient to ensure that the selected

strategy profile survives iterated deletion of dominated strategies in a strategic game with

incomplete information about the game structure?

To answer these questions, we have to remove Axiom CompleteInfo of the form �ϕ → Kiϕ from

MLEG and the corresponding semantic constraint C4 from the definition of MLEG frames expressing

the hypothesis of complete information about the game structure. We call MLEG∗ the resulting logic

and MLEG∗-models the resulting class of models. Then we have to check whether Theorems 6 and 7

given in Sections 3.2 and 3.3 are still derivable in MLEG∗.

We have a positive answer to the previous first question. Indeed, the formula((∧
i∈Agt Rati

)
∧
∧

i∈Agt Ki〈δ−i〉⊤
)
→ Nash(δ)

is derivable in MLEG∗. But we have a negative answer to the second question. Indeed, the following

formula is invalid in MLEG∗ for every δ ∈ ∆ and for every n ∈ N such that n > 0:
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((
MKn

Agt

∧
i∈Agt Rati

)
∧ 〈δ〉⊤

)
→ ¬SD≤n(δ)

This can be proved as follows. We suppose Agt = {1, 2} and we exhibit in Figure 3 a MLEG∗-model

M and a world w1 in M in which for all n, (MKn
{1,2}

∧
i∈{1,2} Rati)∧〈1:main〉⊤∧SD≤1(1:main) is true.

We call Alarm Game the scenario corresponding to this model.

Figure 3. Alarm Game. Again thick circles represent epistemic possibility relations for

agent 1 whereas thin circles represent epistemic possibility relations for agent 2. The two

equivalence classes ∼(w1) = {w1, w2, w3, w4} and ∼(w5) = {w5, w6, w7, w8} correspond to

two different games where agents have different preference ordering over strategy profiles.

✉✉
w3 w4

2 : proc 2 : skip

1 : back

w5 =2 w6 =2 w7 =2 w8

w1 =2 w3

w5 =1 w6 =1 w7 =1 w8

w1 <1 w3 <1 w2
w2 =1 w4

w2 =2 w4

1 : back

1 : main

2 : skip 2 : proc

w2 <2 w1

✉
w2 1 : main

w8 ✉
w7✉

w6 w5

w1

✉ ✉

✉

SCENARIO DESCRIPTION. We call Alarm Game the scenario represented by the model in Figure 3.

Agent 1 is a thief who intends to burgle agent 2’s apartment. Agent 1 can enter the apartment either by

the main door or by the back door (action 1:main or action 1:back ). Agent 2 has two actions available.

Either he does nothing (action 2:skip) or he follows a security procedure (action 2:proc) which consists

in locking the two doors and in activating a surveillance camera on the main door. Entering the apartment

by the main door when agent 2 does nothing (i.e., the strategy profile 〈1:main, 2:skip〉 executed at world

w2) and entering by the back door when agent 2 does nothing (i.e., the strategy profile 〈1:back , 2:skip〉

executed at world w4) are for agent 1 the best situations and are for him equally preferable. Indeed,

in both cases agent 1 will successfully enter and burgle the apartment. On the contrary, trying to

enter the apartment by the back door when 2 follows the security procedure (i.e., the strategy profile

〈1:back , 2:proc〉 executed at world w3) is for 1 strictly better than trying to enter by the main door when

2 follows the security procedure (i.e., the strategy profile 〈1:main, 2:proc〉 executed at worldw1). Indeed,

in the former case agent 1 will be simply unable to burgle the apartment, in the latter case not only he

will be unable to burgle the apartment but also he will disclose his identity. The two possible situations in

which agent 1 does not succeed in burgling the apartment (worlds w1 and w3) are equally preferable for
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agent 2 and are for 2 strictly better than the situations in which agent 1 successfully burgles the apartment

(worlds w2 and w4).

At world w1 agent 1 enters by the main door while agent 2 follows the security procedure. This is a

world in the model M in which agent 1 has some uncertainty. Indeed, in this world agent 1 can imagine

the alternative game defined by the equivalence class ∼(w5) = {w5, w6, w7, w8} in which he enters by

the main door while agent 2 does nothing (world w6). We suppose that in such a game, even if agent

2 follows the security procedure, agent 1 will succeed in burgling his apartment (i.e., the equivalence

class ∼(w5) = {w5, w6, w7, w8} represents the situation in which the security procedure does not work).

This is the reason why the four strategy profiles 〈1:main, 2:skip〉, 〈1:back , 2:skip〉, 〈1:main, 2:proc〉 and

〈1:back , 2:proc〉 are equally preferable for the two agents.

Concerning the automated reasoning aspects of the logic MLEG∗, we conjecture that the complexity

of its satisfiability problem is PSPACE. Indeed, we think that it is possible to build a tableau method

using only a polynomial amount of memory for the satisfiability problem of MLEG∗. In other terms, we

conjecture that if we move from MLEG to MLEG∗, the complexity decreases from EXPTIME-hard to

PSPACE. We here provide an unsurprising lower-bound for the complexity of MLEG∗.

Theorem 14. The satisfiability problem of a given formula ϕ in a MLEG∗-model is PSPACE-hard.

The situation is different when we add the Axiom JointDet of joint determinism discussed in

Section 2.4. Let us call MLEGdet∗ the logic resulting from adding Axiom JointDet of joint determinism

to the logic MLEG∗ and MLEGdet∗-models the class of models resulting from adding the corresponding

Constraint CD to MLEG∗-models. While the complexity of the satisfiability problem for MLEGdet was

NP-complete, it increases to PSPACE-complete for MLEGdet∗. More precisely:

Theorem 15. • If card(Agt) = 1 and card(Act) = 1 then the satisfiability problem of a given

formula ϕ in a MLEGdet∗-model is NP-complete.

• If card(Agt) ≥ 2 or card(Act) ≥ 2 then the satisfiability problem of a given formula ϕ in a

MLEGdet∗-model is PSPACE-complete.

6. Weaker Forms of Complete Information

In the previous section, we have removed Axiom CompleteInfo of the form �ϕ → Kiϕ from the

logic MLEG to obtain a new logic MLEG∗ in which agents may have incomplete information about all

aspects of the game they play, including the players’ strategy sets (or action repertoires) and the players’

preference ordering over strategy profiles.

Nevertheless, in some cases we would like to suppose that agents have complete information about

some specific aspects of the game they play. For example, we would like to suppose that:

1. an agent has complete information about his strategy sets even though he may have incomplete

information about other agents’ strategy sets or,

2. that an agent has complete information about the strategy set of every agent even though he may

have incomplete information about agents’ preference ordering over strategy profiles.
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The former assumption applies to the scenario in which a robber enters a bank, approaches the bank

teller and demands money waving a gun. In this situation the bank teller has complete information about

his strategy set: he knows that he can either sound the alarm or do nothing. But the bank teller does not

know the robber’s strategy set, as he is not sure whether the robber’s gun is loaded or not (i.e., the bank

teller does not know whether the robber is able to kill him by shooting). The latter assumption applies to

a card game like Poker. In Poker a player has complete information about every player’s strategy set, as

he knows that a given point in the game a player has the option to check (if no bet is in front of him), bet,

or fold. However, a Poker player has incomplete information about other players’ preference ordering

over strategy profiles, as he cannot see other players’ cards.

In other terms, we would like to build variants of MLEG∗ in which some formulas of Lemma 1

are derivable.

6.1. Complete Information about Strategy Sets

We show here how to relax the Axiom CompleteInfo in order to express the assumption of complete

information about strategy sets without necessarily assuming complete information over the payoffs.

If we replace Axiom CompleteInfo by the following axiom schemas:

♦〈i:a〉⊤ → Ki♦〈i:a〉⊤(CompleteInfoStrategyi)

for all i ∈ Agt and a ∈ Act , then every agent i has complete information about his strategy set. That

is, if an agent i can perform an action a then agent i knows that he can perform action a. Axiom

CompleteInfoStrategyi corresponds to the following semantic constraint on models. For every i ∈ Agt

and a ∈ Act :

C7 if wEiu and there is v such that w ∼ v and i:a = Ri(v) then, there is z such that u ∼ z and

i:a = Ri(z).

If we replace Axiom CompleteInfo by the following axiom schemas:

♦〈j:a〉⊤ → Ki♦〈j:a〉⊤(CompleteInfoStrategyi,j)

for all i, j ∈ Agt and a ∈ Act , then an agent i has complete information about the strategy sets of every

agent. That is, if an agent j can perform an action a then every agent i knows that agent j can perform

action a. Axiom CompleteInfoStrategyi,j corresponds to the following semantic constraint on models.

For every i, j ∈ Agt and a ∈ Act :

C8 ifwEiu and is v such thatw ∼ v and j:a = Rj(v) then, there is z such that u ∼ z and j:a = Rj(z).

Obviously Axiom CompleteInfoStrategyi,j is more general than Axiom CompleteInfoStrategyi, that

is, CompleteInfoStrategyi,j implies CompleteInfoStrategyi. It is also worth noting that the previous

Axiom CompleteInfoStrategyi,j together with Axiom Indep and Axiom JointAct imply ♦〈δ〉⊤ →

Ki♦〈δ〉⊤. The latter means that if δ is a strategy profile of the current game then every agent knows this.

REMARK. Note also that CompleteInfoStrategyi and CompleteInfoStrategyi,j are respectively

equivalent to �[i:a]⊥ → Ki�[i:a]⊥ and �[j:a]⊥ → Ki�[j:a]⊥ thanks to Axiom 5 for the epistemic

operators Ki.
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In the sequel we call MLEG∗∗ the logic that results from adding the previous Axiom

CompleteInfoStrategyi,j to the logic MLEG∗ discussed in Section 5, and we call MLEG∗∗-models

the corresponding models that results from adding the semantic constraint C8 to the MLEG∗-models.

MLEG∗∗ is the logic of epistemic strategic games in which the only uncertainty is about agents’

preference ordering over strategy profiles.

6.2. An Analysis of the Harsanyi Transformation

We conclude our discussion about games with incomplete information by shedding light on

Harsanyi’s claim that all uncertainty about the structure of a game can be reduced to uncertainty about

payoffs [38].

Harsanyi proposed a way of transforming a game with uncertainty over both the payoffs and the

strategy choices of the players into a game with no strategy-set uncertainty, without affecting the

epistemic implications. In particular, Harsanyi proposed a way of reducing all kinds of imperfect

information about the structure of a game to imperfect information about the strategy choices without

affecting the rationality or irrationality of a player.

The basic idea of Harsanyi’s transformation is that having a strategy with a highly undesirable payoff

is for a player equivalent to not having the strategy at all. Suppose we start with a game with uncertainty

over both the payoffs and the strategy choices of the players. This means that, some player i has a

strategy a in his strategy set and another player j does not know this or some player i does not have a

strategy a in his strategy set and another player j does not know this. To eliminate player’s j strategy-set

uncertainty is sufficient to add the strategy a to the set of strategies which in player j’s opinion are

included in player i’s strategy space and to assign the lowest possible payoff to the new strategy profiles

in which player i chooses strategy a. If player j is rational then the game transformation does not affect

his choice, as his decision is not affected by the highly undesirable options that have been added by the

game transformation.

We here provide a formal proof of Harsanyi’s claim in a purely qualitative setting with no

probabilities. See [13] for a formal proof of Harsanyi’s claim in a quantitative setting using interactive

belief systems à la Aumann & Brandeburger [1] with probabilities.

Let us start with a model M = 〈W,∼, R, E,�, π〉 of the logic MLEG∗ in which players may have

incomplete information about all aspects of the game. We want to show that we can build a corresponding

model M ′ = 〈W ′,∼′, R′, E ′,�′, π′〉 of the logic MLEG∗∗ in which players can only have incomplete

information about payoffs and which satisfies the same formulas Rati as M .

Let [W ] = {∼(w) | w ∈ W} be the partition of W induced by the equivalence relation ∼. We note

S1, S2, . . . the elements of [W ]. Let ΠM = {δ | for every δi there is u ∈ W such that M,u |= 〈δi〉⊤} be

the set of strategy profiles with respect to the model M .

The model M ′ can be defined as follows.

• for every Si ∈ [W ], S ′
i = Si ∪ {wδ

i | δ ∈ ΠM and there is no v ∈ Si such that M, v |= 〈δ〉⊤}

• W ′ =
⋃

Si∈[W ] S
′
i

• for every w, v ∈ W ′, w ∼′ v if and only if there is Si ∈ [W ] such that w, v ∈ S ′
i
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• for every C ∈ 2Agt∗ and w ∈ W , R′
C(w) = RC(w)

• for every C ∈ 2Agt∗ and wδ
i ∈ W ′ \W , R′

C(w) = δC

• for every i ∈ Agt and w ∈ W , E ′
i(w) = Ei(w)

• for every i ∈ Agt and wδ
i ∈ W ′ \W , E ′

i(w
δ
i ) = {wδ

i }

• for every i ∈ Agt and w ∈ W , �′
i (w) =�i (w)

• for every i ∈ Agt and wδ
i ∈ W ′ \W , �′

i (w
δ
i ) =∼′(wδ

i )

• for every p ∈ Atm, π′(p) = π(p) ∪ {wδ
i | w

δ
i ∈ W ′}

Note that the crucial condition is the definition of the preference relation �′
i for all wδ

i ∈ W ′ \

W . Following Harsanyi’s intuition, we assign the lowest possible payoff to the worlds (and to the

corresponding strategy profiles) that have been added through the game transformation in order to

remove strategy-set uncertainty and that did not exist in the initial model M .

It is straightforward to check that the new model M ′ is indeed a MLEG∗∗-model without strategy-set

uncertainty.

The following Theorem 16 is a formal characterization of Harsanyi’s claim. It says that an agent i is

rational at a given world w of model M if and only if, agent i is rational at world w of model M ′ which

is obtained by removing strategy-set uncertainty from model M .

Theorem 16. For every w ∈ W and for every i ∈ Agt , M,w |= Rati if and only if M ′, w |= Rati.

The following corollary of Theorem 16 highlights that Harsanyi transformation does not affect

common knowledge about the rationality or irrationality of a player.

Corollary 1. For every w ∈ W , for every i ∈ Agt and for every C ∈ 2Agt∗, we have M,w |= MKn
CRati

if and only if M ′, w |= MKn
CRati.

7. Conclusions

We have presented a multi-modal logic that enables to reason about epistemic games in strategic form.

This logic, called MLEG (Modal Logic of Epistemic Games), integrates the concepts of joint action,

preference and knowledge. We have shown that MLEG provides a highly flexible formal framework

for the analysis of the epistemic aspects of strategic interaction. Indeed, MLEG can be easily adapted

in order to integrate different assumptions on players’ knowledge about the structure of a game.

Directions for future research are manifold. In this article (Section 3.2) we only considered the notion

of individualistic rationality assumed in classical game theory: an agent decides to perform a certain

action only if the agent believes that this action is a best response to what he expects the others will do.

Our plan is to extend the present modal logic analysis of epistemic games to other forms of rationality

such as fairness and reciprocity [40]. According to these notions of rationality, rational agents are not

necessarily self-interested but they also consider the benefits of their choices for the group. Moreover,

their decisions can be affected by their beliefs about other agents’ willingness to act for the well-being

of the group. In [41] we did some first steps into this direction.
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Another aspect we intend to investigate in the future is a generalization of our approach to mixed

strategies. Indeed, at the current stage the multi-modal logic MLEG only enables to reason about pure

strategies. To this aim, we will have to extend MLEG by modal operators of probabilistic beliefs as

the ones studied by [42,43]. We also postpone to future work an analysis of the epistemic conditions of

Bayesian equilibrium in the resulting logical framework.
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A. ANNEX: Proofs of Some Theorems

A.1. Proof of Theorems 1 and 3

MLEG is determined by the class of MLEG-models. MLEGdet is determined by the class of

MLEGdet-models.

Proof. We only provide a sketch of the proof of Theorem 3. The proof of Theorem 1 is a straightforward

adaptation of the proof of Theorem 3. It is sufficient to remove the constraint (S6) from the following

definition 3.

It is straightforward to show that all axioms in Figure 2 are valid and that the rules of inference

preserve validity in the class of MLEGdet-models. The other part of the proof is shown using two

major steps.



Games 2010, 1 505

Step 1. We provide an alternative semantics for MLEGdet in terms of standard Kripke models

whose semantic conditions correspond one-to-one to the axioms in Table 2. The definition of Kripke

MLEGdet-models is the following one.

Definition 3 (Kripke MLEGdet-model). Kripke MLEGdet-models are tuples M = 〈W,∼, R, E,�, π〉

where:

• W is a nonempty set of possible worlds or states;

• ∼ is an equivalence relation on W ;

• R :
⋃

C∈2Agt∗ ∆C −→ 2W×W maps every joint action δC to a transition relation RδC ⊆ W ×W

between possible worlds such that:

S1 RδC (w) 6= ∅ if and only if, for every i ∈ C Rδi(w) 6= ∅,

S2 if RδC (w) 6= ∅ then RδC (w) = {w},

S3
⋃

δC∈∆C
RδC (w) 6= ∅,

S4 if δC 6= δ′C then RδC (w) = ∅ or Rδ′
C
(w) = ∅,

S5 if for every i ∈ Agt there is vi such that w ∼ vi and Rδi(vi) 6= ∅ then there is a v such that

w ∼ v and Rδ(v) 6= ∅;

S6 if w ∼ v and Rδ(w) 6= ∅ and Rδ(v) 6= ∅, then w = v;

• E : Agt −→ W ×W maps every agent i to an equivalence relation Ei on W such that:

S6 if (w, v) ∈ Ei, then i:a = Ri(w) if and only if i:a = Ri(v),

S7 if wEiv then w ∼ v;

• �: Agt −→ W ×W maps every agent i to a reflexive, transitive relation �i on W such that:

S8 if w �i v then w ∼ v,

S9 if w ∼ v and w ∼ v′ then v �i v
′ or v′ �i v;

• π : Atm −→ 2W is a valuation function.

Truth conditions of MLEGdet formulas in Kripke MLEGdet-models are again standard for atomic

formulas and the Boolean operators. The truth conditions for Boolean operators and for operators �, Ki

and [good]i are the ones of Section 2.2. The truth condition for operators [δC ] are:

• M,w |= [δC ]ϕ iff M, v |= ϕ for all v ∈ RδC (w).

It is a routine task to prove that the axiomatic system of the logic MLEGdet given in Table 2 is sound and

complete with respect to this class of Kripke MLEGdet-models via the Sahlqvist theorem, cf. [44, Th.

2.42]. Indeed all axioms in Table 2 are in the so-called Sahlqvist class [45]. Thus, they are all expressible

as first-order conditions on Kripke models and are complete with respect to the defined model classes.

