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The Heterogeneous Impact of Temperature Growth on Real House Price 
Returns across the US States  

 
Reneé van Eyden*, Geoffrey Ngene**, Oğuzhan Çepni*** and Rangan Gupta**** 

 
 

Abstract 
This paper investigates the impact of temperature growth on real returns of US housing markets 
at the state level. Using the 1-month, 3-month, and 12-month horizons for the period 1975:01 
to 2021:06 and heterogeneous random coefficients panel data model, we find that increased 
temperature growth rates negatively affect real house price returns across all horizons. The 
effects intensify when the media refers more to climate change news. While most states 
experience a decline in real house price returns at a 3-month horizon, the largest relative 
negative impacts are registered over the 12-month horizon, suggesting that climate risk is a 
long-run risk. Geographically, the rising temperatures have the most negative effect on real 
house returns in the US West Coast states of California, Arizona, Nevada, and Idaho, and the 
Sun Belt states, most notably Florida, Georgia, Texas, Tennessee, and Alabama. The results 
remain robust after controlling for state-level leading economic indicators and state- and 
national-level economic uncertainty arising from policy changes.  
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1. Introduction 
Homeowners, regulators, policymakers, academicians, providers of capital, investors, and a 
host of other market players are becoming increasingly conscious of the impact of climate-
related risks on the pricing of physical and financial assets (Baldauf et al., 2020; Faccini et al., 
2021), economic performance (Kim et al., 2021)1, cost of raising capital by the public sector 
(Painter, 2020)2, commodity currency and terms of trade (Gupta et al., 2019; and Kapfhammer 
et al., 2020) and financial stability (Flori et al., 2021; Battiston et al., 2021). 

Recent studies by Battiston et al. (2021) and Flori et al. (2021) point out that the occurrence 
of rare disasters necessitates nearly every future investment setting to incorporate climate-
related financial risks. However, the form and level of the source of climate-related uncertainty 
may vary across investment opportunities. The real estate market faces climate-related physical 
and transition risks. Physical risk refers to damage to real estate (land, homes, and supporting 
infrastructure) caused by climate change, causing a rise in the frequency and severity of storms, 
flooding, wildfires, sea levels, and average temperatures. Transition risk relates to 
technological, regulatory3, consumer behavior, and economic and social responses to climate 
change. Examples of such responses include the decarbonization of buildings, the use of low-
emissions, heat- and fire-resistant construction materials, and changes in insurance 
underwriting and lending models to price climate-related risks (Clapp et al., 2017). 

In this study, we investigate the state-level impact of climate change on real house price 
returns across the US states. Our motivation for state-level analysis stems from the need to use 
                                                             
1 Kim et al. (2021) find that an increase in extreme weather conditions in the US negatively impacts US macro 
variables by persistently reducing aggregate industrial production growth while increasing aggregate 
unemployment and inflation. 
2 Painter (2020) finds that US Counties more vulnerable to climate risk pay higher underwriting fees and initial 
yields in issuing long-term municipal bonds compared to counties less likely to be affected by climate risk.  Since 
climate risk and non-climate risk counties have the same issuance cost and initial yield for short-term bonds, it 
seems the market prices climate change risks for long-term securities only. 
3 A survey by Stroebel and Wurgler (2021) identifies regulatory risk as the primary climate risk to businesses and 
investors over the next five years, while the physical risk is viewed as the top risk over the next 30 years. The 
respondents believe that asset prices overwhelmingly underestimate climate risks. 
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localized house prices and weather information relative to regional-level analysis. In particular, 
we focus on the effects of rising temperature on housing returns since increasing temperatures 
might affect the housing market through multiple channels. First, rising temperatures trigger 
large-scale climate-related events such as massive wildfires, droughts, hurricanes, flooding, 
gale-force storms, precipitation, rising sea level, and destructive winds. Second, rising 
temperatures increase the annual costs of managing owner-occupied and rental properties. For 
example, higher electricity and water usage due to more cooling and stress on electrical grids 
erodes the financial resources of local governments. Third, an upsurge in the intensity and 
frequency of climate risk due to increasing temperatures presents a high risk of structural 
damage, especially to coastal properties. Residential properties in weather-plagued locales 
under constant danger of destructive natural disasters become less appealing and are sold at 
low profit or loss. Contemporarily, discounted valuations and higher insurance premiums are 
used to indirectly account for risks from natural disasters such as fires, floods, and earthquakes 
that may affect real estate valuation. Overall, worsening physical and transition climate risks 
force real estate players to consider new residential buildings’ physical and environmental 
features.  

Using one-, three- and twelve-month time aggregations and a heterogeneous random 
coefficients panel data model in our analysis, we find that increased temperature growth rates 
negatively impact real house price returns across all horizons. While a plurality of states 
experiences a decline in real house price returns in response to temperature increases at a 3-
month horizon, the largest negative impacts are registered over the 12-month horizon. US West 
Coast states and the US Sun Belt region, notably Florida, Arizona, Georgia, Nevada, Texas, 
California, Tennessee, Idaho, and Alabama, are most negatively impacted by temperature 
increases. The foregoing overwhelming evidence supports the need to price climate risk and 
the documented multiplier effects of climate risk on physical and financial assets. Furthermore, 
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our results remain robust after controlling for state-level leading economic indicators and state- 
and national-level economic policy uncertainties. 

The media significantly influences how people understand and react to climate change. It 
is shown that media attention to climate change has a considerable effect on policy agenda 
setting related to climate risks (Keller et al., 2020), public discourses about climate change 
(Nisbet, 2009), and public awareness and beliefs regarding climate change (Baldauf et al., 
2020). Therefore, in the next step, we examine whether the impact of temperature growth on 
housing returns amplifies when media attention to climate change increases. Using the 
(negative) climate change news indexes proposed by Engle et al. (2020), we find that the 
negative effect of temperature growth on real housing returns intensifies at all forecast horizons 
when the media refers more to negative climate change news. Furthermore, the negative effect 
greatly increases when looking at longer time horizons, suggesting that investors heavily price 
the climate risk in the real estate market over the long run. 