Step 2. The second step shows that the semantics in terms of MLEGdet-models of Definition 2

and the semantics in terms of Kripke MLEGdet-models of Definition 3 are equivalent. As the logic
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MLEGdet is sound and complete for the class of Kripke MLEGdet-models and is sound for the class

of MLEGdet-models, we have that for every MLEGdet formula ϕ, if ϕ is valid in the class of Kripke

MLEGdet-models then ϕ is valid in the class of MLEGdet-models. Consequently, for every MLEGdet

formula ϕ, if ϕ is satisfiable in the class of MLEGdet-models then ϕ is satisfiable in the class of

Kripke MLEGdet-models. Therefore, in this second step we just need to show that for every MLEGdet

formula ϕ, if ϕ is satisfiable in the class of Kripke MLEGdet-models then ϕ is satisfiable in the class of

MLEGdet-models.

Suppose ϕ is satisfiable in the class of Kripke MLEGdet-models. This means that there is a Kripke

MLEGdet-model M = 〈W,∼, R, E,�, π〉 and world w such that M,w |= ϕ. We can now build a

MLEGdet-model M ′ = 〈W ′, R′, E ′,�′, π′〉 which satisfies ϕ. The model M ′ is defined as follows:

• W ′ = W ;

• for every C ∈ 2Agt∗ and v ∈ W ′, R′
C(v) = δC if and only if RδC (v) 6= ∅;

• for every i ∈ Agt , E ′
i = Ei;

• for every i ∈ Agt , �′
i=�i;

• π′ = π.

By induction on the structure of ϕ, it is just a trivial exercise to show that we have M ′, w |= ϕ.

A.2. Proof of Theorem 2

Proof. Let us start to prove that the satisfiability problem of MLEG is EXPTIME-hard when

card(Agt) ≥ 2. Let us consider two distinct agents i, j ∈ Agt . Let us consider a modal formula ϕ

made of operators Ki, Kj and �. It is easy to check that the following two statements are equivalent:

• ϕ is satisfiable in the logic where Ki and Kj are S5-operators and � is the universal modality;

• ϕ is satisfiable in MLEG.

So we have a reduction from the satisfiability problem of MLEG to the satisfiability problem of S52

plus universal modality �.

But the satisfiability problem of S52 plus the universal modality � is EXPTIME-hard as it is the

case for the satisfiability problem of K plus the universal modality [46]. Indeed, we can reduce the

satisfiability problem of S52 plus the universal modality � to the satisfiability problem of K plus the

universal modality by translating a formula of K plus the universal modality into S52 plus universal

modality. Let x be an extra proposition. The translation works as follows:

• tri(�ψ) = x ∧ Ki[¬x→ trj(ψ)] where � is the K-operator;

• trj(�ψ) = ¬x ∧ Kj[x→ tri(ψ)] where � is the K-operator;

• for all a ∈ {i, j}, tra = �[tri(ψ) ∨ trj(ψ)] where � is the universal operator.
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And ϕ is satisfiable in K plus universal modality iff tri(ϕ) is satisfiable in S52 plus the universal modality.

So MLEG is EXPTIME-hard.

Now let us prove that the satisfiability problem of MLEG is NEXPTIME. We are going to prove that

we can make a filtration of any MLEG model, preserving both the semantic constraints of Definition 1

and the truth of formulas (see [47] for a general introduction to the filtration method in modal logic). Let

us consider a MLEG-model M = 〈W,∼, R, E,�, π〉 where we suppose ∼ to be the universal modality,

without loss of generality. As usual, we consider a formula ϕ, the set Γ = SF (ϕ) of all subformulas of

ϕ and the equivalence relation ≡ over W defined by w ≡ u iff for all ψ ∈ Γ, M,w |= ψ iff M,u |= ψ.

We note |w| the equivalence class of ≡ containing w. Let us define M ′ = 〈W ′,∼, R′, E ′,�′, π′〉 by:

• W ′ = {|w| | w ∈ W};

• ∼= W ′ ×W ′;

• RC(|w|) = RC(w);

• |w|Ei|u| iff for all formulas Kiψ ∈ Γ, M,w |= Kiψ iff M,u |= Kiψ and Ri(w) = Ri(u);

• |w| �′
i |u| iff for all formulas [good]i ψ ∈ Γ, M,w |= [good]i ψ implies M,u |= [good]i ψ;

• π′(p) = {|w| | w ∈ π(p) and p appears in ϕ}.

We leave the reader checking thatM ′ is well-defined, M ′ satisfies the constraints of Definition 1 and that

if M,w |= ϕ then M ′, |w| |= ϕ.

This filtration implies that if a formula ϕ is satisfiable, then it is satisfiable in a model of size O(2|ϕ|)

where |ϕ| is the length of the formula ϕ. A possible algorithm for solving the satisfiability of ϕ may be

as follows:

• Guess non-deterministically a MLEG-modelM = 〈F, π〉 whose size is bounded byO(2|ϕ|) where

π only gives truthness of propositions occurring in ϕ;

• Guess non-deterministically a world w of M ;

• Check if M,w |= ϕ.

This algorithm non-deterministically runs in exponential time. So the satisfiability problem of MLEG

is in NEXPTIME.

A.3. Proof of Theorem 4

Proof. The satisfiability problem of MLEGdet is clearly NP-hard because it is a conservative extension

of the classical propositional logic whose satisfiability problem in NP-complete (Cook’s Theorem [20]).

Now let us prove it is in NP. Clearly if a formula ϕ is MLEGdet-satisfiable, there exists a

MLEGdet-model F = 〈F, π〉 whose size is bounded by card(Act)card(Agt)
. Here is an non-deterministic

algorithm to check if a given formula ϕ is satisfiable:

• Guess non-deterministically a MLEGdet-model M = 〈F, π〉 whose size is bounded by

card(Act)card(Agt)
where π only gives truthness of propositions occurring in ϕ;
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• Guess non-deterministically a world w of M ;

• Check if M,w |= ϕ.

This algorithm non-deterministically runs in polynomial time. So the satisfiability problem of

MLEGdet is in NP.

A.4. Proof of Theorem 5a

For all i ∈ Agt , we have: ⊢MLEG Rati ↔ KiRati

Lemma 1. ⊢MLEG [i:a]⊥ → Ki[i:a]⊥

Proof. 1. ⊢MLEG

∨
b∈Act〈i:b〉⊤;

from Active;

2. ⊢MLEG [i:a]⊥ → [i:a]⊥ ∧
∨

b∈Act〈i:b〉⊤

by 1. and Boolean principles;

3. ⊢MLEG [i:a]⊥ ∧
∨

b∈Act〈i:b〉⊤ →
∨

b 6=a〈i:b〉⊤

by Boolean principles;

4. ⊢MLEG 〈i:b〉⊤ → Ki〈i:b〉⊤ if b 6= a

by Aware;

5. ⊢MLEG

∨
b 6=a〈i:b〉⊤ →

∨
b 6=a Ki〈i:b〉⊤

by 4. and Boolean principles;

6. ⊢MLEG 〈i:b〉⊤ → [i:a]⊥ if b 6= a; by Single;

7. ⊢MLEG Ki(〈i:b〉⊤ → [i:a]⊥) if b 6= a

by Necessitation of Ki from 6;

8. ⊢MLEG Ki〈i:b〉⊤ → Ki[i:a]⊥ if b 6= a

by Axiom K for Ki plus ModusPonens from 7;

9. ⊢MLEG

∨
b 6=a Ki〈i:b〉⊤ → Ki[i:a]⊥

by Boolean principles from 8.

10. ⊢MLEG [i:a]⊥ → Ki[i:a]⊥

by 2, 3, 5 and 9.

Now let us prove Theorem 5a. We give here a version of the proof that uses Axioms K, T, 4 and 5 for

epistemic modal operators.

Proof. 1. ⊢MLEG Rati ↔
∧

a,b∈Act(〈i:a〉⊤ →
∨

β∈∆(K̂i〈β−i〉⊤ ∧ Ki(〈β−i, i:b〉 ≤i 〈β−i, i:a〉)))

by Definition of Rati;
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2. K̂i〈β−i〉⊤ ↔ KiK̂i〈β−i〉⊤

by Axiom 5 for Ki;

3. Ki(〈β−i, i:b〉 ≤i 〈β−i, i:a〉) ↔ KiKi(〈β−i, i:b〉 ≤i 〈β−i, i:a〉)

by Axiom 4 for Ki plus Boolean principles;

4. ⊢MLEG Rati →
∧

a,b∈Act(〈i:a〉⊤ →
∨

β∈∆(KiK̂i〈β−i〉⊤ ∧ KiKi(〈β−i, i:b〉 ≤i 〈β−i, i:a〉)))

by 1, 2, 3 and Boolean principles;

5. ⊢MLEG Kiϕ ∧ Kiψ . . .↔ Ki(ϕ ∧ ψ . . . )

by modal logic K principles;

6. ⊢MLEG [i:a]⊥ → Ki [i:a]⊥

by Lemma 1;

7. ⊢MLEG Rati →
∧

a,b∈Act(Ki [i:a]⊥ ∨
∨

β∈∆ Ki(K̂i〈β−i〉⊤ ∧ Ki(〈β−i, i:b〉 ≤i 〈β−i, i:a〉)))

by 4, 5, 6 and Boolean principles;

8. ⊢MLEG Kiϕ ∨ Kiψ . . .→ Ki(ϕ ∨ ψ . . . )

by modal logic K principles;

9. ⊢MLEG Rati → Ki

∧

a,b∈Act

([i:a]⊥ ∨
∨

β∈∆

(K̂i〈β−i〉⊤ ∧ Ki(〈β−i, i:b〉 ≤i 〈β−i, i:a〉)))

︸ ︷︷ ︸
Rati

by 7 and 8;

10. ⊢MLEG KiRati → Rati

by Axiom T of Ki;

11. ⊢MLEG Rati ↔ KiRati

by 9 and 10.

We give another version of the proof of Theorem 5a that uses Axioms K, T and 5 for epistemic modal

operators and introspection over preferences “(δ ≤i δ
′) → Ki(δ ≤i δ

′)”.

Proof. 1. ⊢MLEG Rati ↔
(∧

a,b∈Act(〈i:a〉⊤ →
∨

β∈∆(K̂i〈β−i〉⊤ ∧ Ki(〈β−i, i:b〉 ≤i 〈β−i, i:a〉)))
)

by Definition of Rati;

2. K̂i〈β−i〉⊤ ↔ KiK̂i〈β−i〉⊤

by Axiom 5 for Ki;

3. ⊢MLEG Rati ↔
∧

a,b∈Act(〈i:a〉⊤ →
∨

β∈∆(KiK̂i〈β−i〉⊤ ∧ Ki(〈β−i, i:b〉 ≤i 〈β−i, i:a〉)))

by 1 and 2;
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4. ⊢MLEG Kiϕ ∧ Kiψ . . .↔ Ki(ϕ ∧ ψ . . . )

by modal logic K principles;

5. ⊢MLEG [i:a]⊥ → Ki [i:a]⊥

by Lemma 1;

6. ⊢MLEG Rati ↔
∧

a,b∈Act(Ki [i:a]⊥ ∨
∨

β∈∆ Ki(K̂i〈β−i〉⊤ ∧ (〈β−i, i:b〉 ≤i 〈β−i, i:a〉)))

by 2, 4, 5 and Boolean principles;

7. ⊢MLEG Kiϕ ∨ Kiψ . . .→ Ki(ϕ ∨ ψ . . . )

by modal logic K principles;

8. ⊢MLEG Rati → Ki

∧
a,b∈Act([i:a]⊥ ∨

∨
β∈∆(K̂i〈β−i〉⊤ ∧ (〈β−i, i:b〉 ≤i 〈β−i, i:a〉)))

9. ⊢MLEG (〈β−i, i:b〉 ≤i 〈β−i, i:a〉) → Ki(〈β−i, i:b〉 ≤i 〈β−i, i:a〉)

by Lemma 1 (or introspection over preferences);

10. ⊢MLEG Rati → Ki

∧

a,b∈Act

([i:a]⊥ ∨
∨

β∈∆

(K̂i〈β−i〉⊤ ∧ Ki(〈β−i, i:b〉 ≤i 〈β−i, i:a〉)))

︸ ︷︷ ︸
Rati

by 8 and 9;

11. ⊢MLEG KiRati → Rati

by Axiom T of Ki;

12. ⊢MLEG Rati ↔ KiRati

by 10 and 11.

A.5. Proof of Theorem 6

For all δ ∈ ∆, we have:

⊢MLEG

((∧
i∈Agt Rati

)
∧
∧

i∈Agt Ki〈δ−i〉⊤
)
→ Nash(δ)

Proof. 1. ⊢MLEG 〈δ−i〉⊤ → [β−i]⊥ if β−i 6= δ−i

by Single;

2. ⊢MLEG Ki (〈δ−i〉⊤ → [β−i]⊥) if β−i 6= δ−i

by necessitation of Ki;

3. ⊢MLEG (Ki〈δ−i〉⊤ → Ki[β−i]⊥) if β−i 6= δ−i

by 2, axiom K of Ki plus ModusPonens;

4. ⊢MLEG Ki〈δ−i〉⊤ ∧ K̂i〈β−i〉⊤ ↔ ⊥ if β−i 6= δ−i

by 3 and Boolean principles;
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5. ⊢MLEG Kj〈δ−j〉⊤ → 〈δ−j〉⊤

by axiom T of S5Ki
.

6. ⊢MLEG 〈δ−j〉⊤ → 〈δi〉⊤ if j 6= i

by JointAct;

7. ⊢MLEG Kj〈δ−j〉⊤ → 〈δi〉⊤ for j 6= i

by 5 and 6;

8. ⊢MLEG

((∧
i∈Agt Rati

)
∧
∧

i∈Agt Ki〈δ−i〉⊤
)

→
∧

b∈Act

(
〈δi〉⊤ →

∨
β∈∆

(
K̂i〈β−i〉⊤ ∧ Ki((〈i:b, β−i〉⊤ ≤i (〈δi, β−i〉⊤)

))
∧ 〈δi〉⊤ ∧ Ki〈δ−i〉⊤

by Boolean principles and 7;

9. ⊢MLEG

∧
b∈Act

(
〈δi〉⊤ →

∨
β∈∆

(
K̂i〈β−i〉⊤ ∧ Ki((〈i:b, β−i〉⊤ ≤i (〈δi, β−i〉⊤)

))
∧ 〈δi〉⊤ ∧

Ki〈δ−i〉⊤

→
∧

b∈Act

∨
β∈∆

(
K̂i〈β−i〉⊤ ∧ Ki((〈i:b, β−i〉⊤ ≤i (〈δi, β−i〉⊤)))

)
∧ Ki〈δ−i〉⊤

by Boolean principle “A ∧ (A→ B) → B”;

10. ⊢MLEG

∧
b∈Act

∨
β∈∆

(
K̂i〈β−i〉⊤ ∧ Ki((〈i:b, β−i〉⊤ ≤i (〈δi, β−i〉⊤)))

)
∧ Ki〈δ−i〉⊤

→
∧

b∈Act

∨
β∈∆

(
K̂i〈β−i〉⊤ ∧ Ki〈δ−i〉⊤ ∧ Ki((〈i:b, β−i〉⊤ ≤i (〈δi, β−i〉⊤)))

)

by distributivity of ∧ over
∨

β∈∆;

11. ⊢MLEG

∧
b∈Act

∨
β∈∆

(
K̂i〈β−i〉⊤ ∧ Ki〈δ−i〉⊤ ∧ Ki((〈i:b, β−i〉⊤ ≤i (〈δi, β−i〉⊤)))

)

→
∧

b∈Act Ki((〈i:b, δ−i〉⊤ ≤i (〈δi, δ−i〉⊤)

by 4 plus Boolean principles;

12. ⊢MLEG Ki((〈i:b, δ−i〉⊤ ≤i (〈δi, δ−i〉⊤) → (〈i:b, δ−i〉⊤ ≤i (〈δi, δ−i〉⊤)

by Axiom T of Ki;

13. ⊢MLEG

∧
b∈Act Ki((〈i:b, δ−i〉⊤ ≤i (〈δi, δ−i〉⊤) →

∧

b∈Act

(〈i:b, δ−i〉⊤ ≤i (〈δi, δ−i〉⊤)

︸ ︷︷ ︸
BR(δi,δ−i)

by 12 and Boolean principles;

14. ⊢MLEG

((∧
i∈Agt Rati

)
∧
∧

i∈Agt Ki〈δ−i〉⊤
)
→ BR(δi, δ−i)

by 8, 9, 10, 11 and 13;

15. ⊢MLEG

((∧
i∈Agt Rati

)
∧
∧

i∈Agt Ki〈δ−i〉⊤
)
→ Nash(δ)

by 14 and Boolean principles.
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A.6. Proof of Theorem 7

For all δ ∈ ∆, ⊢MLEG

((
MKn

Agt

∧
i∈Agt Rati

)
∧ 〈δC〉⊤

)
→ ¬SD≤n(δC)

Proof.

Lemma 2. ⊢MLEG SD≤n(i:a) → KjSD
≤n(i:a)

Proof. The proof of the lemma consists in proving by induction on n that ⊢MLEG SD≤n(i:a) →

KjSD
≤n(i:a) and ⊢MLEG ¬SD≤n(i:a) → Kj¬SD

≤n(i:a). We leave the proof of these two

MLEG-theorems based on Lemma 1 to the reader.

Basic case n = 0

Here we prove ⊢MLEG

((∧
i∈Agt Rati

)
∧ 〈δC〉⊤

)
→ ¬SD≤0(δC).
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1. ⊢MLEG 〈δC〉⊤ →
∧

i∈C〈δi〉⊤

by Axiom JointAct

2. ⊢MLEG Ki(〈β−i, i:b〉 ≤i 〈β−i, i : δi〉) → (〈β−i, i:b〉 ≤i 〈β−i, i : δi〉)

by Axiom T of Ki;

3. ⊢MLEG

((∧
i∈Agt Rati

)
∧ 〈δC〉⊤

)

→ 〈δi〉⊤ ∧
∧

b∈Act

(∨
β∈∆

(
K̂i〈β−i〉⊤ ∧ (〈β−i, i:b〉 ≤i 〈β−i, i : δi〉)

))
if c ∈ C

By 1, 2, axiom T for Ki and Boolean principles;

4. ⊢MLEG K̂i〈β−i〉⊤ → ♦〈β−i〉⊤

by CompleteInfo or (Lemma 1 considered as axioms plus axiom T for �);

5. ⊢MLEG 〈δi〉⊤ → ♦〈δi〉⊤

by Axiom T for �;

6. ⊢MLEG 〈δi〉⊤ ∧
∧

b∈Act

(∨
β∈∆

(
K̂i〈β−i〉⊤ ∧ (〈β−i, i:b〉 ≤i 〈β−i, i : δi〉)

))

→ ♦〈δi〉⊤ ∧
∧

b∈Act

(∨
β∈∆ (♦〈β−i〉⊤ ∧ 〈β−i, i:b〉 ≤i 〈β−i, i : δi〉)

)

by 4, 5 and Boolean principles;

7. ⊢MLEG ♦〈δi〉⊤ ∧
∧

b∈Act

(∨
β∈∆ (♦〈β−i〉⊤ ∧ 〈β−i, i:b〉 ≤i 〈β−i, i : δi〉)

)

→ ♦〈δi〉⊤ ∧
∧

b∈Act

♦〈i:b〉⊤ →

(
∨

β∈∆

(♦〈β−i〉⊤ ∧ 〈β−i, i:b〉 ≤i 〈β−i, i : δi〉)

)

︸ ︷︷ ︸
¬SD≤0(δi)

by Boolean principles;

8. ⊢MLEG

((∧
i∈Agt Rati

)
∧ 〈δC〉⊤

)
→ ¬SD≤0(δi) if c ∈ C

by 3, 6, 7 and Boolean principles;

9. ⊢MLEG⊢MLEG

((∧
i∈Agt Rati

)
∧ 〈δC〉⊤

)
→ ¬SD≤0(δC)

by 8 and Boolean principles.