We have several reasons to focus on the real estate market. Among the physical assets, real 
estate is an exciting asset class for any study due to its duration and importance to households 
and the overall economy. First, Baldauf et al. (2020) argue that the long-duration nature of a 
real estate asset exposes it to long-run risks emerging from climate change. Second, the 2019 
Survey of Consumer Finance (SCF)4 shows primary residences represent 62% of the median 
homeowners’ total assets and 42% of the median homeowners’ wealth. Furthermore, 65% of 
US households owned a primary residence, compared to 50.5% with a retirement account and 
30.5% with financial assets (bonds, stocks, certificate of deposit, and savings bonds). 
Therefore, a primary residence is the most widely held asset. Third, as collateral to secure debt 

                                                             
4 The SCF is a triennial cross-sectional survey that provides detailed information on the finances (balance sheets, 
pensions, income, and demographic characteristics) of US households. 
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for consumption and investment purposes, real estate becomes a valuable source of household 
debt that fuels overall economic production and activities. 

Our work is related to the burgeoning and developing literature focusing on the effects of 
climate change on asset markets. Bernstein et al. (2019) show that homes in coastal counties 
exposed to extreme climate risk sell at an 8.5% discount, broadly consistent with the 7% 
discount documented by Baldauf et al. (2020). Livy (2020) finds that aberrant increases in 
heating and cooling degree days negatively impact housing prices, with cooling degree days 
having a larger negative impact. Gourley (2021) affirms that home prices are negatively 
affected by temporary summer and winter weather conditions. Real estate values decline more 
in local housing markets with higher vulnerability to climate-related risks. Local housing 
market prices decline as perceptions of climate-related sea-level rises (Giglio, et al., 2015, 
2021), flooding risk (Bernstein, et al., 2019 and Baldauf, et al., 2020), and wildfire risk (McCoy 
and Walsh, 2018; Garnache and Guilfoos, 2019) increases. Further, Keenan et al. (2018) find 
that high-value housing markets with a high climate-related risk of flooding (e.g., Miami) will 
experience slower property price appreciation than lower flooding-risk properties. These 
studies provide evidence of pricing perceptions of climate-related risk in some real estate 
markets. An empirically unexplored question is how long-run risks associated with extreme 
weather and climate change5 affect real estate returns across heterogeneous regional housing 
markets. Hence, our results contribute to the enlarging literature on how investors price long-
run risk in the real estate market. 

Climate risk affects the real estate market in several aspects. Real estate markets facing 
high climate risks will experience steep insurance premiums increase as insurers realize that 
they cannot shoulder home losses at current insurance premium rates. In extreme cases, insurers 

                                                             
5 Climate change, a long-run risk, refers to the shift in the statistical distribution of future weather patterns. 
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will drop the homeowners or deny renewals for homes in high-risk neighborhoods, fearing 
increasing losseses irrespective of the insurance premium they charge6. Ultimately, insurers 
will free high climate risk housing markets to avoid filing for bankruptcy (Chiglinsky and 
Chen, 2020).7 Uninsurable, high-risk homes near the oceans and high-risk flood and wildfire 
zones may force mortgage providers to charge high-interest rates or deny mortgages altogether 
if they cannot price future climate risk. For example, extreme weather events such as hurricanes 
can result in prolonged job losses, resulting in mortgage default. Issler et al. (2020) find that 
households living in high-risk wildfires and flooding zones exhibit increased residential 
mortgage default rates. 

Furthermore, climate risk can severely impact the demand and value of homes and property 
taxes. For example, Shi and Varuzzo (2020) note that land values get significantly depressed 
as climate-related physical risks directly reduce the demand and value of real estate due to high 
repair and maintenance costs and infrastructure and transportation disruptions caused by 
weather disasters. Reduced demand and home values in real estate markets vulnerable to 
climate-related risks, stresses, and shocks, reduce household wealth, spending, and local 
economic activities.8 However, it may increase the demand and value of inland homes facing 
low frequency and severity of climate risk.9 As homeowners relocate from the waterfront to 
inland homes (or from high climate- to low climate-risk zones), there will be fewer households 
in the coastal community, a smaller tax base, and potentially higher property and sales taxes to 

                                                             
6 According to an October 2020 report compiled by California’s insurance regulator, insurers in California refused 
to renew 235,250 homeowners’ insurance policies in 2019, a 31% increase from 2018. This compares to 61% 
increase (between 2018 and 2019) in non-renewals for homes in ZIP codes assessed to have a moderate to very 
high fire risk. 
7 See https://www.insurancejournal.com/news/west/2020/12/04/592788.htm 
8 This emerges from past studies (See for example, Stroebel and Vavra (2019) and Mian et al. (2013)), which 
show that housing wealth represents the largest portion of US household wealth. Since US household spending 
varies with housing wealth, reduced real estate values (borrowing collateral) will reduce household wealth, 
borrowing capacity, spending, and local economic activity. 
9 A study by Wolf and Klaiber (2017) shows that warmer weather around Buckeye Lake and Grand Lake resulted 
in excessive algae affecting the lakefront homes, resulting in an estimated $152 million reduction in combined 
lakefront property values between 2009 and 2015. 
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maintain and support community infrastructures (Shi and Varuzzo, 2020). Further, such 
climate-risk-induced relocations cause economic losses for investors and households. 

Our results contribute to established literature on the determinants of real estate investment 
returns (Piazzesi et al., 2007; Chambers et al., 2021) and the more targeted literature on how 
climate risks can change the valuations of asset prices (Choi et al., 2020; Duan et al., 2021; 
Bolton and Kacperczyk, 2021; Ilhan et al., 2021). Although there is some evidence to suggest 
that the stock market is already pricing the risks associated with climate change, there is a lack 
of evidence in the housing market. Yi and Choi (2020) investigate the impact of the devastating 
Iowa flood of 2008 on housing values and find that unexpected inundation during the flood 
causes to drop in house prices. Fang et al. (2021) use a dataset of residential transactions in 
Miami-Dade County to study whether the local housing markets may be impacted by a large-
scale but distant storm incident without experiencing direct damage. Similarly, Votsis and 
Perrels (2016) show a significant decrease in the prices of homes in flood-prone zones 
following the dissemination of the flood risk maps. Hence, our study differs from previous 
event study-based approaches focusing on a specific region with a shorter horizon by 
examining the heterogeneous impacts of climate risks on the housing market across the US 
states and providing implications of climate risks for the housing market in a broader content. 
In this regard, our paper is in line with the US Metropolitan Statistical Areas (MSAs)-based 
study of Donadelli et al. (2020) on the negative impact of tornado activity on house prices, 
particularly in the South and Midwest census regions. Though we study the less granular, state-
level housing markets, our study still provides the state-specific impact of climate change, as 
captured by growth in temperature, at various investment horizons, on real house price returns.   