Inductive case

let n ∈ N and let us prove that if the theorem 7 is true for all k ≤ n then it is true for n+ 1.
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1. ⊢MLEG

((
MKn+1

Agt

∧
i∈Agt Rati

)
∧ 〈δC〉⊤

)
→
((

MKn
Agt

∧
i∈Agt Rati

)
∧ 〈δC〉⊤

)

by Axiom T for Ki plus Boolean principles;

2. ⊢MLEG

((
MKn

Agt

∧
i∈Agt Rati

)
∧ 〈δC〉⊤

)
→ ¬SD≤n(δC)

by induction;

3. ⊢MLEG ¬SD≤n(δ) → ¬SD≤n(δi)

by Definition of ¬SD≤n(δ) and Boolean principles;

4. ⊢MLEG

((
MKn+1

Agt

∧
i∈Agt Rati

)
∧ 〈δC〉⊤

)
→ ¬SD≤n(δi)

by 1, 2, 3;

5. ⊢MLEG

((
MKn+1

Agt

∧
i∈Agt Rati

)
∧ 〈δC〉⊤

)
→ Rati ∧ KiMKn

AgtRati ∧ 〈δC〉⊤;

by Boolean principles

6. ⊢MLEG Rati ∧ KiMKn
AgtRati ∧ 〈δC〉⊤

→
∧

b∈Act

∨
β∈∆(K̂i〈β−i〉⊤ ∧ (〈β−i, i:b〉 ≤i 〈β−i, δi〉)) ∧ KiMKn

AgtRati if i ∈ C

by JointAct, definition of Rati and Boolean principles;

7. ⊢MLEG

∧
b∈Act

∨
β∈∆(K̂i〈β−i〉⊤ ∧ (〈β−i, i:b〉 ≤i 〈β−i, δi〉)) ∧ KiMKn

AgtRati

→
∧

b∈Act

∨
β∈∆(K̂i〈β−i〉⊤ ∧ KiMKn

AgtRati ∧ (〈β−i, i:b〉 ≤i 〈β−i, δi〉))

by distributivity of ∧ over
∨

β∈∆;

8. ⊢MLEG K̂i〈β−i〉⊤ ∧ KiMKn
AgtRati → K̂i(〈β−i〉⊤ ∧MKn

AgtRati)

by modal logic K principle “K̂iA ∧ KiB → K̂i(A ∧ B)” ;

9. ⊢MLEG (〈β−i〉⊤ ∧MKn
AgtRati) → ¬SD≤n(β−i)

by induction;

10. ⊢MLEG Ki

(
(〈β−i〉⊤ ∧MKn

AgtRati) → ¬SD≤n(β−i)
)

by necessitation rule on 9;

11. ⊢MLEG K̂i(〈β−i〉⊤ ∧MKn
AgtRati) → K̂i¬SD

≤n(β−i)

by modal logic K principles applied on 10;

12. ⊢MLEG K̂i¬SD
≤n(β−i) → ¬SD≤n(β−i) by Lemma A.6;

13. ⊢MLEG K̂i〈β−i〉⊤ ∧ KiMKn
AgtRati → ¬SD≤n(β−i)

from 8, 11 and 12;

14. ⊢MLEG

∧
b∈Act

∨
β∈∆(K̂i〈β−i〉⊤ ∧ KiMKn

AgtRati ∧ (〈β−i, i:b〉 ≤i 〈β−i, δi〉))

→
∧

b∈Act

∨
β∈∆(¬SD

≤n(β−i) ∧ (〈β−i, i:b〉 ≤i 〈β−i, i:δi〉))

by 13 and Boolean principles;
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15. ⊢MLEG

∧
b∈Act

∨
β∈∆(¬SD

≤n(β−i) ∧ (〈β−i, i:b〉 ≤i 〈β−i, i:δi〉))

→
∧

b∈Act(¬SD
≤n(i:b) →

∨
β∈∆(¬SD

≤n(β−i) ∧ (〈β−i, i:b〉 ≤i 〈β−i, δi〉)))

by Boolean principles;

16. ⊢MLEG

((
MKn+1

Agt

∧
i∈Agt Rati

)
∧ 〈δC〉⊤

)

→
∧

b∈Act(¬SD
≤n(i:b) →

∨
β∈∆(¬SD

≤n(β−i)∧ (〈β−i, i:b〉 ≤i 〈β−i, δi〉))) if c ∈ C

by 5, 6, 7, 14, 15;

17. ⊢MLEG

((
MKn+1

Agt

∧
i∈Agt Rati

)
∧ 〈δC〉⊤

)
→ ¬SD≤n+1(δi) if c ∈ C

by 4 and 16;

18. ⊢MLEG

((
MKn+1

Agt

∧
i∈Agt Rati

)
∧ 〈δC〉⊤

)
→ ¬SD≤n+1(δC)

by 17.

A.7. Proof of Theorem 8

Consider an arbitrary MLEG-model M = 〈W,∼, R, E,�, π〉, a world w in M and δ ∈ ∆

such that for all positive integers n we have M,w |= 〈δ〉⊤ ∧ ¬SD≤n(δ). Then, there is a model

M ′ = 〈W,∼, R,E ′,�, π〉 such that for all positive integers n we have M ′, w |= MKn
Agt

∧
i∈Agt Rati.

Proof. The proof is based on the following Lemma 3.

Lemma 3. For all δ ∈ ∆, we have

⊢MLEG ¬SD≤n(i:a) ↔

(¬SD≤n−1(i:a) ∧
∧

b∈Act

∨

δ∈∆

(¬SD≤n−1(δ−i) ∧ (〈δ−i, i:b〉 ≤i 〈δ−i, i:a〉)))

In other words, player i’s strategy a survives after n rounds of IDSDS if and only if, a survives after

n − 1 rounds of IDSDS and in the subgame of depth n, for every alternative strategy b of i, there is a

joint action δ−i of the other agents that survives after n − 1 rounds of IDSDS such that playing a while

the others play δ−i is for i at least as good as playing b while the others play δ−i.

Lemma 3 ensures that the definition of SD≤n(i:a) can be rewritten in the following shorter

equivalent form:

SD≤n(i:a)
def
= ¬SD≤n−1(i:a) →

∨

b∈Act

∧

δ∈∆

(¬SD≤n−1(δ−i) → (〈δ−i, i:a〉 <i 〈δ−i, i:b〉))

Let us consider w such that for all positive integers n, M,w |= 〈δ〉⊤ ∧ ¬SD≤n(δ). We can now show

how to build the accessibility relations E ′
i of the model M ′ in such a way that for all positive integers n

M ′, w |= MKn
Agt

∧
i∈Agt Rati. The construction goes as follows.

For all positive integers n, letAn be the subset of all joint actions β ∈ ∆ such thatM,w |= ¬SD≤n(β).

As |=MLEG ¬SD≤n+1(β) → ¬SD≤n(β), we have An+1 ⊆ An. Let us define A∞ =
⋂

n∈NAn. As ∆

is finite, there exists a positive integer n0 such that A∞ = An0
and for all positive integers n > n0,
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An = An0
. Let Ω be the set of all worlds u such that u ∼ w and such that there exists β ∈ A∞ such that

M,u |= 〈β〉⊤. Note that w ∈ Ω.

For all i ∈ Agt , we define E ′
i as follows:

• for all s, t ∈ W , sE ′
it iff either s, t ∈ Ω or s = t.

Now, let us prove that for all i ∈ Agt , for all s ∈ Ω, we have M ′, s |= Rati. Let a ∈ Act be such that

s |= 〈i:a〉⊤. As s ∈ Ω, we have M ′, s |= ¬SD≤n0+1(i:a). By Lemma 3, it implies that for all b ∈ Act,

there exists β ∈ ∆ such that M ′, s |= ¬SD≤n0(β−i) and 〈β−i, i:b〉 ≤i 〈β−i, i:a〉. But by definition of E ′
i,

we have equivalence between M ′, s |= K̂i〈β−i〉⊤ and M ′, s |= ¬SD≤n0(β−i). So for all s ∈ Ω, we have

M ′, s |= Rati. As for all i ∈ Agt we have E ′
i(w) = Ω, we obtain M ′, w |= MKn

Agt

∧
i∈Agt Rati for all

positive integers n.

A.8. Proof of Theorem 9

If M is a MLEG model then Mχ is a MLEG model.

Proof. It is just a routine to verify that ∼χ and every E
χ
i are equivalence relations, every �χ

i is reflexive

and transitive, and the model Mχ satisfies the semantic constraints C1, C4, C5 and C6.

Let us prove that Mχ satisfies constraints C2 and C3.

We first prove that Mχ satisfies constraint C2. We introduce the following useful notation. Suppose

χ1, χ2 ∈ LGT . Then, χ2  χ3 iff there is χ3 ∈ LGT such that χ1 = χ2 ∧ χ3.

Now, suppose for every i ∈ Agt there is vi such that vi ∼
χ w and R

χ
i (vi) = δi. It follows that for

every i ∈ Agt there is vi such that vi ∼ w and Ri(vi) = δi. The latter implies that there is v such

that v ∼ w and Rδ(v) 6= ∅ (by the semantic constraint C2). Now, suppose for all v′ if v′ ∼χ w then

R
χ
Agt(v

′) = δ. It follows that: there is i ∈ Agt and ψ ∈ LMLEG such that �ψ → [δi]⊥  χ and

M, v |= �ψ. The latter implies that there is i ∈ Agt and ψ ∈ LMLEG such that �ψ → [δi]⊥  χ and

for all v′ ∼ w, M, v′ |= �ψ. We conclude that there is no vi ∼
χ w such that R

χ
i (vi) = δi which leads to

a contradiction.

We now consider constraint C3. Suppose wE
χ
i v and R

χ
i (w) = i:a. It follows that wEiv and Ri(w) =

i:a which implies Ri(v) = i:a, because M satisfies constraint C3. The latter implies R
χ
i (v) = i:a. Now,

suppose wE
χ
i v and R

χ
i (v) = i:a. It follows that wEiv and Ri(v) = i:a which implies Ri(w) = i:a,

because M satisfies constraint C3. The latter implies R
χ
i (w) = i:a.

A.9. Proof of Theorem 10

Proof. The proofs of R1-R6 go as in Dynamic Epistemic Logic (DEL) (see [10]). We here prove R7.

M,w |= [χ!] [δC ]ϕ,

IFF if M,w |= χ then Mχ, w |= [δC ]ϕ,

IFF if M,w |= χ then Mχ, w |= 〈δC〉⊤ → ϕ (by Axiom Def[δC ]),

IFF if M,w |= χ then Mχ, w |= [δC ]⊥ or Mχ, w |= ϕ,

IFF if Mχ, w |= 〈δC〉⊤ then, if M,w |= χ then Mχ, w |= ϕ,

IFF if Mχ, w |= 〈δC〉⊤ then, M,w |= [χ!]ϕ,
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IFF if M,w |= 〈δC〉⊤ then, M,w |= [χ!]ϕ,

IFF if M,w |= 〈δC〉⊤ → [χ!]ϕ.

A.10. Proof of Theorem 11

The logic MLEGGT is completely axiomatized by the axioms and inference rules of MLEG together

with the schemata of Theorem 10.

Proof. By means of the principles R1-R7 in Theorem 10, it is straightforward to prove that for every

MLEGGT formula there is an equivalent MLEG formula. In fact, each reduction axiom R2-R7,

when applied from the left to the right by means of the rule of replacement of proved equivalence,

yields a simpler formula, where “simpler” roughly speaking means that the dynamic operator is pushed

inwards. Once the dynamic operator attains an atom it is eliminated by the equivalence R1. Hence, the

completeness of MLEGGT is a straightforward consequence of Theorem 1.

A.11. Proof of Theorem 12

For all δ ∈ ∆, for all n ≥ 0,

⊢MLEGGT 〈δ〉⊤ →
(
¬SD≤n(δ) ↔ 〈χSD!〉

n+1⊤
)
.

Lemma 4. ⊢MLEG

∨
a∈Act ¬SD

≤0(i:a).

Proof. 1. ⊢MLEG

∨
a1∈Act

〈i:a1〉⊤

by Active;

2. ⊢MLEG

∨
a1∈Act

♦〈i:a1〉⊤

by 1 and T for � and Boolean principles;

3. ⊢MLEG

∨
β∈∆〈β−i〉⊤

by Active;

4. ⊢MLEG

∨
β∈∆ ♦〈β−i〉⊤

by 3;

5. ⊢MLEG

∧
a∈Act SD

≤0(i:a) →
∧

a∈Act SD
≤0(i:a) ∧

∨
a∈Act ♦〈i:a〉⊤ ∧

∨
β∈∆ ♦〈β−i〉⊤

by 2 and 4;

6. ⊢MLEG ♦〈β−i〉⊤ ∧ SD≤0(i:a) ∧ ♦〈i:a〉⊤ →
∨

b∈Act(〈β−i, i:a〉 <i 〈β−i, i:b〉 ∧ ♦〈i:b〉⊤)

by Definition SD≤0(i:a) and Boolean principles;

7. ⊢MLEG ♦〈β−i〉⊤ ∧
∧

a∈Act SD
≤0(i:a) ∧ ♦〈i:a〉⊤

→
∨

b∈Act(〈β−i, i:a〉 <i 〈β−i, i:b〉 ∧ ♦〈β−i〉⊤ ∧
∧

a∈Act SD
≤0(i:a) ∧ ♦〈i:b〉⊤)

by 6 and Boolean principles to propagate
∧

a∈Act SD
≤0(i:a);
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8. ⊢MLEG ♦〈β−i〉⊤ ∧
∧

a∈Act SD
≤0(i:a) ∧ ♦〈i:a〉⊤

→
∨

b1∈Act

∨
b2∈Act

. . .
∨

bn∈Act
〈β−i, i:a〉 <i 〈β−i, i:b1〉〈β−i, i:b1〉 <i 〈β−i, i:b2〉 . . .

〈β−i, i:bn−1〉 <i 〈β−i, i:bn〉 for all n ≥ 1;

by 7 and Boolean principles (induction on n);

9. ⊢MLEG

∨
b1∈Act

∨
b2∈Act

. . .
∨

bn∈Act
〈β−i, i:a〉 <i 〈β−i, i:b1〉〈β−i, i:b1〉 <i 〈β−i, i:b2〉 . . .

〈β−i, i:bn−1〉 <i 〈β−i, i:bn〉

→
∨

b∈Act〈β−i, i:b〉 <i 〈β−i, i:b〉 if n > card(Agt)

by Boolean principles and because <i is transitive (as n > card(Agt), all sequence b1, . . . bn are

such that there exists i 6= j such that bi = bj);

10. ⊢MLEG 〈β−i, i:b〉 <i 〈β−i, i:b〉 → ⊥

by Definition of <i and Boolean principles;

11. ⊢MLEG ♦〈β−i〉⊤ ∧
∧

a∈Act SD
≤0(i:a) ∧ ♦〈i:a〉⊤ → ⊥

by 8, 9, 10;

12. ⊢MLEG

∧
a∈Act SD

≤0(i:a) ∧
∨

a∈Act ♦〈i:a〉⊤ ∧
∨

β∈∆ ♦〈β−i〉⊤ → ⊥

by 11 and Boolean principles;

13. ⊢MLEG

∧
a∈Act SD

≤0(i:a) → ⊥

by 5 and 12;

14. ⊢MLEG

∨
a∈Act ¬SD

≤0(i:a)

by 13 and Boolean principle.

Lemma 5. ⊢MLEGGT ¬SD≤n(i:a) ∧ χSD ↔ 〈χSD!〉¬SD
≤n−1(i:a).

Proof. We prove it by induction. Let us consider the case n = 0 where ¬SD≤−1(i:a) = ♦〈i:a〉⊤ by

convention.
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1. ⊢MLEGGT ¬SD≤0(i:a) → ♦〈i:a〉⊤

by Definition of ¬SD≤0(i:a) and Boolean principles;

2. ⊢MLEGGT

∧
j∈Agt

∨
b∈Act ¬SD

≤0(j:b)

by Lemma 4 and Boolean principles;

3. ⊢MLEGGT

∧
j∈Agt

∨
b∈Act ¬SD

≤0(j:b) ↔
∧

j∈Agt

∨
b∈Act ¬SD

≤0(j:b) ∧ ♦〈j:b〉⊤

by 1 and Boolean principles;

4. ⊢MLEGGT

∧
j∈Agt

∨
b∈Act ¬SD

≤0(j:b) ∧ ♦〈j:b〉⊤

by 2 and 3;

5. ⊢MLEGGT ¬SD≤0(i:a) ∧ χSD ↔ ¬SD≤0(i:a) ∧ χSD ∧ ♦〈i:a〉⊤

by 1 and Boolean principles;

6. ⊢MLEGGT ¬SD≤0(i:a) ∧ χSD ∧ ♦〈i:a〉⊤ ↔ ¬SD≤0(i:a) ∧ χSD ∧ ♦〈i:a〉⊤ ∧∧
j∈Agt

∨
b∈Act ¬SD

≤0(j:b) ∧ ♦〈j:b〉⊤

by 4 and Boolean principles;

7. ⊢MLEGGT ¬SD≤0(i:a) ∧ χSD ∧ ♦〈i:a〉⊤ ∧
∧

j∈Agt

∨
b∈Act ¬SD

≤0(j:b) ∧ ♦〈j:b〉⊤

→ χSD ∧
∨

β∈∆(¬SD
≤0(β−i, i:a) ∧ ♦〈β−i, i:a〉⊤)

by Boolean principles and Indep;

8. ⊢MLEGGT χSD ∧
∨

β∈∆(¬SD
≤0(β−i, i:a) ∧ ♦〈β−i, i:a〉⊤)

→ χSD ∧
∨

β∈∆ ♦(¬SD
≤0(β−i, i:a) ∧ 〈β−i, i:a〉⊤)

by Proposition 2 and K(�) principles;

9. ⊢MLEGGT χSD ∧
∨

β∈∆ ♦(¬SD
≤0(β−i, i:a) ∧ 〈β−i, i:a〉⊤)

→ χSD ∧
∨

β∈∆ ♦(χSD ∧ 〈i:a〉⊤)

by definitions of χSD, ¬SD≤0(β−i, i:a), JointAct and Boolean principles;

10. ⊢MLEGGT 〈χSD!〉〈i:a〉⊤ ↔ 〈i:a〉⊤ ∧ χSD by R2. and R7.

11. ⊢MLEGGT χSD ∧
∨

β∈∆ ♦(χSD ∧ 〈i:a〉⊤) → χSD ∧ ♦(χSD ∧ 〈i:a〉⊤);

by Boolean principles;

12. ⊢MLEGGT χSD ∧ ♦(χSD ∧ 〈i:a〉⊤) ↔ χSD ∧ ♦(〈χSD!〉〈i:a〉⊤)

by Boolean principles and 10;

13. ⊢MLEGGT χSD ∧ ♦(〈χSD!〉〈i:a〉⊤) ↔ 〈χSD!〉♦〈i:a〉⊤.

by R2. and R4.;

14. ⊢MLEGGT ¬SD≤0(i:a) ∧ χSD → 〈χSD!〉¬SD
≤−1(i:a)

by 5, 6, 7, 8, 9, 11, 12, 13.
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15. ⊢MLEGGT 〈χSD!〉¬SD
≤−1(i:a) → χSD ∧ ♦(χSD ∧ 〈i:a〉⊤)

by 13, 12;

16. ⊢MLEGGT 〈i:a〉⊤ ∧ χSD → ¬SD≤0(i:a) ∧ χSD;

by Definition of χSD and Boolean principles;

17. ⊢MLEGGT χSD ∧ ♦(χSD ∧ 〈i:a〉⊤) → χSD ∧ ♦¬SD≤0(i:a)

by 16, modal logic K(�) principles and Boolean principles;

18. ⊢MLEGGT ♦¬SD≤0(i:a) ∧ χSD → ¬SD≤0(i:a) ∧ χSD

by ♦¬SD≤0(i:a) ↔ ¬SD≤0(i:a);

19. ⊢MLEGGT 〈χSD!〉¬SD
≤−1(i:a) → ¬SD≤0(i:a) ∧ χSD

by 15, 17, 18;

20. ⊢MLEGGT ¬SD≤0(i:a) ∧ χSD ↔ 〈χSD!〉¬SD
≤−1(i:a)

by 14 and 19.
Now let us consider the inductive case.
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1. ⊢MLEGGT 〈χSD!〉¬SD
≤n(i:a) ↔ 〈χSD!〉(

¬SD≤n−1(i:a) ∧
∧

b∈Act(¬SD
≤n−1(i:b) →

∨
β∈∆(¬SD

≤n(β−i) ∧ (〈β−i, i:b〉 ≤i 〈β−i, i:a〉)))
)

by Definition of ¬SD≤n(i:a);

2. ⊢MLEGGT 〈χSD!〉(
¬SD≤n−1(i:a) ∧

∧
b∈Act(¬SD

≤n−1(i:b) →
∨

β∈∆(¬SD
≤n−1(β−i) ∧ (〈β−i, i:b〉 ≤i 〈β−i, i:a〉)))

)

↔ (〈χSD!〉¬SD
≤n−1(i:a) ∧

∧
b∈Act(〈χSD!〉¬SD

≤n−1(i:b) →
∨

β∈∆(〈χSD!〉¬SD
≤n−1(β−i) ∧ 〈χSD!〉(〈β−i, i:b〉∧ ≤i 〈β−i, i:a〉))))

by Boolean principles and rules R2. and R3. (we can distribute 〈χSD!〉 over Boolean

connectives);

3. ⊢MLEGGT 〈χSD!〉(〈β−i, i:b〉∧ ≤i 〈β−i, i:a〉) ↔ (〈β−i, i:b〉∧ ≤i 〈β−i, i:a〉) ∧ χSD

by Boolean principles and Axiom R2., R3., R4. and R6.;

4. ⊢MLEGGT (〈χSD!〉¬SD
≤n−1(i:a) ∧

∧
b∈Act(〈χSD!〉¬SD

≤n−1(i:b) →
∨

β∈∆(〈χSD!〉¬SD
≤n−1(β−i) ∧ 〈χSD!〉(〈β−i, i:b〉∧ ≤i 〈β−i, i:a〉))))

↔ χSD ∧¬SD≤n(i:a)∧
∧

b∈Act(χSD ∧¬SD≤n(i:b) →
∨

β∈∆(χSD ∧¬SD≤n(β−i)∧

χSD ∧ (〈β−i, i:b〉∧ ≤i 〈β−i, i:a〉)))

by induction and 3;

5. ⊢MLEGGT [χSD ∧ ¬SD≤n(i:a) ∧
∧

b∈Act(χSD ∧ ¬SD≤n(i:b) →
∨

β∈∆(χSD ∧

¬SD≤n(β−i) ∧ χSD ∧ (〈β−i, i:b〉∧ ≤i 〈β−i, i:a〉)))] ↔ [χSD∧

¬SD≤n(i:a) ∧
∧

b∈Act

(¬SD≤n(i:b) →
∨

β∈∆

(¬SD≤n(β−i) ∧ (〈β−i, i:b〉∧ ≤i 〈β−i, i:a〉)))

︸ ︷︷ ︸
¬SD≤n+1(i:a)

]

by Boolean principles (we remove the multiple “χSD∧”);

6. ⊢MLEGGT 〈χSD!〉¬SD
≤n(i:a) ↔ 〈χSD!〉 ↔ χSD ∧ ¬SD≤n+1(i:a)

by 1, 2, 4, 5.
Now let us finish the proof:
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1. ⊢MLEGGT ¬SD≤n(δ) → ¬SD≤n−1(δ)

by definition of ¬SD≤n(δ) and Boolean principles;

2. ⊢MLEGGT ¬SD≤n(δ) → ¬SD≤0(δ)

by 1 and Boolean principles (induction on n);

3. ⊢MLEGGT ¬SD≤0(δ) ∧ 〈δ〉⊤ → χSD

by Boolean principles (see definition of χSD);

4. ⊢MLEGGT 〈δ〉⊤ ∧ χSD ↔ 〈χSD!〉〈δ〉⊤

by rule R7.;

5. ⊢MLEGGT 〈δ〉⊤ ∧ ¬SD≤n(δ) ∧ χSD → 〈χSD!〉
(
〈δ〉⊤ ∧ ¬SD≤n−1(δ) ∧ χSD

)

by 3, 4, Lemma 5, R2. and R3.;

6. ⊢MLEGGT 〈δ〉⊤ ∧ ¬SD≤n(δ) ∧ χSD → 〈χSD!〉
n+1 (〈δ〉⊤)

by induction with 5;

7. ⊢MLEGGT 〈δ〉⊤ ∧ 〈χSD!〉
n+1⊤ → 〈χSD!〉(〈δ〉⊤ ∧ 〈χSD!〉

n⊤)

by rule R2. and R3.;

8. ⊢MLEGGT 〈δ〉⊤ ∧ 〈χSD!〉
n+1⊤ → 〈χSD!〉

n+1〈δ〉⊤

by 7 and induction;

9. ⊢MLEGGT 〈χSD!〉
n+1〈δ〉⊤ → 〈χSD!〉

n+1
♦〈δ〉⊤

by R2., R4. and T for � and Boolean principles;

10. ⊢MLEGGT 〈χSD!〉
n+1
♦〈δ〉⊤ → ¬SD≤n(δ)

by Lemma 5 and induction;

11. ⊢MLEGGT 〈δ〉⊤ → (¬SD≤n(δ) → 〈χSD!〉
n+1⊤

by 2, 3, 6;

12. ⊢MLEGGT 〈δ〉⊤ → (〈χSD!〉
n+1⊤ → ¬SD≤n(δ)

by 8, 9, 10;

13. ⊢MLEGGT 〈δ〉⊤ → (〈χSD!〉
n+1⊤ ↔ ¬SD≤n(δ)

by 11 and 12.

A.12. Proof of Theorem 13.

For all n ≥ 0, ⊢MLEGGT

(
MKn

Agt

∧
i∈Agt Rati

)
→ 〈χSD!〉

n+1⊤.

Proof. By Theorem 7, Theorem 12 and Boolean principles.
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A.13. Proof of Theorem 14

The satisfiability problem of a given formula ϕ in a MLEG∗-model is PSPACE-hard.

Proof. Let us prove that that the satisfiability problem of MLEG∗ is PSPACE-hard. Let i be an agent.

Let us consider a formula ϕ written only with atomic propositions and with modal operators � and Ki.

We have equivalence between:

1. ϕ is satisfiable in a MLEG∗-model;

2. ϕ is satisfiable in a model of the logic S52(�,Ki) (i.e. the fusion of the logic S5 for � and S5 for

Ki).

Hence, we have reduced the satisfiability problem of a given formula ϕ in a MLEG∗-model to the

satisfiability problem of a given formula ϕ of S52(�,Ki) which is PSPACE-hard. So the satisfiability

problem of a given formula ϕ in a MLEG∗-model is PSPACE-hard.

A.14. Proof of Theorem 15

• If card(Agt) = 1 and card(Act) = 1 then the satisfiability problem of a given formula ϕ in a

MLEGdet∗-model is NP-complete.

• If card(Agt) ≥ 2 or card(Act) ≥ 2 the satisfiability problem of a given formula ϕ in a

MLEGdet∗-model is PSPACE-complete.

Proof. We give here some hint for the proof. When there is only one agent and card(Act) = 1 then the

games are trivial and reduced to singletons. In these settings, a MLEGdet∗-frame F = 〈W,∼, R, E,�〉

is such that ∼ and �i for each agent i are equal to the relation {(w,w) | w ∈ W}. So the modal

operators [good]i and � are superfluous. The operator [δC ] can be treated as a proposition. Hence the

logic is similar to the logic S5 which is NP. This is the main argument why when there is only one

agent and card(Act) = 1 the logic MLEGdet∗ is NP. NP-hardness is granted because MLEGdet∗ is a

conservative extension of Classical Propositional Logic.

Now let us prove that the satisfiability problem of a given formula ϕ in a MLEGdet∗-model is

PSPACE-hard in other cases. First let us consider the case where card(Agt) ≥ 2. Let us consider

two distinct agents i, j ∈ Agt . Let ϕ be a formula written only with atomic propositions and with

epistemic modal operators Ki and Kj . We have equivalence between:

1. ϕ is satisfiable in a MLEGdet∗-model;

2. ϕ is satisfiable in the logic S52(Ki,Kj) (i.e., the fusion of the logic S5 for Ki and S5 for Kj).

The direction 1. → 2. is straightforward and is already true with the assumption of the Axiom

CompleteInfo. The direction 2. → 1. comes from the fact that the Constraint C4 (corresponding to

the Axiom CompleteInfo) has disappeared. So we can easily transform a model of the epistemic modal

logic into a MLEGdet∗-model. Note that in the case of the logic MLEGdet, the direction 2. → 1.

is not true anymore. Indeed, it is not possible to transform a model of S52(Ka,Kb) with more than
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card(Act)card(Agt)
worlds into a MLEGdet-model. Hence, we have reduced the satisfiability problem of a

given formula ϕ in a MLEGdet∗-model into the satisfiability problem of a given formula ψ of S52(Ki,Kj)

which is PSPACE-hard. So the satisfiability problem of a given formula ϕ in a MLEGdet∗-model is

PSPACE-hard.

Now let us the consider the case where Agt = {i} and card(Act) ≥ 2. Let a and b be two

distinct actions. We prove that we can reduce the satisfiability problem of a given formula ϕ in a

MLEGdet∗-model to the satisfiability problem of K. Here is a possible translation:

• tr0(�ψ) = i:a ∧ ♦Kitr1(ψ) where � is the K-operator;

• tr1(�ψ) = i:b ∧ ♦Kitr0(ψ) where � is the K-operator;

• tr0(p) = i:a ∧ p for all propositions p;

• tr1(p) = i:b ∧ p for all propositions p.

And ϕ is satisfiable in K iff tr0(ϕ) is satisfiable in MLEGdet∗. Hence, the logic MLEGdet∗ is also

PSPACE-hard in this case.

Now we are going to prove that the satisfiability problem of MLEGdet∗ is PSPACE. We do not give

all the details but we give the idea for a tableau method [21] for the logic MLEG∗. The tableau method

is a non-deterministic procedure. The creation of a model proceeds as follows:

• We start the procedure by guessing a “grid”, that is to say an equivalence class for the relation

∼ of maximal size card(Act)card(Agt)
and also its preference relation as in the algorithm of

Theorem 2. We also choose non-deterministically a world w in this class.

• We adapt the classical tableau method rules for the epistemic modal logic [21], that is to say:

– Suppose that a world w contains a formula of the form Kiψ. Then we propagate the formula

ψ in all nodes v such that wEiv.

– Suppose that a world w contains a formula of the form K̂iψ. Then we create an equivalence

class for ∼, we choose a point v such that Ri(v) = Ri(w) in this equivalence class and we

propagate ψ in v.

• Suppose that a node w contains a formula �ψ. Then we propagate the formula ψ in all nodes v

such that v ∼ w;

• Suppose that a node w contains a formula ♦ψ. Then we choose non-deterministically a world v

such that v ∼ w and we propagate ψ in v.

• Suppose that a node w contains a formula [good]i ϕψ. Then we propagate the formula ψ in all

nodes v such that v �i w;

• Suppose that a node w contains a formula 〈good〉iψ. Then we choose non-deterministically a

world v such that v �i w and we propagate ψ in v.
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During the construction, we explore the structure in depth first so that we only need to have one

branch in memory at each step. Thus, the algorithm is a non-deterministic procedure that uses only a

polynomial amount of memory. So the satisfiability problem of MLEGdet∗ is in NPSPACE. According

the Savitch’s theorem [48], it is in PSPACE.

A.15. Proof of Theorem 16

For every w ∈ W and for every i ∈ Agt , M,w |= Rati if and only if M ′, w |= Rati.

Proof. (⇒) We first prove the left-to-right direction. Suppose that M,w |= 〈i:a〉⊤ and M,w |=

Rati. The latter means that for every b ∈ Act there is δ ∈ ∆ such that M,w |= K̂i〈δ−i〉⊤ ∧

Ki (〈δ−i, i:b〉 ≤i 〈δ−i, i:a〉).

The latter means that for every b ∈ Act there is δ ∈ ∆ such that:

A. there is v ∈ Ei(w) such that R−i(v) = δ−i and

B. for all u, v ∈ W if v ∈ Ei(w) and u ∼ v and RAgt(u) = 〈δ−i, i:b〉 then there is z ∈ W such that

u �i z and RAgt(z) = 〈δ−i, i:a〉.

Consider an arbitrary b ∈ Agt . It follows that there is an element δ of ∆ which satisfies the previous

conditions A and B. By definition of E ′
i(w) and R′

−i(v) we have that: if there is v ∈ Ei(w) such that

R−i(v) = δ−i then there is v ∈ E ′
i(w) such that R′

−i(v) = δ−i. Therefore, from item A, we conclude:

C. there is v ∈ E ′
i(w) such that R′

−i(v) = δ−i.

Take two arbitrary worlds u, v ∈ W ′ and suppose that v ∈ E ′
i(w) and u ∼′ v andR′

Agt(u) = 〈δ−i, i:b〉.

By definition of M ′, we have v ∈ Ei(w) and 〈δ−i, i:a〉 ∈ ΠM . Consider now the following three cases.

CASE 1. Suppose u ∈ W . Then, by definition of M ′, we have that u ∼ v and RAgt(u) = 〈δ−i, i:b〉.

Therefore, from item B, it follows that there is z ∈ W such that u �i z and RAgt(z) = 〈δ−i, i:a〉.

From the latter, by definition of M ′, we conclude that there is z ∈ W ′ such that u �′
i z and R′

Agt(z) =

〈δ−i, i:a〉.

CASE 2. Suppose that u 6∈ W and that there is z ∈ W such that z ∼ v and RAgt(z) = 〈δ−i, i:a〉.

From the former, by definition of M ′, it follows that �′
i (u) =∼′(u). From the latter, by definition of

M ′, it follows that there is z ∈ W ′ such that z ∼′ v and R′
Agt(z) = 〈δ−i, i:a〉. Therefore, we have that

there is z ∈ W ′ such that u �′
i z and R′

Agt(z) = 〈δ−i, i:a〉.

CASE 3. Suppose that u 6∈ W and that there is no z ∈ W such that z ∼ v and RAgt(z) = 〈δ−i, i:a〉.

From the former, by definition of M ′, it follows that �′
i (u) =∼′(u). From the latter, by definition of

M ′ (and the fact that 〈δ−i, i:a〉 ∈ ΠM ), it follows that there is z ∈ W ′ such that z ∼′ v and R′
Agt(z) =

〈δ−i, i:a〉 and �′
i (z) =∼′(z). Therefore, we have that there is z ∈ W ′ such that u �′

i z and R′
Agt(z) =

〈δ−i, i:a〉.

From the previous three cases, it follows that:

D. for all u, v ∈ W ′ if v ∈ E ′
i(w) and u ∼′ v and R′

Agt(u) = 〈δ−i, i:b〉 then there is z ∈ W ′ such that

u �′
i z and R′

Agt(z) = 〈δ−i, i:a〉.
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From the items C and D we conclude that M ′, w |= Rati.

(⇐) Let us prove the right-to-left direction. Suppose that M ′, w |= 〈i:a〉⊤ and M ′, w |= Rati. The latter

means that for every b ∈ Act there is δ ∈ ∆ such that M ′, w |= K̂i〈δ−i〉⊤ ∧ Ki (〈δ−i, i:b〉 ≤i 〈δ−i, i:a〉).

The latter means that for every b ∈ Act there is δ ∈ ∆ such that:

E. there is v ∈ E ′
i(w) such that R′

−i(v) = δ−i and

F. for all u, v ∈ W ′ if v ∈ E ′
i(w) and u ∼′ v and R′

Agt(u) = 〈δ−i, i:b〉 then there is z ∈ W ′ such that

u �′
i z and R′

Agt(z) = 〈δ−i, i:a〉.