The remainder of the paper is organized as follows: Section 2 presents the data and 
methodology. Section 3 discusses the results, while Section 4 concludes. 
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2. Data and methodology 
2.1 Data and model specification 
We use an unbalanced panel dataset covering the monthly period from 1975:01 to 2021:06, 
based on availability at the time of writing. The dataset includes data on the 49 US states, 
barring Hawaii. For the house price data, we use nominal house prices of the states derived 
from Freddie Mac,10 with the indices based on an ever-expanding database of loans purchased 
by either Freddie Mac or Fannie Mae. Real house prices were generated by deflating the 
nominal values by the national Consumer Price Index (CPI). The CPI data was obtained from 
the FRED database of the Federal Reserve Bank of St. Louis.11 We use real house price log 
returns (rhr1) and construct 3-month (rhr3) and 12-month (rhr12) rolling sums series of log 
returns to capture the effect of climate risk at shorter and longer horizons. The corresponding 
average temperature (in degrees Fahrenheit) data for each state is obtained from National 
Oceanic and Atmospheric Administration (NOAA).12 From the raw data, we compute month-
on-month growth in temperature (temp_g) to model the impact of climate change on the US 
housing market. We also use a state-specific leading indicator to account for the influence of 
economic cycles in the estimated model.13 The data, originally created by the Federal Reserve 
Bank of Philadelphia, was sourced from the FRED database. Finally, given the importance of 
the role of uncertainty in driving house price movements (van Eyden et al., forthcoming), we 
also consider three metrics of newspaper-based economic policy uncertainty (epu) separately, 
derived from the work of Baker et al. (2022).14 To construct the state-level measures of epu, 

                                                             
10 The data is available for download from: http://www.freddiemac.com/research/indices/house-price-index.page. 
11 https://fred.stlouisfed.org/series/CPIAUCSL. 
12 See: https://www.ncdc.noaa.gov/cag/statewide/time-series. 
13 The leading index for each state predicts the six-month growth rate of the state’s coincident index, with the 
latter including four indicators: nonfarm payroll employment, the unemployment rate, average hours worked in 
manufacturing and wages and salaries. In addition to the coincident index, the leading indicator also includes other 
variables that lead the economy: state-level housing permits, state initial unemployment insurance claims, delivery 
times from the Institute for Supply Management (ISM) manufacturing survey, and the interest rate spread between 
the 10-year Treasury bond and the 3-month Treasury bill. 
14 The data is available for download from: http://policyuncertainty.com/state_epu.html. 
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these authors use around 3,500 daily and weekly newspapers for every state in the US (as well 
as Washington DC), but exclude national papers published in a given state (such as the New 
York Times or Wall Street Journal). Baker et al. (2022) construct three state-level epu indexes 
by recording the fraction of articles that contain terms from term sets regarding the economy, 
uncertainty, and policy, with the three indexes distinguished only by variations in their policy 
term sets, i.e., for inclusion in each index, an article must contain the word: “economic” or 
“economy” as well as, ‘uncertainties,’ or ‘uncertainty.’ The nation-level epu index 
(epu_national) measures the level of uncertainty within a state that stems from specifically 
national policy-related sources.15 Then the index epu_state looks to measure the level of 
uncertainty within a state that comes from state and local policy issues.16 Finally, the third 
index, epu_composite, is composed of articles that contain terms related to the economy and 
uncertainty and a term from a composite set of terms that contains state-specific policy terms 
and national policy terms. 

 To capture the effect of climate risk on the US housing market at various horizons, we 
specify the following model:   

ℎ௜,௧ݎℎݎ = ଴௜ߚ + ௜,௧ିଵ݃_݌݉݁ݐଵ௜ߚ + ଶ௜݈݁ܽ݀௜,௧ିଵߚ + ௜,௧݆_ݑ݌௝௜݁ߚ +  ௜,௧    (1)ߝ

where ݎℎݎℎ௜,௧ is state-level real house price log-returns at horizon h, where h=1, 3 and 12, i=1,  
2,…, 49; t=1975:01 to 2021:06 (i.e., the maximum coverage) at a monthly frequency, as the 
model with the leading indicator covers 1982:01 to 2020:02. When epu's are included, the 
coverage runs from 1985:01 to 2020:02. We use h-period rolling sums of real house price log 

                                                             
15 It includes terms related to national elections, elected officials, federal agencies, departments, and regulators. 
16 Each state-specific policy term set includes terms that describe the names of their executive positions and 
legislative bodies at both state and local levels as well as terms that note policy initiatives put to a direct vote by 
citizens. Also included are the names of the state bodies that deal with regulations spanning the environment, 
labor and unemployment, gambling, transportation, banking, energy and utilities, and other financial services. As 
a result, this set of terms is unique to each state, since the names and titles of officials and regulators and 
departments vary across states. 
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returns to measure cumulative returns to capture the effect of climate risk at various horizons. 
The primary variable of interest is temperature growth lagged by one period. We also include 
a leading indicator lagged by one period and economic policy uncertainty measures as control 
variables. Three different epu_j measures are separately included (j=state, national or 
composite).17 The β's in Eq. (1) capture the cross-section-specific (state-level) parameters, and 
the idiosyncratic error term (εi,t) is distributed with mean zero and variance ߪ௜௜,௧ܫ. 