Consider an arbitrary b ∈ Agt . It follows that there is an element δ of ∆ which satisfies the previous

conditions E and F. By definition of E ′
i(w) and R′

−i(v) we have that: if there is v ∈ E ′
i(w) such that

R′
−i(v) = δ−i then there is v ∈ Ei(w) such that R−i(v) = δ−i. Therefore, from item E, we conclude:

G. there is v ∈ Ei(w) such that R−i(v) = δ−i.

Take two arbitrary worlds u, v ∈ W and suppose that v ∈ Ei(w) and u ∼ v and RAgt(u) = 〈δ−i, i:b〉.

By Definition of E ′
i(w), ∼

′ and R′
Agt(u) we have v ∈ E ′

i(w) and u ∼′ v and R′
Agt(u) = 〈δ−i, i:b〉. Thus,

by the previous item F, there is z ∈ W ′ such that u �′
i z and R′

Agt(z) = 〈δ−i, i:a〉. But as u ∈ W we

have �′
i (u) =�i (u). Thus z ∈ W and R′

Agt(z) = RAgt(z).

It follows that:

H. for all u, v ∈ W if v ∈ Ei(w) and u ∼ v and RAgt(u) = 〈δ−i, i:b〉 then there is z ∈ W such that

u �i z and RAgt(z) = 〈δ−i, i:a〉.

From the items G and H we conclude that M,w |= Rati.

A.16. Proof of Corollary 1

For every w ∈ W , for every i ∈ Agt and for every C ∈ 2Agt∗, we have M,w |= MKn
CRati if and only

if M ′, w |= MKn
CRati.

Proof. Define a world v to be C-reachable from world w in n steps (with n ≥ 1), and note this wEC,nv,

if and only if there exist worlds w0, . . . , wn such that w0 = w and wn = v and for all 0 ≤ k ≤ n−1,

there exists i ∈ C such that wkEiwk+1. Define EC,n(w) = {v | wEC,nv}. We have M,w |= MKn
Cϕ if

and only if M, v |= ϕ for all v ∈ EC,n(w).

By definition of M ′, we have EC,n(w) = E ′
C,n(w) for all w ∈ W . Therefore, M,w |= MKn

CRati if

and only if M, v |= Rati for all v ∈ E ′
C,n(w).

Moreover, according to Theorem 16, for every v ∈ W we have M, v |= Rati if and only if M ′, v |=

Rati. Therefore, we have that M, v |= Rati for all v ∈ E ′
C,n(w) if and only if M ′, v |= Rati for all

v ∈ E ′
C,n(w).

It follows that, M,w |= MKn
CRati if and only if M ′, w |= MKn

CRati.

c© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

http://creativecommons.org/licenses/by/3.0/.
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Abstract: Logic and game theory have had a few decades of contacts by now, with the

classical results of epistemic game theory as major high-lights. In this paper, we emphasize

a recent new perspective toward “logical dynamics”, designing logical systems that focus

on the actions that change information, preference, and other driving forces of agency. We

show how this dynamic turn works out for games, drawing on some recent advances in the

literature. Our key examples are the long-term dynamics of information exchange, as well

as the much-discussed issue of extensive game rationality. Our paper also proposes a new

broader interpretation of what is happening here. The combination of logic and game theory

provides a fine-grained perspective on information and interaction dynamics, and we are

witnessing the birth of something new which is not just logic, nor just game theory, but

rather a Theory of Play.

Keywords: dynamic epistemic logic; games; interaction

For many contemporary logicians, games and social interaction are important objects of investigation.

Actions, strategies and preferences are central concepts in computer science and philosophical logic,
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and their combination raises interesting questions of definability, axiomatization and computational

complexity [1–4]. Epistemic game theory, c.f. [5], has added one more element to this mix, again familiar

to logicians: the role of factual and higher-order information. This much is well-understood, and there

are excellent sources, that we need not reproduce here, though we will recall a few basics in what follows.

In this paper we will take one step further, assuming that the reader knows the basics of logic and

game theory. We are going to take a look at all these components from a dynamic logical perspective,

emphasizing actions that make information flow, change beliefs, or modify preferences—in ways to

be explained below. For us, understanding social situations as dynamic logical processes where the

participants interactively revise their beliefs, change their preferences, and adapt their strategies is a step

towards a more finely-structured theory of rational agency. In a simple phrase that sums it up, this joint

off-spring “in the making” of logic and game theory might be called a Theory of Play instead of a theory

of games.

The paper starts by laying down the main components of such a theory, a logical take on the dynamics

of actions, preferences, and information (Sections 1 and 2). We then show that this perspective has

already shed new light on the long-term dynamics of information exchange, Section 3, as well as on

the question of extensive game rationality, Section 4. We conclude with general remarks on the relation

between logic and game theory, pleading for cross-fertilization instead of competition. This paper is

introductory and programmatic throughout. Our treatment is heavily based on evidence from a number

of recent publications demonstrating a variety of new developments.

1. An Encounter Between Logic and Games

A first immediate observation is that games as they stand are natural models for many existing

logical languages: epistemic, doxastic and preference logics, as well as conditional logics and temporal

logics of action. We do not aim at encyclopedic description of these systems—[2] is a relatively

up-to-date overview. This section just gives some examples setting the scene for our later more detailed

dynamic-logic analyses.

1.1. Strategic Games

Even simple strategic games call for logical analysis, with new questions arising at once. To a

logician, a game matrix is a semantic model of a rather special kind that invites the introduction of

well-known languages. Recall the main components in the definition of a strategic game for a set

of n players N : (1) a nonempty set Ai of actions for each i ∈ N , and (2) a utility function or

preference ordering on the set of outcomes. For simplicity, one often identifies the outcomes with the set

S = Πi∈NAi of strategy profiles. As usual, given a strategy profile σ ∈ S with σ = (a1, . . . , an),

σi denotes the ith projection (i.e., σi = ai) and σ−i denotes the choices of all agents except agent i:

σ−i = (a1, . . . , ai−1, ai+1, . . . , an).
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Games as models. Now, from a logical perspective, it is natural to treat the set S of strategy profiles

as a universe of “possible worlds”.1 These worlds then carry three natural relations, that are entangled in

various ways. For each σ, σ′ ∈ S, define for each player i ∈ N :

• σ ≥i σ
′ iff player i prefers the outcome σ at least as much as outcome σ′,

• σ ∼i σ
′ iff σi = σ′

i: this epistemic relation represents player i’s “view of the game” at the ex

interim stage where i’s choice is fixed but the choices of the other players’ are unknown,

• σ ≈i σ
′ iff σ−i = σ−i: this relation of “action freedom” gives the alternative choices for player i

when the other players’ choices are fixed.2

This can all be packaged in a relational structure

M = 〈S, {∼i}i∈N , {≈i}i∈N , {�i}i∈N〉

with S the set of strategy profiles and the relations just defined.

Matching modal game languages. The next question is what is the “right” logical language to reason

about these structures? The goal here is not simply to formalize standard game-theoretic reasoning. That

could be done in a number of ways, often in the first-order language of these relational models. Rather,

the logician will aim for a well-behaved language, with a good balance between the level of formalization

and other desirable properties, such as perspicuous axiomatization, low computational complexity of

model checking and satisfiability, and the existence of an elegant meta-theory for the system. In

particular, the above game models suggest the use of modal languages, whose interesting balance of

expressive power and computational complexity has been well-researched over the last decades.3

Our first key component—players’ desires or preferences—has been the subject of logical analysis

since at least the work of [10].4 Here is a modern take on preference logic [12,14]. A modal betterness

model for a set N of players is a tuple M = 〈W, {≥i}i∈N , V 〉 where W is a nonempty set of states, for

each i ∈ N , ≥i ⊆ W ×W is a preference ordering, and V is a valuation function V : At → ℘(W ) (At

is a set of atomic propositions describing the ground facts about the situation being modeled). Precisely

which properties ≥i should have has been the subject of debate in philosophy: in this paper, we assume

that the relation is reflexive and transitive. For each ≥i, the corresponding strict preference ordering is

written >i.

A modal language to describe betterness models uses modalities 〈≥i〉ϕ saying that “there is a world

at least as good as the current world satisfying ϕ”, and likewise for strict preference:

• M, w |= 〈≥i〉ϕ iff there is a v with v ≥i w and M, v |= ϕ

• M, w |= 〈>i〉ϕ iff there is a v with v ≥i w, w 6≥i v, and M, v |= ϕ

1We could also have more abstract worlds, carrying strategy profiles without being identical to them. This additional

generality is common in epistemic game theory, see e.g. [6], but it is not needed in what follows.
2We have borrowed the appealing term “freedom” from [7].
3We cannot go into details of the modern modal paradigm here, but refer to the textbooks [8,9].
4See [11–13] for a contemporary discussion and references.
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Standard techniques in modal model theory apply to definability and axiomatization in this modal

preference language: we refer to ([9], Chapter 3) and [13] for details. Both [12] and [13] show how this

language can also define “lifted” generic preferences between propositions, i.e., properties of worlds.

Next, the full modal game language for the above models must also include modalities for the relations

that we called the “view of the game” and the “action freedom”. But this is straightforward, as these are

even closer to standard notions studied in epistemic and action logics.

Again, we start with a set At of atomic propositions that represent basic facts about the strategy

profiles.5 Now, we add obvious modalities for the other two relations to get a full modal logic of

strategic games:

• σ |= [∼i]ϕ iff for all σ′, if σ ∼i σ
′ then σ′ |= ϕ.

• σ |= [≈i]ϕ iff for all σ′, if σ ≈i σ
′ then σ′ |= ϕ.

• σ |= 〈≥i〉ϕ iff there exists σ′ such that σ′ ≥i σ and σ′ |= ϕ.

• σ |= 〈>i〉ϕ iff there is a σ′ with σ′ ≥i σ, σ 6≥i σ
′, and σ′ |= ϕ

Some issues in modal game logic for strategic games. A language allows us to say things about

structures. But what about a calculus of reasoning: what is the logic of our modal logic of strategic

games? For convenience, we restrict attention to 2-player games. First, given the nature of our three

relations, the separate logics are standard: modal S4 for preference, and modal S5 for epistemic outlook

and action freedom. What is of greater interest, and logical delicacy, is the interaction of the three

modalities. For instance, the following combination of two modalities makes ϕ true in each world of a

game model:

[∼i][≈i]ϕ

Thus, the language also has a so-called “universal modality”. Moreover, this modality can be defined in

two ways, since we also have that:

the equivalence [∼i][≈i]ϕ↔ [≈i][∼i]ϕ is valid 6 in game models.

This validity depends on the geometrical “grid property” of game matrices that if one can go x ∼i y ≈i z,

then there exists a point u with x ≈i u ∼i z.

This may look like a pleasant structural feature of matrices, but its logical effects are delicate. It is

well-known that the general logic of such a bi-modal language on grid models is not decidable, and

not even axiomatizable: indeed, it is “Π1
1-complete”.7 In particular, satisfiability in grid-like models

can encode computations of Turing machines on their successive rows, or alternatively, they can encode

geometrical “tiling problems” whose complexity is known to be high. From a logical point of view,

simple-looking strategic matrix games can be quite complex computational structures.

5For example, a proposition pai might say “agent i plays action a”.
6A formula is valid in a class of model whenever it is true at all states in all models of that class. C.f. [9, chap.1] for

details.
7Cf. [15–18] for formal details behind the assertions in this paragraph.
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However, there are two ways in which these complexity results can be circumvented. One is that we

have mainly looked at finite games, where additional validities hold8—and then, the complexity may be

lower. Determining the precise modal logic of finite game matrices appears to be an open problem.

Here is another interesting point. It is known that the complexity of such logics may go down

drastically when we allow more models, in particular, models where some strategy profiles have been

ruled out. One motivation for this move has to do with dependence and independence of actions.9

Full matrix models make players’ actions independent, as reflected in the earlier grid property. By

contrast, general game models omitting some profiles can represent dependencies between players’

actions: changing a move for one may only be possible by changing a move for another. The general

logic of game models allowing dependencies does not validate the above commutation law. Indeed,

it is much simpler: being just multi-agent modal S5. Thus, complexity of logics matches interesting

decisions on how we view players: as independent, or correlated.

Against this background of available actions, information, and freedom, the preference structure of

strategic games adds further interesting features. One benchmark for modal game logics has been the

definition of the strategy profiles that are in Nash Equilibrium. And this requires defining the usual

notion of best response for a player. One can actually prove10 that best response is not definable in the

language that we have so far. One extension that would do the job is taking an intersection modality:

M, σ |= 〈≈i ∩ >i〉ϕ iff for each σ′ if σ(≈i ∩ >i)σ
′ then M, σ′ |= ϕ

Then the best response for player i is defined as ¬〈≈i ∩ >i〉⊤.

Questions of complexity and complete axiomatization then multiply. But we can also deal with

preference structure in other ways. Introduce proposition letters “Best(i)” for players i saying that the

profiles where they hold are best responses for i in the game model. Then one finds interesting properties

of such models reflected in the logic. One example is that each finite game model has a cycle of points

where (for simplicity assume there are only two players i and j):

σ ∼i σ
1 ∼j σ

2 ∼i · · · ∼i σ
n ∼j σ

where σ |= Best(i), σ1 |= Best(j), σ2 |= Best(i), . . ., σn |= Best(j). Such loops represent subgames

where all players are “strongly rational” in the sense of considering it possible that their current move is

a best response to what their opponent is doing. Thus, the logic encodes basic game theory.11

Our main point with this warm-up discussion for our logical Theory of Play it that the simple matrix

pictures that one sees in a beginner’s text on game theory are already models for quite sophisticated

logics of action, knowledge and preference. Thus, games of even the simplest sort have hidden depths

8Cf. [4] for some concrete examples of modal “Gregorczyk axioms’.
9Cf. [19] for this, and what follows. Game theorists have also studied correlations extensively, c.f. [20,21]. The precise

relation between our logical and their probabilistic approaches to correlations is still to be investigated.
10We omit the simple modal “bisimulation”-based argument here.
11Cf. [22] for technical details, including connections to epistemic “fixed-point logics” over game models, as well as

applications to game solution procedures.
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for logicians: there is much more to them than we might think, including immediate open problems for

logical research.12

1.2. Extensive Games

Just like strategic games, interactive agency in the more finely-structured extensive games offers a

natural meeting point with logic. We will demonstrate this with a case study of Backwards Induction, a

famous benchmark at the interface, treated in a slightly novel way. Our treatment in this section will be

rather classical, that is static and not information-driven. However, in Section 4 we return to the topic,

giving it a dynamic, epistemic twist.

Dynamic logic of actions and strategies. The first thing to note is that the sequential structure

of players’ actions in an extensive game lends itself to logical analysis. A good system to use for

this purpose is propositional dynamic logic (PDL), originally designed to analyze programs and

computation (see [27] for the original motivation and subsequent theory). Let Act be a set of primitive

actions. An action model is a tuple M = 〈W, {Ra | a ∈ Act}, V 〉 where W is an abstract set of states, or

stages in an extensive game, and for each a ∈ Act,Ra ⊆ W×W is a binary transition relation describing

possible transition from states w to w′ by executing the action a. On top of this atomic repertoire,

the tree structure of extensive games supports complex action expressions, constructed by the standard

regular operations of “indeterministic choice” (∪), “sequential composition” (;) and “unbounded finitary

iteration” (∗: Kleene star):

α := a | α ∪ β | α; β | α∗

This syntax recursively defines complex relations in action models:

• Rα∪β := Rα ∪Rβ

• Rα;β := Rα ◦Rβ

• Rα∗ := ∪n≥0R
n
α. R0

α = Id (the identity relation) and Rn+1
α = Rn

α ◦Rα.

The key dynamic modality [α]ϕ now says that “after the move described by the program expression α is

taken, ϕ is true”:

M, w |= [α]ϕ iff for each v, if wRαv then M, v |= ϕ

PDL has been used for describing solution concepts on extensive games by many authors [2,4,28].

An extended discussion of logics that can explicitly define strategies in extensive games is found in [29].

Adding preferences: the case of Backwards Induction. As before, a complete logical picture must

bring in players’ preferences on top of PDL, along the lines of our earlier modal preference logic. To

show how this works, we consider a key pilot example: the Backwards Induction (BI) algorithm. This

procedure marks each node of an extensive game tree with values for the players (assuming that distinct

end nodes have different utility values):13

12For further illustrations of logics on strategic games, cf. [23–26].
13In what follows, we shall mainly work with finite games, though current dynamic and temporal logics can also deal with

infinite games.
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BI Algorithm: At end nodes, players already have their values marked. At further nodes, once all

daughters are marked, the player to move gets her maximal value that occurs on a daughter, while the

other, non-active player gets his value on that maximal node.

The resulting strategy for a player selects the successor node with the highest value. The resulting set of

moves for all players (still a function on nodes given our assumption on end nodes) is the “bi strategy”.

Relational strategies and set preference. But to a logician, a strategy is best viewed as a subrelation

of the total move relation. It is an advice to restrict one’s next choice in some way, similar to the more

general situation where our plans constrain our choices. Mathematically, this links up with the usual

way of thinking about programs and procedures in computational logic, in terms of the elegant algebra

of relations and its logic PDL as defined earlier.

When the above algorithm is modified to a relational setting—we can now drop assumptions about

unicity at end-points—we find an interesting new feature: special assumptions about players. For

instance, it makes sense to take a minimum value for the passive player at a node over all highest-value

moves for the active player. But this is a worst-case assumption: my counter-player does not care about

my interests after her own are satisfied. But we might also assume that she does, choosing a maximal

value for me among her maximum nodes. This highlights an important feature: solution methods are not

neutral, they encode significant assumptions about players.

One interesting way of understanding the variety that arises here has to do with the earlier modal

preference logic. We might say in general that the driving idea of Rationality behind relational BI is

the following:

I do not play a move when I have another whose outcomes I prefer.

But preferences between moves that can lead to different sets of outcomes call for a notion of “lifting”

the given preference on end-points of the game to sets of end-points. As we said before, this is a key

topic in preference logic, and here are many options: the game-theoretic rationality behind BI has a

choice point. One popular version in the logical literature is this:

∀y ∈ Y ∃x ∈ X x <i y

This says that we choose a move with the highest maximal value that can be achieved. A more

demanding notion of preference for a set Y over X in the logical literature [10] is the ∀∀ clause that

∀y ∈ Y ∀x ∈ X x <i y

Here is what relational BI looks like when we follow the latter stipulation, which makes Rationality

less demanding, and hence the method more cautious:

First mark all moves as active. Call a move a dominated if it has a sibling move all of whose

reachable endpoints via active nodes are preferred by the current player to all reachable

endpoints via a itself. The second version of the BI algorithm works in stages:
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At each stage, mark dominated moves in the ∀∀ sense of preference as passive, leaving all

others active.

Here “reachable endpoints” by a move are all those that can be reached via a sequence of

moves that are still active at this stage.

We will analyze just this particular algorithm in our logics to follow, but our methods apply much

more widely.

Defining Backwards Induction in logic. Many logical definitions for the BI strategy have been

published [cf. again the survey in 2, Section 3]. Here is a modal version combining the logics of

action and preferences presented earlier—significantly, involving operator commutations between these:

Theorem 1.1 ([30]). For each extensive game form, the strategy profile σ is a backward induction

solution iff σ is played at the root of a tree satisfying the following modal axiom for all propositions

p and players i:

(turni ∧ 〈σ∗〉(end ∧ p)) → [movei]〈σ
∗〉(end ∧ 〈≥i〉p)

Here movei =
⋃
a is an i-move a, turni is a propositional variable saying that it is i’s turn to move, and

end is a propositional variable true at only end nodes. Instead of a proof, we merely develop the logical

notions involved a bit further.

The meaning of the crucial axiom follows by a modal frame correspondence ([9], Chapter 3).14 Our

notion of Rationality reappears:

Fact 1.2. A game frame makes (turni ∧ [σ∗](end → p)) → [movei]〈σ
∗〉(end ∧ 〈prefi〉p) true for all i

at all nodes iff the frame has this property for all i:

RAT: No alternative move for the current player i guarantees outcomes via further play using σ that are

all strictly better for i than all outcomes resulting from starting at the current move and then playing σ

all the way down the tree.

A typical picture to keep in mind here, and also later on in this paper, is this:

x

y z

σ

via σ via σ

≥
u v

14“Game frames” here are extensive games extended with one more binary relation σ.
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More formally, RAT is this confluence property for action and preference:

CF
∧

i

∀x∀y((turni(x) ∧ x σ y) →

(x move y ∧ ∀z(x move z → ∃u∃v(end(u) ∧ end(v) ∧ y σ∗ v ∧ z σ∗ u ∧ u ≤i v)))

Now, a simple inductive proof on the depth of finite game trees shows for our cautious algorithm that:

Theorem 1.3. BI is the largest subrelation S of the move relation in a game with (a) S has a successor

at each intermediate node, (b) S satisfies CF .

This result is not very deep, but it opens a door to a whole area of research.

The general view: fixed-point logics for game trees. We are now in the realm of a well-known logic

of computation, viz. first-order fixed-point logic LFP (FO) [31]. The above analysis really tells us:

Theorem 1.4. The BI relation is definable as a greatest-fixed-point formula in the logic LFP (FO).

Here is the explicit definition in LFP (FO):

BI(x, y) = νS.xy · x move y ∧
∧

i

(Turni(x) → ∀z(x move z →

∃u∃v(end(u) ∧ end(v) ∧ S.yv ∧ S.zu ∧ u ≤i v)))

The crucial feature making this work is a typical logical point: the occurrences of the relation S in

the property CF are syntactically positive, and this guarantees upward monotonic behaviour. We will

not go into technical details of this connection here, except for noting the following.

Fixed-point formulas in computational logics like this express at the same time static definitions of

the bi relation, and procedures computing it.15 Thus, fixed-point logics are an attractive language for

extensive games, since they analyze both the statics and dynamics of game solution.

This first analysis of the logic behind extensive games already reveals the fruitfulness of putting

together logical and game-theoretical perspectives. But it still leaves untouched the dynamics of

deliberation and information flow that determine players’ expectations and actual play as a game unfolds,

an aspect of game playing that both game theorists and logicians have extensively studied in the last

decades. In what follow we make these features explicit, deploying the full potential of the fine-grained

Theory of Play that we propose.

15One can use the standard defining sequence for a greatest fixed-point, starting from the total move relation, and see that

its successive decreasing approximation stages Sk are exactly the ‘active move stages’ of the above algorithm. This and

related connections have been analyzed in greater mathematical detail in [32].
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2. Information Dynamics

The background to the logical systems that follow is a move that has been called a “Dynamic Turn” in

logic, making informational acts of inference, but also observations, or questions, into explicit first-class

citizens in logical theory that have their own valid laws that can be brought out in the same mathematical

style that has served standard logic so well for so long. The program has been developed in great detail

in [19,33] drawing together a wide range of relevant literature, but we will only use some basic

components here: single events of information change and, later on in this paper, longer-term interactive

processes of information change. Towards the end of the paper, we will also briefly refer to other

dynamic components of rational agency, with dynamic logics for acts of strategy change, or even

preference change.

Players’ informational attitudes can be broadly divided into two categories: hard and soft

information [34,35].16 Hard information, and its companion attitude, is information that is veridical

and not revisable. This notion is intended to capture what agents are fully and correctly certain of in a

given game situation. So, if an agent has hard information that some fact ϕ is true, then ϕ really is true. In

absence of better terminology and following common usage in the literature, we use the term knowledge

to describe this very strong type of informational attitude. By contrast, soft information is, roughly

speaking, anything that is not “hard”: it is not necessarily veridical, and it is revisable in the presence

of new information. As such, it comes much closer to beliefs or more generally attitudes that can be

described as “regarding something as true” [36]. This section introduces some key logical systems for

describing players’ hard and soft information in a game situation, and how this information can change

over time.

2.1. Hard Information and Public Announcements

Recall that N is the set of players, and At a set of atomic sentences p describing ground facts, such as

“player i choose action a” or “the red card is on the table”. A non-empty set W of worlds or states then

represent possible configurations of plays for a fixed game. Typically, players have hard information

about the structure of the game—e.g., which moves are available, and what are their own preferences

and choices, at least in the ex interim stage of analysis.

Static epistemic logic. Rather than directly representing agents’ information in terms of syntactic

statements, in this paper, we use standard epistemic models for “semantic information” encoded by

epistemic “indistinguishability relations”. Setting aside some conceptual subtleties for the purpose of

exposition, we will assume that indistinguishability is an equivalence relation. Each agent has some

“hard information” about the situation being modeled, and agents cannot distinguish between any two

states that agree on this information. This is essentially what we called the player’s “view of the game”

in Section 1. Technically, we then get well-known structures:

16 Note that the distinction “hard” versus “soft” information has to do with the way agents take an incoming new signal

that some proposition is true. Despite a similarity in terms, this is orthogonal to the standard game-theoretic contrast between

“perfect” and “imperfect” information, which is rather about how much players know about their position during a game.

Players can receive both hard and soft information in both perfect and imperfect information games.
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Definition 2.1. [Epistemic Model] An epistemic model M = 〈W, {∼i}i∈N , V 〉 has a non-empty set of

worlds W ; for each i ∈ N , ∼i⊆ W ×W is reflexive, transitive and symmetric; and V : At → ℘(W ) is

a valuation map. ⋊

A simple modal language describes properties of these structures. Formally, LEL is the set of

sentences generated by the grammar:

ϕ := p | ¬ϕ | ϕ ∧ ϕ | Kiϕ

where p ∈ At and i ∈ N . The propositional connectives →,↔,∨ are defined as usual, and the dual Li of

Ki is ¬Ki¬ϕ. The intended interpretation of Kiϕ is “according to agent i’s current (hard) information,

ϕ is true” (in popular jargon, “i knows that ϕ is true”). Here is the standard truth definition:

Definition 2.2. Let M = 〈W, {∼i}i∈N , V 〉 be an epistemic model. For each w ∈ W , ϕ is true at state

w, denoted M, w |= ϕ, is defined by induction:

• M, w |= p iff w ∈ V (p)

• M, w |= ¬ϕ iff M, w 6|= ϕ

• M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ

• M, w |= Kiϕ iff for all v ∈ W , if w ∼i v then M, v |= ϕ

We call ϕ satisfiable if there is a model M = 〈W, {∼i}i∈N , V 〉 and w ∈ W with M, w |= ϕ, and say ϕ

is valid in M, denoted M |= ϕ, if M, w |= ϕ for all w ∈ W . ⋊

Given the definition of the dual of Ki, it is easy to see that:

M, w |= Liϕ iff there is a v ∈ W such that M, v |= ϕ

This says that “ϕ is consistent with agent i’s current hard information”.

Information update. Now comes a simple concrete instance of the above-mentioned “Dynamic Turn”.

Typically, hard information can change, and this crucial phenomenon can be added to our logic explicitly.

The most basic type of information change is a public announcement [37,38]. This is an event where

some proposition ϕ (in the language of LEL) is made publicly available, in full view, and with total

reliability. Clearly, the effect of such an event should be to remove all states that do not satisfy ϕ: new

hard information shrinks a current range of uncertainty.

Definition 2.3. [Public Announcement.] Let M = 〈W, {∼i}i∈N , V 〉 be an epistemic model and

ϕ an epistemic formula. The model updated by the public announcement of ϕ is the structure

Mϕ = 〈Wϕ, {∼ϕ
i }i∈N , V

ϕ〉 whereWϕ = {w ∈ W |M, w |= ϕ}, for each i ∈ N , ∼ϕ
i =∼i ∩W

ϕ×Wϕ,

and for all atomic proposition p, V ϕ(p) = V (p) ∩Wϕ. ⋊

Clearly, if M is an epistemic model then so is Mϕ. The two models describe two different moments

in time, with M the current information state of the agents and Mϕ the information state after the

information that ϕ is true has been incorporated in M. This temporal dimension can be represented

explicitly in our logical language:
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Let LPAL extend LEL with expressions of the form [ϕ]ψ with ϕ ∈ LEL. The intended

interpretation of [ϕ]ψ is “ψ is true after the public announcement of ϕ” and truth is defined

as M, w |= [ϕ]ψ iff if M, w |= ϕ then Mϕ, w |= ψ.

Now, in the earlier definition of public announcement, we can also allow formulas from the extended

language LPAL: the recursion will be in harmony. As an illustration, a formula like ¬Kiψ ∧ [ϕ]Kiψ

says that “agent i currently does not know ψ but after the announcement of ϕ, agent i knows ψ”. So,

the language of LPAL describes what is true both before and after the announcement while explicitly

mentioning the informational event that achieved this.

While this is a broad extension of traditional conceptions of logic, standard methods still apply. A

fundamental insight is that there is a strong logical relationship between what is true before and after an

announcement, in the form of so-called reduction axioms:

Theorem 2.4. On top of the static epistemic base logic, the following reduction axioms completely

axiomatize the dynamic logic of public announcement:

[ϕ]p ↔ ϕ→ p, where p ∈ At

[ϕ]¬ψ ↔ ϕ→ ¬[ϕ]ψ

[ϕ](ψ ∧ χ) ↔ [ϕ]ψ ∧ [ϕ]χ

[ϕ][ψ]χ ↔ [ϕ ∧ [ϕ]ψ]χ

[ϕ]Kiϕ ↔ ϕ→ Ki(ϕ→ [ϕ]ψ)

Going from left to right, these axioms reduce syntactic complexity in a stepwise manner. This

recursive style of analysis has set a model for the logical analysis of informational events generally.

Thus, information dynamics and logic form a natural match.

2.2. Group Knowledge

Both game theorists and logicians have extensively studied a next phenomenon after the individual

notions considered so far: group knowledge and belief.17 We assume that the reader is familiar with the

relevant notions, recalling just the merest basics. For a start, the statement “everyone in the (finite) group

G ⊆ N knows ϕ” can be defined as follows:

EGϕ :=
∧

i∈G

Kiϕ

Following [41]18, the intended interpretation of “it is common knowledge in G that ϕ” (CGϕ) is the

infinite conjunction:

ϕ ∧ EGϕ ∧ EGEGϕ ∧ EGEGEGϕ ∧ · · ·

In general, we need to add a new operator CGϕ to the earlier epistemic language for this. It takes care

of all iterations of knowledge modalities by inspecting all worlds reachable through finite sequences of

17[39] and [40] provide an extensive discussion.
18Cf. [42] for an alternative reconstruction.
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epistemic accessibility links for arbitrary agents. Let M = 〈W, {∼i}i∈N , V 〉 be an epistemic model,

with w ∈ W . Truth of formulas of the form Cϕ is defined by:

M, w |= CGϕ iff for all v ∈ W , if wR∗
Gv then M, v |= ϕ

where R∗
G := (

⋃
i∈G ∼i)

∗ is the reflexive transitive closure of
⋃
i∈G ∼i. As for valid laws of reasoning,

the complete epistemic logic of common knowledge expresses principles of “reflective equilibrium”, or

mathematically, fixed-points: 19

• Fixed-Point Axiom: CGϕ→ EGCGϕ

• Induction Axiom: ϕ ∧ CG(ϕ→ EGϕ) → CGϕ

Studying group knowledge is just a half-way station to a more general move in current logics of

agency. Common knowledge is a notion of group information that is definable in terms of what the

individuals know about each others. But taking collective agents—a committee, a scientific research

community—seriously as logical actors in their own right brings us beyond this reductionist perspective.

Finally, what about dynamic logics for group modalities? Baltag, Moss and Solecki [44] proved

that the extension of LEL with common knowledge and public announcement operators is strictly more

expressive than with common knowledge alone. Nonetheless, a technical reduction axiom-style recursive

analysis is still possible, as carried out in [45].

2.3. Soft Information and Soft Announcements

But rational agents are not just devices that keep track of hard information, and produce indubitable

knowledge all the time. What seems much more characteristic of intelligent behaviour, as has been

pointed out by philosophers and psychologists alike, is our creative learning ability of having beliefs,

perhaps based on soft information, that overshoot the realm of correctness. And the dynamics of that

is found in our skills in revising those beliefs when they turn out to be wrong. Thus, the dynamics of

“correction” is just as important to rational agency as that of “correctness”.

Models of belief via plausibility. While there is an extensive literature on the theory of belief revision,

starting with [46], truly logical models of the dynamics of beliefs, hard and soft information have

only been developed recently. For a start, we need a static base, extending epistemic models with

softer, revisable informational attitudes. One appealing approach is to endow epistemic ranges with

a plausibility ordering for each agent: a pre-order (reflexive and transitive) w �i v that says “player

i considers world v at least as plausible as w.” As a convenient notation, for X ⊆ W , we set

Min�i
(X) = {v ∈ W | v �i w for all w ∈ X }, the set of minimal elements of X according to �i. The

plausibility ordering �i represents which possible worlds an agent considers more likely, encoding soft

information. Such models representing have been used by logicians [35,47,48], game theorists [49], and

computer scientists [50,51]:

19Cf. [43] for an easy way of seeing why the next principles do the job.
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Definition 2.5 (Epistemic-Doxastic Models). An epistemic-doxastic model is a tuple:

M = 〈W, {∼i}i∈N , {�i}i∈N , V 〉

where 〈W, {∼i}i∈N , V 〉 is an epistemic model and, for each i ∈ N , �i is a well-founded20 reflexive and

transitive relation on W satisfying, for all w, v ∈ W :

• plausibility implies possibility: if w �i v then w ∼i v.

• locally-connected: if w ∼i v then either w �i v or v �i w.21
⋊

These richer models can define many basic soft informational attitudes:

• Belief: M, w |= Biϕ iff for all v ∈Min�i
([w]i), M, v |= ϕ.

This is the usual notion of belief which satisfies standard properties,

• Safe Belief: M, w |= �iϕ iff for all v, if v �i w then M, v |= ϕ.

Thus, ϕ is safely believed if ϕ is true in all states the agent considers more plausible. This stronger

notion of belief has also been called certainty by some authors ([52], Section 13.7).22

Soft attitudes in terms of information dynamics. As noted above, a crucial feature of soft

informational attitudes is that they are defeasible in light of new evidence. In fact, we can characterize

these attitudes in terms of the type of evidence which can prompt the agent to adjust them. To make this

precise, consider the natural notion of a conditional belief in a epistemic-doxastic model M. We say i

believes ϕ given ψ, denoted B
ψ
i ϕ, if

M, w |= B
ψ
i ϕ iff for all v ∈Min�i

([[ψ]]M ∩ [w]i), M, v |= ϕ

where [[ϕ]]M = {w | M, w |= ϕ} is the usual truth set of ϕ. So, ‘B
ψ
i ’ encodes what agent i will

believe upon receiving (possibly misleading) evidence that ψ is true.23 Unlike beliefs, conditional beliefs

may be inconsistent (i.e., Bψ⊥ may be true at some state). In such a case, agent i cannot (on pain of

inconsistency) revise by ψ, but this will only happen if the agent has hard information that ψ is false.

Indeed, K¬ϕ is logically equivalent to B
ϕ
i ⊥ over the class of epistemic-doxastic models. This suggests

the following dynamic characterization of hard information as unrevisable belief:

M, w |= Kiϕ iff M, w |= B
ψ
i ϕ for all ψ

Safe belief can be similarly characterized by restricting the admissible evidence:

• M, w |= �iϕ iff M, w |= B
ψ
i ϕ for all ψ with M, w |= ψ.

i.e., i safely believes ϕ iff i continues to believe ϕ given any true formula.

Baltag and Smets [55] give an elegant logical characterization of all these notions by adding the safe

belief modality �i to the epistemic language LEL.

20Well-foundedness is only needed to ensure that for any set X , Min�i
(X) is nonempty. This is important only when W

is infinite—and there are ways around this in current logics. Moreover, the condition of connectedness can also be lifted, but

we use it here for convenience.
21We can even prove the following equivalence: w ∼i v iff w �i v or v �i w.
22Another notion is Strong Belief: M, w |= Bsiϕ iff there is a v with w ∼i v and M, v |= ϕ and {x | M, x |= ϕ}∩ [w]i �i

{x | M, x |= ¬ϕ} ∩ [w]i, where [w]i is the equivalence class of w under ∼i. This has been studied by [53,54].
23We can define belief Biϕ as B⊤

i ϕ: belief in ϕ given a tautology.
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Belief change under hard information. Let us now turn to the systematic logical issue of how beliefs

change under new hard information, i.e., the logical laws governing [ϕ]Biψ. One might think this is

taken care of by conditional belief B
ϕ
i ψ, and indeed they are when ψ is a ground formula not containing

any modal operators. But in general, they are different.

Example 2.6. [Dynamic Belief Change versus Conditional Belief] Consider state w1 in the following

epistemic-doxastic model:

p, q

w1

p,¬q

w2

¬p, q

w3

1 2

In this model, the solid lines represent agent 2’s hard and soft information (the box is 2’s hard information

∼2 and the arrow represent 2’s soft information �2) while the dashed lines represent 1’s hard and soft

information. Reflexive arrows are not drawn to keep down the clutter in the picture. Note that at state

w1, agent 2 knows p and q (e.g., w1 |= K2(p ∧ q)), and agent 1 believes p but not q (w1 |= B1p ∧ ¬B1q).