2.1. Methodology 

Fixed- and random-effects models incorporate panel-specific heterogeneity by including a set 
of nuisance parameters that provide each panel with its own constant term. However, all panels 
share common slope parameters, which is undesirable in the current context. Random-
coefficients (RC) models (Swamy, 1970) are more general, allowing each panel to have its 
vector of randomly drawn slopes from a distribution common to all panels. The implementation 
of the estimator ensures the best linear unbiased predictors of the panel-specific draws from 
said distribution (Poi, 2003). 

Consider a general random-coefficients model, with y being the dependent variable and X 
being the predictor, of the form: 

௜ݕ =  ௜ܺߚ௜ +  ௜           (2)ߝ

In the case of RC, each panel specific ߚ௜ is related to an underlying common parameter vector 
 :ߚ

௜ߚ = ߚ +  ௜             (3)ݒ

                                                             
17 The metrics of uncertainty being newspapers-based is expected to be available in a timely-manner, and hence 
enter the model without being lagged by a period. 
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where ܧሼݒ௜ሽ = 0, ௜ᇱሽݒ௜ݒሼܧ = Σ, ௝ᇱൟݒ௜ݒ൛ܧ = 0 for ݆ ≠ ݅, and ܧ൛ݒ௜ ௝߳ᇱൟ = 0 for all ݅ and ݆. We may 
combine equations (2) and (3) to get: 
௜ݕ =  ௜ܺ(ߚ + (௜ݒ +     ௜ߝ
     = ܺ௜ߚ +  ௜ݑ
with ݑ௜ ≡ ௜ܺݒ௜ +   :௜. Furthermoreߝ
௜ᇱሽݑ௜ݑሼܧ = )ሼܧ ௜ܺݒ௜ + )(௜ߝ ௜ܺݒ௜ +  ௜)ᇱሽߝ
                = ௜ܺΣ ௜ܺᇱ +  ܫ௜௜ߪ
                ≡ Π௜ 
We can stack the ܲ panels: 
ݕ = ߚܺ +  (4)            ݑ
where: 

Π ≡ ௜ᇱሽݑ௜ݑሼܧ = ൦
Πଵ 0
0 Πଶ

⋯ 0⋯ 0⋮ ⋮0 0
⋱ ⋮⋯ Π௉

൪ 

Estimating the parameters in equation (3) is a standard problem, which can be solved with 
generalized least squares (GLS):  

መߚ = (ܺᇱΠିଵܺ)ିଵܺᇱΠିଵݕ 

    = ൬෍ ௜ܺᇱΠ௜ି ଵ ௜ܺ௜ ൰ିଵ ෍ ܺ௜ᇱΠ௜ି ଵݕ௜௜  

    = ∑ ௜ܹܾ௜௜             (5) 

with ܹ ௜ the GLS weight and ܾ ௜ = ( ௜ܺᇱ ௜ܺ)ିଵ ௜ܺᇱݕ. The resulting ߚመ  for the overall (national) result 
is therefore a weighted average of the state-specific OLS estimates. For more details on GLS 
weight and ߚመ  variance specification, the reader can refer to Poi (2003). 
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To obtain the state-specific ߚప෡  vectors, Judge et al. (1985) suggest that if attention is 
restricted to the class of estimators ሼߚ௜∗ሽ for which ܧሼߚ௜∗|ߚ௜ሽ =  ௜, then the state-specific OLSߚ
estimator ܾ௜ is appropriate. Following Green’s (1997) suggested method of obtaining the 
variance of  ߚప෡ , it follows that ߚመ  is both consistent and efficient; and although inefficient, ܾ௜ is 
also a consistent estimator of ߚ.  

Poi (2003) also suggests a test to determine whether the panel-specific ߚ௜s are significantly 
different from one another. The null hypothesis is stated as: 

ଵߚ :଴ܪ = ଶߚ = ⋯ =  ௉          (6)ߚ
 
and the test statistic is defined as:  
 
ܶ ≡ ∑ (ܾ௜ − ො௜௜ିߪற)ᇱሼߚ ଵ( ௜ܺܺ௜)ሽ௉௧ୀଵ (ܾ௜ −  ற)        (7)ߚ
 
where ߚற = ሼ∑ ො௜௜ିߪ ଵ(ܺ௜ ௜ܺ)௉௧ୀଵ ሽିଵ ∑ ො௜௜ିߪ ଵ( ௜ܺܺ௜)ܾ௜௉௧ୀଵ . 
 
The test statistic ܶ is distributed as ߯ଶ with ݇(ܲ − 1) degrees of freedom. 

The next section presents the empirical results for equation (1). 

3. Empirical findings 

3.1 The effect of temperature growth on housing returns 

Tables 1 to 3 present the random coefficient (Swamy, 1970) estimation results for equation (1) 
for all states combined, while the state-specific results of the impact of temperature growth on 
real house price log returns are depicted in Figure 1.  

[INSERT TABLES 1 TO 3] 
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Overall, temperature growth, lagged by one period across all horizons, gives rise to a 
statistically significant decline in real house price log-returns. The negative impact is also 
increasing over the 3-month and 12-month horizons. Based on the final models (column (5)) 
in Tables 2 and 3, the effect can be quantified as follows: on average, a one percentage point 
increase in temperature growth leads to a 0.003 percentage points decrease in real house price 
log returns, ceteris paribus.18   

The leading indicator reflecting housing market conditions is statistically significant at the 
one percent level across all model specifications and at all horizons, with an increasing effect 
at longer horizons. For example, at the 12-month horizon (refer to Table 3), a one-unit increase 
in the leading indicator translates to between a  0.017 and 0.018 percentage points increase in 
real house price returns. 

The negative temperature-house price relationship is also robust after including economic 
policy uncertainty (epu) indicators, measuring policy uncertainty at the state and national 
levels. Economic policy uncertainty exerts a negative impact on real house price log returns. It 
appears that the uncertainty takes time to filter through to house price returns as the impact of 
changes in economic policy uncertainty increases in magnitude and significance at a longer 
horizon. The same holds for the composite indicator for economic policy uncertainty. 

 

3.2 Heterogeneous impact of temperature growth on local housing markets 

                                                             
18 We also analyzed the role of stochastic volatility associated with temperature growth, based on the model of 
Kastner and Früwirth-Schnatter (2014), following the suggestion of Alessandri and Mumtaz (2021) in terms of 
modelling climate-related risks, and found that it does not have any significant impact on real house price log 
returns across any of the three horizons considered, with complete details of these results available upon request 
from the authors. When we used realized volatility instead, i.e., sum of squared growth in daily temperatures (with 
the underlying data derived from Bloomberg) over a month, our (insignificant) findings, available upon request, 
did not change.  It may be argued that it is a consistent upward and increasing trend in temperatures that are 
negatively perceived by potential homeowners when making housing investment decisions, rather than fluctuating 
temperatures, since increased temperatures have a utility cost implication for owning a property, as well as 
maintenance cost of and insurance premiums.  
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To consider and compare the heterogeneous impact of climate change on the housing market 
across the different US states, we again use the random coefficient estimator to obtain state-
specific heterogeneous slope parameters for the independent variables in the model 
specification. We report the results for the model specification in column (5) across all horizons 
in Figures (1) and (2). The specification is chosen as it includes all independent variables, 
including the composite indicator for the state- and national-level economic policy uncertainty. 
It is also the model with the lowest root mean square error (RMSE) for each horizon. Figure 1 
reveals the impact of increased temperature growth across all 49 US states included in the study 
on real house price log returns, ordered by the magnitude of the 12-month horizon impact. The 
statistically insignificant coefficient estimates are restricted to zero in the graphical 
representation. 

At the 1-month horizon, the immediate impact of temperature growth on real housing 
returns appears to be limited and smaller in magnitude. At the 3-month horizon, real house 
price log returns are negatively affected by rising temperature growth in most states, while the 
extent of the impact increases at the 12-month horizon. Across all states and all horizons, the 
impact of increased temperature growth on log real house price returns is negative.19  

[INSERT FIGURE 1] 

We make three important inferences from the results presented in Figure 1. First, it is 
evident that for most states (38 out of 49 states), the negative impact is also statistically 
significant at the 3-month horizon. For the rest of the states, the coefficients are negative but 
statistically immaterial at conventional significance levels (except Alaska, for which a positive 
but insignificant impact is recorded). Second, the negative effect of temperature growth on real 

                                                             
19 The exceptions for which we observe a small positive, yet statistically insignificant impact include Alaska at 
the 3-month horizon and New York, New Hampshire, Vermont, and Pennsylvania at the 12-month horizon. These 
states may have different housing market dynamics, with demand-side factors counteracting the negative impact 
of climate change. New York City metro remains the largest real estate market by value in the US. 
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house returns increases at longer horizons, even though fewer states have a statistically 
significant change in real house price log returns at the 12-month horizon. However, for those 
states that do experience a decline in real house price returns, the impact is more pronounced. 
Third, West Coast States (notably, Arizona, Nevada, California, and Idaho) and US Sun Belt 
states (notably, Florida, Georgia, Texas, Tennessee, Alabama, and South- and North Carolina) 
experience the largest negative impact of rising temperatures. The Sun Belt states are more 
severely impacted relative to West Coast states. This is also evident from the spatial depiction 
of the impact of temperature increases on house price returns in Figure 2. The most significant 
negative impacts are registered for Florida and Georgia on the East Coast and Arizona and 
Nevada on the West.  

We also note that at the longer 12-month horizon, Michigan and Ohio rank amongst the top 
ten states regarding the negative impact of increased temperature growth, with Illinois ranking 
13th. These Midwestern states are part of the Great Lakes region, with the lakes being the largest 
supply of fresh water on earth. This result may suggest that being close to water bodies in the 
face of increasing temperatures may also negatively impact house price returns in the longer 
term. These findings are consistent with the findings of Wolf and Klaiber (2017), which show 
that warmer weather around Buckeye Lake and Grand Lake resulted in excessive algae 
affecting the lakefront homes, resulting in an estimated $152 million reduction in combined 
lakefront property values between 2009 and 2015. It may be noteworthy that the result for 
Michigan, Ohio, and Illinois only arises when epu_composite is included in the model. For the 
model specification with only state-level economic policy uncertainty, we do not see any 
impact at the 12-month horizon for these three states. At the same time, Michigan is the only 
state with a significant negative impact at the 3-month horizon, but with a low rank of 28. 

A few shifts are registered when comparing the magnitude of the effects at the 3-month 
horizon with the longer 12-month horizon. Notably, California, which only ranks 11th at the 3-
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month horizon, ranks 6th at the 12-month horizon. Tennessee ranks 12th at the 3-month horizon 
and moves into 7th position. On the other hand, Delaware ranks 4th at the 3-month horizon and 
only ranks 18th at the 12-month horizon.  

[INSERT FIGURE 2] 

Figure 2 depicts the absolute value of the state-specific coefficients of lagged temperature 
growth. The darker shaded states are predicted to experience a larger negative impact in real 
house price returns because of accelerated increases in temperature. Apparently, the mega-
drought that has been gripping the American West, fuelled by climate change, may be 
responsible for the negative impact on the housing market in the West Coast states of 
California, Washington, and Oregon, and the desert states of Nevada, Arizona, and Idaho. The 
North American deserts span large portions of Nevada, Utah, parts of Idaho, and Oregon and 
extend into eastern California. Rising temperatures, which cause heat waves and heightened 
risks of wildfires, notwithstanding the increasing cooling utility bills and water restrictions 
from prolonged droughts, may depress the house values in these states. This explanation is 
consistent with Livy’s (2020) findings that aberrant increases in heating and cooling degree 
days negatively impact housing prices, with cooling degree days having a larger negative 
impact. 