Now, although agent 1 does not know that agent 2 knows p, agent 1 does believe that agent 2 believes q

(w1 |= B1B2q). Furthermore, agent 1 maintains this belief conditional on p: w1 |= B
p
1B2q. However,

public announcing the true fact p, removes state w3 and so we have w1 |= [p]¬B1B2q. Thus a belief in

ψ conditional on ϕ is not the same as a belief in ψ after the public announcement of ϕ. The reader is

invited to check that B
p
i (p ∧ ¬Kip) is satisfiable but [!p]Bi(p ∧ ¬Kip) is not satisfiable.24

The example is also interesting as the announcement of a true fact misleads agent 1 by forcing her

to drop her belief that agent 2 believes q ([33], pg. 182). Despite these intricacies, the logical situation

is clear: The dynamic logic of changes in absolute and conditional beliefs under public announcement

is completely axiomatizable by means of the static base logic of belief over plausibility models plus the

following complete reduction axiom:

[ϕ]Bψ
i χ↔ (ϕ→ B

ϕ∧[ϕ]ψ
i [ϕ]χ)

Belief change under soft information. Public announcement assumes that agents treat the source of

the incoming information as infallible. But in many scenarios, agents trust the source of the information

up to a point. This calls for softer announcements, that can also be brought under our framework. We

only make some introductory remarks: see ([33], Chapter 7) and [55] for more extensive discussion.

How to incorporate less-than-conclusive evidence that ϕ is true into an epistemic-doxastic model

M? Eliminating worlds is too radical for that. It makes all updates irreversible. What we need for a soft

announcement of a formula ϕ is thus not to eliminate worlds altogether, but rather modify the plausibility

ordering that represents an agent’s current hard and soft information state. The goal is to rearrange all

24The key point is stated in ([56], pg. 2): “B
ψ
i ϕ says that if agent i would learn ϕ, she would come to believe that ψ

was true before the learning, while [!ϕ]Biψ says that after learning ϕ, i would come to believe that ψ is the case (after the

learning).” This observation will be of importance in our analysis of Agreement Theorems later on.
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states in such a way that ϕ is believed, and perhaps other desiderata are met. There are many “policies”

for doing this [57], but here, we only mention two, that have been widely discussed in the literature on

belief revision. The following picture illustrates the setting:

A

B

C

D

E

ϕ

Suppose the agent considers all states in C as least as plausible as all states in A ∪D, which she, in

turns, considers at least as plausible as all states in B ∪ E. If the agent gets evidence in favor of ϕ from

a source that she barely thrusts. How is she to update her plausibility ordering?

Perhaps the most ubiquitous policy is conservative upgrade, which lets the agent only tentatively

accept the incoming information ϕ by making the best ϕ the new minimal set and keeping the old

plausibility ordering the same on all other worlds. In the above picture a conservative upgrade with ϕ

results in the new ordering A ≺i C ≺i D ≺i B ∪ E. The general logical idea here is this: “plausibility

upgrade is model reordering”.25 This view can be axiomatized in a dynamic logic in the same style as

we did with earlier scenarios ([33], Chapter 7 for details).

In what follows, we will focus on a more radical policy for belief upgrade, between the soft

conservative upgrade and hard public announcements. The idea behind such radical upgrade is to move

all ϕ worlds ahead of all other worlds, while keeping the order inside these two zones the same. In the

picture above, a radical upgrade by ϕ would result in A ≺i B ≺i C ≺i D ≺i E.

The precise definition of radical upgrades goes as follow. Let [[ϕ]]wi = {x | M, x |= ϕ} ∩ [w]i (where

[w]i is the equivalence class of w under ∼i) denote this set of ϕ worlds:

Definition 2.7 (Radical Upgrade.). Given an epistemic-doxastic model M = 〈W, {∼i}i∈N , {�i}i∈N , V 〉

and a formula ϕ, the radical upgrade of M with ϕ is the model M⇑ϕ = 〈W ⇑ϕ, {∼⇑ϕ
i }i∈N , {�

⇑ϕ
i

}i∈N , V
⇑ϕ〉 with W ⇑ϕ = W , for each i, ∼⇑ϕ

i =∼i, V
⇑ϕ = V and finally, for all i ∈ N and w ∈ W ⇑ϕ:

• for all x ∈ [[ϕ]]wi and y ∈ [[¬ϕ]]wi , set x ≺⇑ϕ
i y,

• for all x, y ∈ [[ϕ]]wi , set x �⇑ϕ
i y iff x �i y, and

• for all x, y ∈ [[¬ϕ]]wi , set x �⇑ϕ
i y iff x �i y. ⋊

A logical analysis of this type of information change uses modalities [⇑iϕ]ψ meaning “after i’s radical

upgrade of ϕ, ψ is true”, interpreted as follows:

M, w |= [⇑iϕ]ψ iff M⇑iϕ, w |= ψ.26

Here is how belief revision under soft information can be treated:

25The most general dynamic point is this: “Information update is model transformation”.
26Conservative upgrade is the special case of radical upgrade with the modal formula besti(ϕ,w) := Min�i

([w]i ∩

{x | M, x |= ϕ}).
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Theorem 2.8. The dynamic logic of radical upgrade is completely axiomatized by the complete static

epistemic-doxastic base logic plus, essentially, the following recursion axiom for conditional beliefs:

[⇑ϕ]Bψχ↔ (L(ϕ ∧ [⇑ϕ]ψ) ∧ Bϕ∧[⇑ϕ]ψ[⇑ϕ]χ) ∨ (¬L(ϕ ∧ [⇑ϕ]ψ) ∧B[⇑ϕ]ψ[⇑ϕ]χ)

This result is from [58], and its proof shows how revision policies as plausibility transformations

really give agents not just new beliefs, but also new conditional beliefs – a point sometimes overlooked

in the literature.

2.4. The General Logical Dynamics Program

Our logical treatment of update with hard and soft information reflects a general methodology,

central to the Theory of Play that we advocate here. Information dynamics is about steps of model

transformation, either in their the universe of worlds, or their relational structure, or both.

Other dynamic actions and events. These methods work much more generally than we are able to

show here, including model update with information that may be partly private, but also for various other

relevant actions, such as inference manipulating finer syntactic information, or questions modifying a

current agenda of issues for investigation. These methods even extend beyond the agents’ informational

attitudes, such as the dynamics of preferences expressing their “evaluation” of the world.27

From local to global dynamics. One further important issue is this. Most information flow only

makes sense in a longer-term temporal setting, where agents can pursue goals and engage in strategic

interaction. This is the realm of epistemic-doxastic temporal logics that describe a “Grand Stage” of

histories unfolding over time. By now, there are several studies linking up between the dynamic logics

of local informational step that we have emphasized, and abstract long-term temporal logics. We refer

to [33,59] for these new developments, that are leading to complete logics of information dynamics with

“protocols” and what may be called procedural information that agents have about the process they are

in. Obviously, this perspective is very congenial to extensive games, and in the rest of this paper, it will

return in many places, though always concretely.28

3. Long-term Information Dynamics

We now discuss a first round of applications of the main components of the Theory of Play outlined

in the previous sections. We leave aside games for the moment, and concentrate on the dynamic of

information in interaction. These applications have in common that they use single update steps, but

then iterate them, according to what might be called “protocols“ for conversation, learning, or other

relevant processes. It is the resulting limit behavior that will mainly occupy us in this section.

We first consider agreement theorems, well known to game theorists, showing how repeated

conditioning and public announcements lead to consensus in the limit. This opens the door a general

27See [12] on dynamic logics for agents’ preference changes between worlds, triggered by commands or other actions with

evaluative or moral force.
28In terms of the cited literature, we will now engage in concrete “logic of protocols”.
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analysis of fixed-points of repeated attitude changes, raising new questions for logic as well as for

interactive epistemology. Next we discuss underlying logical issues, including extensions to scenarios

of belief merge and formation of group preferences in the limit. Finally we return to a concrete

illustration: viz. learning scenarios, a fairly recent chapter in logical dynamics, at the intersection of

logic, epistemology, and game theory.

3.1. Agreement Dynamics

Agreement Theorems, introduced in [60], show that common knowledge of disagreement about

posterior beliefs is impossible given a common prior. Various generalizations have been given to

other informational attitudes, such as probabilistic common belief [61] and qualitative non-negatively

introspective “knowledge” [62]. These results naturally suggest dynamic scenarios, and indeed [63] have

shown that agreement can be dynamically reached by repeated Bayesian conditioning, given common

prior beliefs.

The logical tools introduced above provide a unifying framework for these various generalizations,

and allow to extend them to other informational attitudes. For the sake of conciseness, we will not cover

static agreement results in this paper. The interested reader can consult [64,65].

For a start, we will focus on a comparison between agreements reached via conditioning and via public

announcements, reporting the work of [65]. In the next section, we show how generalized scenarios of

this sort can also deal with softer forms of information change, allowing for diversity in update policies

within groups.

Repeated Conditioning Lead to Agreements. The following example, inspired by a recent

Hollywood production, illustrates how agreements are reached by repeated belief conditioning:

Figure 1. Cobb and Mal on the window ledge.

Example 3.1. Cobb and Mal are standing on a window ledge, arguing whether they are dreaming or not.

Cobb needs to convince Mal, otherwise dreadful consequences will ensue. For the sake of the example,

let us assume that Cobb knows they are not dreaming, but Mal mistakenly believes that they are: state w1

in Figure 1. The solid and dashed rectangles represent, respectively, Cobb’s and Mal’s hard information.

The arrow is their common plausibility ordering.

With some thinking, Mal can come to agree with Cobb. The general procedure for achieving this

goes as follows: A sequence of simultaneous belief conditioning acts starts with the agents’ simple belief

about ϕ, i.e. for all i, the first element B1,i in the sequence is Biϕ if M, w |= Biϕ, and ¬Biϕ otherwise.
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Agent i’s beliefs about ϕ at a successor stage are defined by taking her beliefs about ϕ, conditional upon

learning the others’ belief about ϕ at that stage. Formally, for two agents i, j then: Bn+1,i = B
Bn,jϕ

i ϕ if

M, w |= B
Bn,jϕ

i ϕ, and ¬B
Bn,jϕ

i ϕ otherwise.29

Following the zones marked with an arc in Figure 1, the reader can check that, at w1, Mal needs three

rounds of conditioning to switch her belief about their waking, and thus reach an agreement with Cobb.

Her belief stays the same upon learning that Cobb believes that they are not dreaming. Let us call this

fact ϕ. The turning point occurs when she learns that Cobb would not change his mind even if he would

learn ϕ. Conditional on this, she now believes that they are indeed not dreaming. Note that Cobb’s

beliefs stay unchanged throughout, since he knows the true state at the outset.

Iterated conditioning thus leads to agreement, given common priors. Indeed, conditioning induces

a decreasing map from subsets to subsets, which guarantees the existence of a fixed points, where all

agent’s conditional beliefs stabilize. Once the agents have reached this fixed-point, they have eliminated

all higher-order uncertainties concerning the posteriors beliefs about ϕ of the others. Their posteriors

beliefs are now common knowledge:

Theorem 3.2 ([65]). At the fixed-point n of a sequence of simultaneous conditioning acts on ϕ, for all

w ∈ W and i ∈ I , we have that:

M, w |= CI(
∧

i∈I

Bn,iϕ)

The reader accustomed to static agreement theorems will see that we are now only a small step away

from concluding that sequences of simultaneous conditionings lead to agreements, as it is indeed the

case in our example. Since common prior and common belief of posteriors suffice for agreement,

we get:

Corollary 3.3. Take any sequence of conditioning acts for a formula ϕ, as defined above, in a finite

model with common prior. At the fixed point of this sequence, either all agents believe ϕ or they all don’t

believe ϕ.

This recasts, in our logical framework, the result of [63], showing how “dialogs” lead to agreements.

Still, belief conditioning has a somewhat private character.30 In the example above, Cobb remains

painfully uncertain of Mal’s thinking process until he sees her changing her mind, that is until she makes

the last step of conditioning. Luckily for Cobb, they can do better, as we will now proceed to show.

Repeated Public Announcements Lead to Agreements. Figure 2 shows another scenario, where

Cobb and Mal publicly and repeatedly announce their beliefs at w1. They keep announcing the same

thing, but each time, this induces important changes in both agents’ higher-order information. Mal is

led stepwise to realize that they are not dreaming, and crucially, Cobb also knows that Mal receives

and processes this information. As the reader can check, at each step in the process, Mal’s beliefs are

common knowledge.

29This definition is meant to fix intuition only. Full details on how to deal with infinite scenarios, here and later, are in the

cited paper.
30See the remarks on page 66 contrasting public announcement and belief conditioning.
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Figure 2. Cobb and Mal’s discussion on the window ledge.

One again, Figure 2 exemplifies a general fact. We first define a dialogue about ϕ as a sequence of

public announcements. Let M, w be a finite pointed

epistemic-doxastic model.31 Now let Bw1,i, i’s original belief state at w, be Biϕ if this formula holds

at w, and ¬Biϕ, otherwise. Agent i’s n + 1 belief state, written B
w
n+1,i, is defined as [

∧
j∈I B

w
n,jϕ]Biϕ

if M, w |= [
∧
j∈I B

w
n,jϕ]Biϕ, and as [

∧
j∈I B

w
n,jϕ]¬Biϕ, otherwise. Intuitively, a dialogue about ϕ is a

process in which all agents in a group publicly and repeatedly announce their posterior beliefs about ϕ,

while updating with the information received in each round.

In dialogues, just like with belief conditioning, iterated public announcements induce decreasing

maps between epistemic-doxastic models, and thus are bound to reach a fixed point, where no further

discussion is needed. At this point, the protagonists are guaranteed to have reached consensus:

Theorem 3.4 ([65]). At the fixed-point Mn, w of a public dialogue about ϕ among agents in a group I:

Mn, w |= CI(
∧

i∈I

Bn,i)

Corollary 3.5 ([65]). For any public dialogue about ϕ, if there is a common prior that is a well-founded

plausibility order, then at the fixed-point Mn, w, either all agents believe ϕ or all do not believe ϕ.

As noted in the literature [63,64], the preceding dynamics of agreement is one of higher-order

information. In the examples above, Mal’s information about the ground facts of dreaming or not

dreaming, does not change until the very last round of conditioning or public announcement. The

information she gets by learning about Cobb’s beliefs affects her higher-order beliefs, i.e., what she

believes about Cobb’s information. This importance of higher-order information flow is a general

phenomenon, well-known to epistemic game theorists, which the present logical perspective treats in

a unifying way.

Agreements and Dynamics: Further Issues. Here are a few points about the preceding scenarios

that invite generalization. Classical agreement results require the agents to be “like-minded” [66]. Our

analysis of agreement in dynamic-epistemic logic reveals that this like-mindedness extends beyond the

common prior assumption: it also requires the agents to process the information they receive in the same

31Our analysis also applies to infinite models: see the cited papers.
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way.32 One can easily find counter-examples to the agreement theorems when the update rule is not

the same for all agents. Indeed, the issue of “agent diversity” is largely unexplored in our logics (but

see [12] for an exception).

A final point is this. While agreement scenarios seem special, to us, they demonstrate a general topic,

viz. how different parties in a conversation, say a “Skeptic” and an ordinary person, can modify their

positions interactively. In the epistemological literature, this dynamic conversational feature has been

neglected—and the above, though solving things in a general way, at least suggests that there might be

interesting structure here of epistemological interest.

3.2. Logical Issues about Hard and Soft Limit Behavior

One virtue of our logical perspective is that we can study the above limit phenomena in much

greater generality.

Hard information. For a start, for purely logical reasons, iterated public announcement of any formula

ϕ in a model M must stop at a limit model lim(M, ϕ) where ϕ has either become true throughout

(it has become common knowledge), or its negation is true throughout.33 This raises an intriguing

open model-theoretic problem of telling, purely from syntactic form, when a given formula is uniformly

“self-fulfilling” (the case where common knowledge is reached), or when “self-refuting” (the case where

common knowledge is reached of the negation). Game-theoretic assertions of rationality tend to be

self-fulfilling, as we shall see in Section 4 below. But there is no stigma attached to the self-refuting

case: e.g., the ignorance assertion in the famous Muddy Children puzzle is self-refuting in the limit.

Thus, behind our single scenarios, there is a whole area of limit phenomena that have not yet been

studied systematically in epistemic logic.34

In addition to definability, there is complexity and proof. Van Benthem [4] shows how announcement

limit submodels can be defined in various known epistemic fixed-point logics, depending on the syntactic

shape of ϕ. Sometimes the resulting formalisms are decidable, e.g., when the driving assertion ϕ has

“existential positive form”, as in the mentioned Muddy Children puzzle, or simple rationality assertions

in games.

But these scenarios are still quite special, in that the same assertion gets repeated. There is large

variety of further long-term scenarios in the dynamic logic literature, starting from the “Tell All”

protocols in [69–71] where agents tell each other all they know at each stage, turning the initial

distributed knowledge of the group into explicit common knowledge.

Soft information. In addition to the limit dynamics of knowledge under hard information, there is the

limit behavior of belief, making for more realistic dialog scenarios. This allows for more interesting

phenomena in the earlier update sequences. An example is iterated hard information dovetailing agents’

opinions, flipping sides in the disagreement until the very last steps of the dialogue (cf. [33] and [72],

32Thanks to Alexandru Baltag for pointing out this feature to us.
33We omit some details with pushing the process through infinite ordinals. The final stage is discussed further in terms of

“redundant assertions” in [67].
34Even in the single-step case, characterizing “self-fulfilling” public announcements has turned out quite involved [68].
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p.110-111). Such disagreement flips can occur until late in the exchange, but as we saw above, they are

bound to stop at some point.

All these phenomena get even more interesting mathematically with dialogs involving soft

announcements [⇑ ϕ], when limit behavior can be much more complex, as we will see in the next

section. Some relevant observations can be found in [71], and in Section 4 below. First, there need

not be convergence at all, the process can oscillate:

Example 3.6. Suppose that ϕ is the formula (r ∨ (B¬rq ∧ p) ∨ (B¬rp ∧ q)) and consider the one

agent epistemic-doxastic models pictured below. Since [[ϕ]]M1 = {w3, w1}, we have M⇑ϕ
1 = M2.

Furthermore, [[ϕ]]M2 = {w2, w1}, so M⇑ϕ
2 = M3. Since, M3 is the same model as M1, we have

a cycle:

rw1

qw2

pw3

M1

⇑ϕ
=⇒

rw1

pw3

qw2

M2

⇑ϕ
=⇒

rw1

qw2

pw3

M3

⇑ϕ
=⇒ · · ·

In line with this, players’ conditional beliefs may keep changing along the stages of an infinite

dialog.35 But still, there is often convergence at the level of agents’ absolute factual beliefs about that

the world is like. Indeed, here is a result from [71]:

Theorem 3.7. Every iterated sequence of truthful radical upgrades stabilizes all simple non-conditional

beliefs in the limit.

Belief and Preference Merge. Finally, we point at some further aspects of the topics raised here.

Integrating agents’ orderings through some prescribed process has many similarities with other areas of

research. One is belief merge where groups of agents try to arrive at a shared group plausibility rder,

either as a way of replacing individual orders, or as a way of creating a further group agent that is a

most reasonable amalagam of the separate components. And this scenario is again much like those of

social choice theory, where individual agents have to aggregate preference orders into some optimal

public ordering. This naturally involves dynamic analysis of the processes of delberation that lead to

the eventual act of voting.36 Thus, the technical issues raised in this section have much wider impact.