Apart from the West Coast, the Sun Belt states are also affected across all horizons, but 
with an increasing impact over the 12-month horizon. Across all horizons, Florida ranks first 
as the state for which the housing market has been most negatively impacted by climate change 
and temperature increases, followed by neighboring Georgia at the 3-month horizon and 
Arizona at the 12-month horizon. Housing market dynamics in the Sun Belt region may have 
been driven both by demographic shifts boosting Sun Belt populations and heat waves in a 
warming climate experienced in these states. Sun Belt states most severely negatively impacted 
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include Florida, Georgia, Arizona, Texas, Alabama, Tennessee, North Carolina, and South 
Carolina. The negative impact is notable since increases in Sun Belt populations should 
increase housing demand, which would support housing prices and counteract the negative 
impact of climate change. However, the impact of increasingly rising temperatures seems to 
cause a net negative effect on real house price log returns. The results support the conjecture 
that using costly heat- and fire-resistant construction materials to counter the increased long-
run climate risk to real estate (caused by high temperatures in these states) may reduce the 
equity in real estate markets. Further, consistently prolonged summer heat waves burden air 
conditioners, increasing utility costs and the prevalence of wildfires, restricting water usage 
due to lengthy droughts, and ultimately causing severe and increasingly frequent hurricanes. 
These may depress the house prices and real returns of the Sun Belt’s housing market. 

Finally, a significant negative impact is observed at longer horizons for the states of 
Michigan, Ohio, and Illinois, all in the Great Lakes region. This is consistent with the idea that 
climate change is a long-run risk and shows that warm weather around the Great Lakes can 
cause excessive algae and repair costs for residential and commercial buildings, causing a 
reduction in real estate values.  

3.3 Attention to climate change and housing returns 

The news media significantly influence the public's knowledge and understanding of the effects 
of climate change. Put differently, the media affect the concerns about climate change via the 
channel of agenda-setting, thereby changing people's beliefs, attitudes, and assessments about 
climate change. For instance, Bernstein et al. (2019) indicate that people’s beliefs about the 
effects of climate change significantly impact the prices of owner-occupied coastal homes. 
They find that houses in areas where agents are most concerned about climate change sell at 
an 8.5% discount. Duan and Li (2022) show that when public attention is focused on climate 
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change, mortgage lenders are less likely to grant loans for homes in areas at high risk of sea 
level rise. Hence, we expect that greater media attention to climate risks may amplify the effect 
of temperature growth on housing returns since a surge in the threat posed by climate change 
causes investors to cut down on their consumption and future investment prospects.  

To formally test this hypothesis, we modify our panel regression model as the following: 

ℎ௜,௧ݎℎݎ = ଴௜ߚ + ௜,௧ିଵ݃_݌݉݁ݐଵ௜ߚ + ௜,௧ିଵ݃_݌݉݁ݐଶ௜ߚ ∗ ௧݊݋݅ݐ݊݁ݐݐܽ + ଶ௜݈݁ܽ݀௜,௧ିଵߚ +
௜,௧݆_ݑ݌௝௜݁ߚ +  ௜,௧           (8)ߝ

where ܽ݊݋݅ݐ݊݁ݐݐ௧ alternatively represents the Crimson Hexagon’s20 negative climate change 
news index (chneg) and its innovation part (chneg_innovation) capturing unexpected changes 
in the negative climate change index, which is computed as the residuals from autoregressive 
processes of order 1 (AR(1)), as developed by Engle et al. (2020).21 Again, based on data 
availability, we consider forecast horizons of h = 1, 3, and 12 months for the 2008:06-2018:04 
period. 

Tables 4 to 6 present the estimation results of the equation (8). In all tables, column 1 
provides results for the chneg, column 2 for chneg_innovation. The findings in Columns 1 and 
2 of Tables 4 to 6 show that the estimated coefficients of interaction terms are statistically 
significant and negative across all forecast horizons, implying that the negative effect of 
temperature growth on real housing returns intensifies when the media attention to climate 
change increases. Considering that chneg and chneg_innovation are designed to capture the 
negative news on climate change, they might directly impact 'people's perceptions about the 
likelihood of climate change occurring and its consequences, which in turn affect the home 

                                                             
20 Crimson Hexagon has collected a massive corpus of over one trillion news articles and social media posts. The 
underlying news sources cover over 1,000 outlets, including the WSJ, The New York Times, The Washington 
Post, Reuters, BBC, CNN, and Yahoo News. 
21 The data is available for download from the website of Professor Johannes Stroebel at: 
https://pages.stern.nyu.edu/~jstroebe/. 
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buying behavior of households. In addition, the negative impact is considerably amplified when 
looking at longer time horizons, suggesting that investors aggressively price the climate risk 
that is associated with the real estate market over the long term. As a robustness check, we 
estimate equation (8)  also using the climate change risk indices introduced in Engle et al. 
(2020), which captures the number of climate change news in The Wall Street Journal (WSJ) 
without doing any sentiment analysis on the content of the information.22  The findings in 
Columns 3 and 4 of Tables 4 to 6, estimated over 1984:01-2017:06, indicate that the climate 
attention measures (wsj and wsj_innovation) have a negative and statistically significant 
coefficient for all forecast horizons except for h=12. The insignificant coefficient of the 
interaction term for h=12 suggests that investors’ attention to climate change is short-lived. 
This is in line with the findings of Nguyen et al. (2022), who find that sea level rise premium 
is larger in the wake of a hurricane or a time of heightened media attention to climate change, 
but these effects fade away by the end of the second quarter. Overall, our results are robust to 
alternative measures of climate attention and show that the investors consider more the content 
of the climate news at the long horizon, and only negative climate change news has a significant 
effect on housing returns at longer horizons. 

[INSERT TABLES 4 TO 6] 
4. Conclusion 

We provide evidence supporting the notion of a negative impact of climate change and climate 
risk on the US housing market. Estimation results suggest that increased growth in temperature 
exerts a negative impact on real house price returns with an increased impact over a 12-month 

                                                             
22 This index is calculated as the correlation between the text content of The WSJ each month and a fixed climate 
change vocabulary, which Engle et al. (2020) construct from a list of authoritative texts published by various 
governmental and research organizations. In the process, the wsj associates increased climate change reporting 
with news about elevated climate risk, based on the idea that climate change primarily rises to the media’s attention 
when there is a cause for concern. The data on the index and its innovation are downloadable from: 
https://pages.stern.nyu.edu/~jstroebe/. 
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horizon. Our panel estimation results, based on a random coefficients model which allows for 
obtaining heterogeneous slope coefficients, suggest that states on the West Coast and the US 
Sun Belt region are most negatively impacted by increasing temperature growth. On average, 
the largest negative impact is documented on the housing markets in Florida23, Arizona, 
Georgia, Nevada, Texas, California, Tennessee, Idaho, and Alabama. As part of future analysis, 
it would be interesting to extend our analysis to out-of-sample forecasting of the impact of 
climate change on the US housing market. 

Our findings have important policy implications. Decreasing real estate values due to the 
increased risk of climate change will affect the collateral values of outstanding mortgages. 
Mortgage lenders would risk suffering losses if borrowers defaulted on their mortgage 
payments after the outstanding loan amounts reached a level greater than the collateral’s value. 
Depending on the proportion of such mortgages that are still due on banks’ balance sheets, this 
may be a factor that contributes to the instability of the financial system. Hence, it is essential 
that financial institutions consider the potential dangers posed by climate change in their risk 
management procedures to maintain an adequate level of preparedness. Due to their role in 
protecting the financial system's resilience, central banks and bank regulators should conduct 
climate change-related financial risk monitoring as a part of their prudential supervisory 
procedures. Our findings underline the significance of this matter by revealing that the risks 
associated with climate change have a significant effect on the housing market. 
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TABLES AND FIGURES 
 
 Table 1.   Random coefficient estimation results for real house price log returns at a 1-month horizon, 

1975M01 to 2021M06   
Dependent variable: rhr1  
 rhr1 

(1) 
rhr1 
 (2) 

rhr1 
 (3) 

rhr1 
(4) 

rhr1 
 (5) 

l_temp_g -0.000612*** -0.00135*** -0.000883*** -0.000900*** -0.000834*** 
 (-2.82) (-6.04) (-5.95) (-5.83) (-5.52) 
      
l_lead  0.00106*** 0.00144*** 0.00143*** 0.00144*** 
  (7.15) (8.16) (8.01) (7.99) 
      
epu_state   -0.00000142*   
   (-1.72)   
      
epu_national    -0.00000117*  
    (-1.80)  
      
epu_composite     -0.00000154 
     (-1.22) 
      
_cons 0.000717*** -0.000789*** -0.00106*** -0.00101*** -0.00111*** 
 (9.78) (-3.28) (-3.21) (-2.98) (-3.18) 
# observations 27244 22442 16316 16316 16316 
# states 49 49 49 49 49 
Par constancy 2 271.2 1083.8 1375.2 1387.1 1366.5 
d.o.f 96 144 192 192 192 
prob 0.0047 0.0000 0.0000 0.0000 0.0000 
RMSE 0.007129 0.006628 0.005531 0.005535 0.005520 
Note: t statistics in parentheses; t statistics based on robust (bootstrapped) standard errors; * p < 0.10, ** p < 0.05, 
*** p < 0.01; l stands for first-lag of the specific variable. Analysis is based on 49 US states (excluding Hawaii); 
Sample period: Model (1) 1975:01-2021:06; Model (2) 1982:01-2020:02; Model (3) to (5): 1985:01-2020:02. 
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Table 2.   Random coefficient estimation results for real house price log returns at a 3-month horizon, 
1975M01 to 2021M06  

Dependent variable: rhr3 
 rhr3 

(1) 
rhr3 
(2) 

rhr3 
(3) 

rhr3 
(4) 

rhr3 
 (5) 

l_temp_g -0.00240*** -0.00424*** -0.00356*** -0.00357*** -0.00325*** 
 (-4.01) (-9.35) (-8.12) (-7.86) (-7.57) 
      
l_lead  0.00347*** 0.00432*** 0.00428*** 0.00434*** 
  (7.78) (7.95) (7.81) (7.86) 
      
epu_state   -0.00000794***   
   (-2.96)   
      
epu_national    -0.00000610***  
    (-3.03)  
      
epu_composite     -0.00000705* 
     (-1.80) 
      
_cons 0.00213*** -0.00285*** -0.00277*** -0.00261** -0.00319*** 
 (9.76) (-3.92) (-2.78) (-2.55) (-2.97) 
# observations 27195 22442 16306 16306 16306 
# states 49 49 49 49 49 
Par constancy 2 328.4 1273.3 1737.3 1751.9 1739.1 
d.o.f 96 144 192 192 192 
prob 0.0001 0.0000 0.000 0.000 0.000 
RMSE 0.020109 0.020145 0.015553 0.015557 0.015451 
Note: t statistics in parentheses; t statistics based on robust (bootstrapped) standard errors; * p < 0.10, ** p < 0.05, 
*** p < 0.01; l stands for first-lag of the specific variable. Analysis is based on 49 US states (excluding Hawaii); 
Sample period: Model (1) 1975:01-2021:06; Model (2) 1982:01-2020:02; Model (3) to (5): 1985:01-2020:02. 
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Table 3. Random coefficient estimation results for real house price log returns at a 12-month horizon, 
1975M01 to 2021M06  

Dependent variable: rhr12 
 rhr12 

(1) 
rhr12 

(2) 
rhr12 

(3) 
rhr12 

(4) 
rhr12 
 (5) 

l_temp_g 0.000473** -0.00319*** -0.00451*** -0.00507*** -0.00305*** 
 (-1.99) (-4.33) (-4.91) (-5.91) (-4.95) 
      
l_lead  0.0179*** 0.0171*** 0.0166*** 0.0170*** 
  (11.73) (8.11) (7.89) (7.97) 
      
epu_state   -0.0000726***   
   (-5.77)   
      
epu_national    -0.0000653***  
    (-7.37)  
      
epu_composite     -0.0000930*** 
     (-5.68) 
      
_cons 0.00859*** -0.0179*** -0.00696* -0.00394 -0.00779** 
 (12.54) (-7.09) (-1.86) (-1.07) (-1.99) 
# observations 26754 22442 16207 16207 16207 
# states 49 49 49 49 49 
Par constancy 2 26754 22442 2281.5 2289.2 2297.6 
d.o.f 394.2 1579.5 192 192 192 
prob 0.0463 0.000 0.0000 0.0000 0.0000 
RMSE 0.058980 0.055176 0.052609 0.052610 0.052562 
Note: t statistics in parentheses; t statistics based on robust (bootstrapped) standard errors; * p < 0.10, ** p < 0.05, 
*** p < 0.01; l stands for first-lag of the specific variable. Analysis is based on 49 US states (excluding Hawaii); 
Sample period: Model (1) 1975:01-2021:06; Model (2) 1982:01-2020:02; Model (3) to (5): 1985:01-2020:02. 
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Table 4. Random coefficient estimation results for real house price log returns at a 1-month horizon, 
controlling for climate risk 