We may be seeing the contours of a systematic logical study of conversation, deliberation and related

social processes.

35Infinite iteration of plausibility reordering is in general a non-monotonic process closer to philosophical theories of truth

revision in the philosophical literature [73,74]. The technical theory developed on the latter topic in the 1980s may be relevant

to our concerns here [75].
36 Van Benthem [33], Chapter 12, elaborates this connection in more technical detail.
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3.3. Learning

We conclude this section with one concrete setting where many of the earlier themes come together,

viz. formal learning theory: see [76–78]. The paradigm we have in mind is identification in the limit

of correct hypotheses about the world (cf. [79] on language learning), though formal learning theory in

epistemology has also studied concrete learning algorithms for inquiry of various sorts.

The learning setting shows striking analogies with the dynamic-epistemic logics that we have

presented in this paper. What follows is a brief summary of recent work in [80,81], to show how our

logics link up with learning theory. For broader philosophical backgrounds in epistemology, we refer

to [82]. The basic scenario of formal learning theory is one of an agent trying to formulate correct

and informative hypotheses about the world, on the basis of an input stream of evidence (in general, an

infinite history) whose totality describes what the world is like. At each finite stage of such a sequence,

an agent outputs a current hypothesis about the world, which can be modified as new evidence comes

in. Success of such a learning function in recognition can be of two kinds: either a correct hypothesis is

identified uniformly on all histories by some finite stage (the strong notion of “finite identifiability”), or

more weakly, each history reaches a point where a correct hypothesis is stated, but when that is may vary

according to the history (“identifiability in the limit”). There is a rich mathematical theory of learning

functions and what classes of hypotheses can, and cannot, be described by them.

Now, it is not hard to recognize many features here of the logical dynamics that we have discussed.

The learning function outputs beliefs, that get revised as new hard information comes in (we think of

the observation of the evidence stream as a totally reliable process). Indeed, it is possible to make very

precise connections here. We can take the possible hypotheses as our possible worlds, each of which

allows those evidence streams (histories of investigation) that satisfy that hypothesis. Then observing

successive pieces of evidence is a form of public announcement allowing us to prune the space of worlds.

The beliefs involved can be modeled as we did before, by a plausibility ordering on the set of worlds for

the agent, which may be modified by successive observations.

On the basis of this simple analogy, [83] prove results like the following, making connections

very tight:

Theorem 3.8. Public announcement-style eliminative update is a universal method: for any learning

function, there exists a plausibility order that encodes the successive learning states as current

beliefs. The same is true, taking observations as events of soft information, for radical upgrade of

plausibility orders.

Theorem 3.9. When evidence streams may contain a finite amount of errors, public announcement-style

update is no longer a universal learning mechanisms, but radical upgrade still is.

With these bridges in place, one can also introduce logical languages in the learning-theoretic

universe. [80] show how many notions in learning theory then become expressible in dynamic-epistemic

or epistemic-temporal languages, say convergence in the limit as necessary future truth of knowledge

of a correct hypothesis about the world. 37 Thus, we seem to be witnessing the beginning of merges

between dynamic logic, belief revision theory and learning theory.

37The logical perspective can actually define many further refinements of learning desiderata, such as reaching future stages

when the agent’s knowledge becomes introspective, or when her belief becomes correct, or known.
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Such combinations of dynamic epistemic logic and learning theory also invite comparison with

game theory. Learning, for instance, to coordinate on a Nash equilibrium in repeated games, has been

extensively studied, with many positive and negative results—see, for example, [84].38

This concludes our exploration of long-term information dynamics in our logical setting. We have

definitely not exhausted all possible connections, but we hope to have shown how a general Theory of

Play fits in naturally with many different areas, providing a common language between them.

4. Solution Dynamics on Extensive Games

We now return to game theory proper, and bring our dynamic logic perspective to bear on an earlier

benchmark example: Backwards Induction. This topic has been well-discussed already by eminent

authors, but we hope to add a number of new twists suggesting broader ramifications in the study

of agency.

In the light of logical dynamics, the main interest of a solution concept is not its “outcome”, its set

of strategy profiles, but rather its “process”, the way in which these outcomes are reached. Rationality

seems largely a feature of procedures we follow, and our dynamic logics are well-suited to focus on that.

4.1. First Scenario: Iterated Announcement of Rationality

Here is a procedural line on Backwards Induction as a rational process. We can take BI to be a

process of prior off-line deliberation about a game by players whose minds proceed in harmony, though

they need not communicate in reality. The treatment that follows was proposed by [22] (which mainly

deals with strategic games), and studied in much greater detail by [85].

As we saw in Section 3, public announcements saying that some proposition ϕ is true transform an

epistemic model M into its submodel M|ϕ whose domain consists of just those worlds in M that satisfy

ϕ. Now the driving assertion for the Backwards Induction procedure is the following assertion. It states

essentially the notion of Rationality discussed in our static analysis of Section 1. As before, at a turn

for player i, a move a is dominated by a sibling b (a move available at the same node) if every history

through a ends worse, in terms of i’s preference, than every history through b:

“at the current node, no player ever chose a strictly dominated move coming here” (rat)

This makes an informative assertion about nodes in a game tree, that can be true or false. Thus,

announcing this formula rat as a fact about the players will in general make the current game tree

smaller. But then we get a dynamics of iteration as in our scenarios of Section 3. In the new smaller

game tree, new nodes may become dominated, and hence announcing rat again (saying that it still holds

after this round of deliberation) makes sense, and so on. As we have seen, this process must reach a limit:

Example [Solving games through iterated assertions of Rationality.] Consider a game with three turns,

four branches, and pay-offs for A, E in that order:

38Many of these results live in a probabilistic setting, but dynamic logic and probability is another natural connection, that

we have to forego in this paper.
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A

x E

y A

z u

1, 0

0, 5

6, 4 5, 5

Stage 0 rules out u, the only point where rat fails, Stage 1 rules out z and the node above it (the new

points where rat fails), and Stage 2 rules out y and the node above it. In the remaining game, Rationality

reigns supreme:

A

x E

y A

z

1, 0

0, 5

6, 4

Rat
=⇒

A

x E

y A

1, 0

0, 5

Rat
=⇒

A

x
1, 0

We see how the BI solution emerges from the given game step by step. The general result follows

from a simple correspondence between subrelations of the total move relation and sets of nodes ([85] has

a precise proof with full details):

Theorem 4.1. In any game tree M, the model (rat,M)# is the actual subtree computed by the

BI procedure.

The logical background here is just as we have seen earlier in our epistemic announcement dynamics.

The actualBI play is the limit sub-model, where rat holds throughout. In terms of our earlier distinction,

this means that Rationality is a “self-fulfilling” proposition: its announcement eventually makes it rue

everywhere, and hence common knowledge of rationality emerges in the process. Thus, the algorithmic

definition of the BI procedure in Section 1 and our iterated announcement scenario amount to the

same thing. One might say then that our deliberation scenario is just a way of “conversationalizing”

a mathematical fixed-point computation. Still, it is of independent interest. Viewing a game tree as an

logical model, we see how repeated announcement of Rationality eventually makes this property true

throughout the remaining model: it has made itself into common knowledge.

4.2. Second Scenario: Belief and Soft Plausibility Upgrade

Many foundational studies in game theory view Rationality as choosing a best action given what

one believes about the current and future behaviour of the players. An appealing alternative take on the

BI procedure does not eliminate any nodes of the initial game, but rather endows it with “progressive

expectations” on how the game will proceeed. This is the plausibility dynamics that we studied in

Section 3, now performing a soft announcement of rat, where the appropriate action is the “radical

upgrade” studied earlier. The essential information produced by the algorithm is then in the binary



Games 2011, 2 77

plausibility relations that it creates inductively for players among end nodes in the game, standing for

complete histories or “worlds”:

Example [The BI outcome in a soft light.] A soft scenario does not remove nodes but modifies the

plausibility relation. To implement this, we start with all endpoints of the game tree incomparable.39

Next, at each stage, we compare sibling nodes, using this notion:

A move x for player i dominates its sibling y in beliefs if the most plausible end nodes

reachable after x along any path in the whole game tree are all better for the active player

than all the most plausible end nodes reachable in the game after y.

Rationality∗ (rat∗) says no player plays a move that is dominated in beliefs. Now we perform

essentially a radical upgrade ⇑rat∗:40

If game node x dominates node y in beliefs, make all end nodes reachable from x more

plausible than those reachable from y, keeping the old order inside these zones.

This changes the plausibility order, and hence the pattern of dominance-in-belief, so that iteration

makes sense. Here are the stages in our earlier example, where letters x, y, z stand for the end nodes of

the game:

A

x E

y z

1, 0

0, 100 99, 99

x y z ⇑rat
=⇒

A

x E

y z

1, 0

0, 100 99, 99

x y > z ⇑rat
=⇒

A

x E

y z

1, 0

0, 100 99, 99

x > y > z

In the first game tree, going right is not yet dominated in beliefs for A by going left. rat∗ only has

bite at E’s turn, and an upgrade takes place that makes (0, 100) more plausible than (99, 99). After this

upgrade, however, going right has now become dominated in beliefs, and a new upgrade takes place,

making A’s going left most plausible. Here is the general result [33,85]:

Theorem 4.2. On finite trees, the Backwards Induction strategy is encoded in the plausibility order for

end nodes created by iterated radical upgrade with rationality-in-belief.

Again this is “self-fulfilling”: at the end of the procedure, the players have acquired common belief

in rationality. An illuminating way of proving this uses an idea from [86]:

Strategies as plausibility relations. Each sub-relation R of the total move relation induces a total

plausibility order ord(R) on endpoints of a game:

x ord(R) y iff, looking up at the first node z where the histories of x, y diverged, if x was

reached via an R move from z, then so is y.

39Other versions of our scenario would rather make them equi-plausible.
40We refer to [85] for technical details.
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More generally, relational strategies correspond one-to-one with “move-compatible” total orders of

endpoints. In particular, conversely, each such order ≤ induces a strategy rel(≤). Now we can relate the

computation in our upgrade scenario for belief and plausibility to the earlier relational algorithm for BI

in Section 1:

Fact 4.3. For any game tree M and any k, rel((⇑ rat∗)k,M)) = BIk.

Thus, the algorithmic view of Backwards Induction and its procedural doxastic analysis in terms of

forming beliefs amount to the same thing. Still, as with our iterated announcement scenario, the dynamic

logical view has interesting features of its own. One is that it yields fine-structure to the plausibility

relations among worlds that are usually taken as primitive in doxastic logic. Thus games provide an

underpinning for the possible worlds semantics of belief that seems of interest per se.

4.3. Logical Dynamic Foundations of Game Theory

We have seen how several dynamic approaches to Backwards Induction amount to the same thing.

To us, this means that the notion is logically stable. Of course, extensionally equivalent definitions

can still have interesting intensional differences. For instance, the above analysis of strategy creation

and plausibility change seems the most realistic description of the “entanglement” of belief and rational

action in the behaviour of agents. But as we will discuss soon, a technical view in terms of fixed-point

logics may be the best mathematical approach linking up with other areas.

No matter how we construe them, one key feature of our dynamic announcement and upgrade

scenarios is this. Unlike the usual epistemic foundation results, common knowledge or belief of

rationality is not assumed, but produced by the logic. This reflects our general view that rationality

is primarily a property of procedures of deliberation or other logical activities, and only secondarily a

property of outcomes of such procedures.

4.4. Logics of of Game Solution: General Issues

Our analysis does not just restate existing game-theoretic results, it also raises new issues in the logic

of rational agency. Technically, all that has been said in Sections 2 an 3 can be formulated in terms of

existing fixed-point logics of computation, such as the modal “µ-calculus” and the first-order fixed-point

logic LFP (FO). This link with a well-developed area of computational logic is attractive, since many

results are known there, and we may use them to investigate game solution procedures that are quite

different from Backwards Induction.41 But the analysis of game solutions also brings some new logical

issues to this area.

Game solution and fragments of fixed-point logics. Game solution procedures need not use the full

power of fixed-point languages for recursive procedures. It makes sense to use small decidable fragments

where appropriate. Still, it is not quite clear right now what the best fragments are. In particular, our

earlier analysis intertwines two different relations on trees: the move relation of action and computation,

and the preference relations for players on endpoints. And the question is what happens to known

properties of computational logics when we add such preference relations:

41See the dissertation [32] for details, linking up with computational logic.
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The complexity of rationality. In combined logics of action and knowledge, it is well-known that

apparently harmless assumptions such as Perfect Recall for agents make the validities undecidable, or

non-axiomatizable, sometimes even Π1
1-complete [15]. The reason is that these assumptions generate

commuting diagrams for actions move and epistemic uncertainty ∼ satisfying a “confluence property”

∀x∀y((x move y ∧ y ∼ z) → ∃u(x ∼ u ∧ u move z))

These patterns serve as the basic grid cells in encodings of complex “tiling problems” in the logic.42

Thus, the logical theory of games for players with perfect memory is more complex than that of forgetful

agents [15,18]. But now consider the non-epistemic property of rationality studied above, that mixes

action and preference. Our key property CF in Section 1 had a confluence flavour, too, with a diagram

involving action and preference:

∀x∀y((Turni(x) ∧ x σ y) → ∀z(z move z → ∀u((end(u) ∧ y σ∗ u)

→ ∃v(end(v) ∧ z σ∗v ∧ v ≤i u))))

So, what is the complexity of fixed-point logics for players with this kind of regular behaviour? Can

it be that Rationality, a property meant to make behaviour simple and predictable, actually makes its

theory complex?

Zooming in and zooming out: modal logics of best action. The main trend in our analysis has

been toward making dynamics explicit in richer logics than the usual epistemic-doxastic-preferential

ones, in line with the program in [33]. But in logical analysis, there are always two opposite directions

intertwined: getting at important reasoning patterns by making things more explicit, or rather, by making

things less explicit!

In particular, in practical reasoning, we are often only interested in what are our best actions without

all details of their justification. As a mathematical abstraction, it would then be good to extract a simple

surface logic for reasoning with best actions, while hiding most of the machinery:

Can we axiomatize the modal logic of finite game trees with a move relation and its transitive

closure, turns and preference relations for players, and a new relation best computed by

Backwards Induction?

Further logical issues in our framework concern extensions to infinite games, games with imperfect

information, and scenarios with diverse agents. See [12,72,87] for some first explorations.

4.5. From Games to Their Players

We end by high-lighting a perhaps debatable assumption of our analysis so far. It has been claimed

that the very Backwards Induction reasoning that ran so smoothly in our presentation, is incoherent when

we try to “replay” it in the opposite order, when a game is actually played.43

42Recall our earlier remarks in Section 1 on the complexity of strategic games.
43There is a large literature focused on this “paradox” of backwards induction which we do not discuss here. See, for

example, [88].
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Example [The ‘Paradox of Backwards Induction’.] Recall the style of reasoning toward a Backward

Induction solution, as in our earlier simple scenario:

A

x E

y A

z u

1, 0

0, 5

6, 4 5, 5

Backwards Induction tells us that A will go left at the start, on the basis of logical reasoning that is

available to both players. But then, if A plays right (as marked by the thick black line) what should E

conclude? Does not this mean that A is not following the BI reasoning, and hence that all bets are off as

to what he will do later on in the game? It seems that the very basis for the computations in our earlier

sections collapses.44

Responses to this difficulty vary. Many game-theorists seem under-impressed. The characterization

result of [89] assumes that players know that rationality prevails throughout.45 One can defend

this behaviour by assuming that the other player only makes isolated mistakes. Baltag, Smets and

Zvesper [86] essentially take the same tack, deriving the BI strategy from an assumption of “stable

true belief” in rationality, a gentler form of stubbornness stated in terms of dynamic-epistemic logic.

Players’ revision policies. We are more inclined toward the line of [91,92]. A richer analysis should

add an account of the types of agent that play the game. In particular, we need to represent the belief

revision policies of the players, that determine what they will do when making a surprising observation

contradicting their beliefs in the course of a game. There are many different options for such policies

in the above example, such as “It was just an error, and A will go back to being rational”, “A is telling

me that he wants me to go right, and I will be rewarded for that”, “A is an automaton with a general

rightward tendency”, and so on.46 Our analysis so far has omitted this type of information about players

of the game, since our algorithms made implicit uniform assumptions about their prior deliberation, as

well as what they are going to do as the game proceeds.

This matching up of two directions of thought: backwards in “off-line dynamics” of deliberation,

and forwards in “on-line dynamics” of playing the actual game, is a major issue in its own right,

beyond specific scenarios. Belief revision policies and other features of players must come in as explicit

components of the theory, in order to deal with the dynamics of how players update knowledge and

revise beliefs as a game proceeds.

But all this is exactly what the logical dynamics of Section 2 is about. Our earlier discussion has

shown how acts of information change and belief revision can enter logic in a systematic manner.

44The drama is clearer in longer games, when A has many comebacks toward the right.
45Samet [90] calls this “rationality no matter what”, a stubborn unshakable belief that players will act rationally later on,

even if they have never done so up until now.
46 One reaction to these surprise events might even be a switch to an entirely new style of reasoning about the game. That

would require a more finely-grained syntax-based views of revision: cf. the discussion in [93].
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Thus, once more, the richer setting that we need for a truly general theory of game solution is a perfect

illustration for the general Theory of Play that we have advocated.

5. Conclusion

Logic and game theory form a natural match, since the structures of game theory are very close to

being models of the sort that logicians typically study. Our first illustrations reviewed existing work

on static logics of game structure, drawing attention to the fixed-point logic character of game solution

methods. This suggests a broader potential for joining forces between game theory and computational

logic, going beyond specific scenarios toward more general theory. To make this more concrete, we

then presented the recent program of “logical dynamics” for information-driven agency, and showed

how it throws new light on basic issues studied in game theory, such as agreement scenarios and game

solution concepts.

What we expect from this contact is not the solution of problems afflicting game theory through logic,

or vice versa, remedying the aches and pains of logic through game theory. Of course, game theorists

may be led to new thoughts by seeing how a logician treats (or mistreats) their topics, and also, as we

have shown, logicians may see interesting new open problems through the lense of game theory.

But fruitful human relations are usually not therapeutic: they lead to new facts, in the form of shared

offspring. In particular, one broad trend behind much of what we have discussed here is this. Through

the fine-structure offered by logic, we can see the dynamics of games as played in much more detail,

making them part of a general analysis of agency that also occurs in many other areas, from “multi-agent

systems” in computer science to social epistemology and the philosophy of action. It is our expectation

that the offspring of this contact might be something new, neither fully logic nor game theory: a Theory

of Play, rather than just a theory of games.
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