Dependent variable: rhr1  
 rhr1 

(1) 
rhr1 
 (2) 

rhr1 
 (3) 

rhr1 
(4) 

l_temp_g 0.0106*** -0.00166*** 0.00458*** -0.000459*** 
 (10.53) (-8.08) (7.34) (-3.43) 
     
l_temp_g*chneg -5.987***    
 (-11.29)    
     
l_temp_g*chneg_innovation  -2.978***   
  (-6.24)   
     
l_temp_g*wsj   -0.880***  
   (-8.48)  
     
l_temp_g*wsj_innovation    -0.805*** 
    (-8.13) 
     
l_lead 0.00123*** 0.00117*** 0.00145*** 0.00146*** 
 (7.80) (7.61) (7.93) (7.96) 
     
epu_composite -0.0000129*** -0.0000127*** -0.00000120 -0.00000134 
 (-5.05) (-4.78) (-0.82) (-0.91) 
     
_cons -0.000940*** -0.000648** -0.00130*** -0.00129*** 
 (-2.96) (-2.01) (-3.40) (-3.37) 
# observations 5880 5831 14758 14758 
# states 49 49 49 49 
Par constancy 2 1527.5 1105.4 1415.8 1376.7 
d.o.f 240 240 240 240 
prob 0.0000 0.0000 0.0000 0.0000 
Note: t statistics in parentheses; t statistics based on robust (bootstrapped) standard errors; * p < 0.10, ** p < 0.05, 
*** p < 0.01; l stands for first-lag of the specific variable. Analysis is based on 49 US states (Hawaii excluded); 
Sample period: Model (1) 1984:01-2017:06; Model (2) 1984:02-2017:06; Model (3) 2008:06-2018:04; Model (3) 
2008:07-2018:04. 
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Table 5. Random coefficient estimation results for real house price log returns at a 1-month horizon, 
controlling for climate risk 

Dependent variable: rhr3  
 rhr3 

(1) 
rhr3 
 (2) 

rhr3 
 (3) 

rhr3 
(4) 

l_temp_g 0.0306*** -0.00655*** 0.00522*** -0.00266*** 
 (10.92) (-10.45) (3.42) (-6.40) 
     
l_temp*g_chneg -17.91***    
 (-12.49)    
     
l_temp_g*chneg_innovation  -8.194***   
  (-7.00)   
     
l_temp_g*wsj   -1.380***  
   (-5.83)  
     
l_temp_g*wsj_innovation    -1.083*** 
    (-4.48) 
     
l_lead 0.00370*** 0.00368*** 0.00440*** 0.00442*** 
 (7.18) (7.30) (7.89) (7.90) 
     
epu_composite -0.0000392*** -0.0000367*** -0.00000652 -0.00000667 
 (-5.02) (-4.49) (-1.49) (-1.52) 
     
_cons -0.00305*** -0.00260** -0.00375*** -0.00375*** 
 (-2.89) (-2.43) (-3.24) (-3.23) 
# observations 5880 5831 14758 14758 
# states 49 49 49 49 
Par constancy 2 2125.3 1467.5 1717.3 1697.6 
d.o.f 240 240 240 240 
prob 0.0000 0.0000 0.0000 0.0000 
Note: t statistics in parentheses; t statistics based on robust (bootstrapped) standard errors; * p < 0.10, ** p < 0.05, 
*** p < 0.01; l stands for first-lag of the specific variable. Analysis is based on 49 US states (Hawaii excluded); 
Sample period: Model (1) 1984:01-2017:06; Model (2) 1984:02-2017:06; Model (3) 2008:06-2018:04; Model (3) 
2008:07-2018:04. 
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Table 6. Random coefficient estimation results for real house price log returns at a 1-month horizon, 
controlling for climate risk  

Dependent variable: rhr12  
 rhr12 

(1) 
rhr12 
 (2) 

rhr12 
 (3) 

rhr12 
(4) 

l_temp_g 0.0407*** -0.00585*** -0.00929 -0.00213** 
 (7.18) (-6.23) (-1.60) (-2.47) 
     
l_temp*g_chneg -21.90***    
 (-8.10)    
     
l_temp_g*chneg_innovation  -17.76***   
  (-6.48)   
     
l_temp_g*wsj   1.164  
   (1.32)  
     
l_temp_g*wsj_innovation    0.329 
    (0.29) 
     
l_lead 0.0182*** 0.0178*** 0.0175*** 0.0175*** 
 (8.01) (7.97) (8.07) (8.07) 
     
epu_composite -0.000206*** -0.000208*** -0.0000935*** -0.0000931*** 
 (-6.61) (-6.66) (-5.28) (-5.25) 
     
_cons -0.0173*** -0.0156*** -0.0103** -0.0103** 
 (-3.99) (-3.61) (-2.41) (-2.39) 
# observations 5880 5831 14758 14758 
# groups 49 49 49 49 
Par constancy 2 2291.6 2183.1 2267.6 2268.0 
d.o.f 240 240 240 240 
prob 0.0000 0.0000 0.0000 0.0000 
Note: t statistics in parentheses; t statistics based on robust (bootstrapped) standard errors; * p < 0.10, ** p < 0.05, 
*** p < 0.01; l stands for first-lag of the specific variable. Analysis is based on 49 US states (Hawaii excluded); 
Sample period: Model (1) 1984:01-2017:06; Model (2) 1984:02-2017:06; Model (3) 2008:06-2018:04; Model (3) 
2008:07-2018:04. 
 
  



31 
 

Figure 1. US state-level coefficient values of temperature growth sorted by results with dependent 
variable 12-period rolling sum of real house price log returns (rhr12)

 

 
Note: All coefficients statistically significant at conventional levels are depicted on graph. 
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Figure 2. Impact of temperature growth on real house price log returns at different horizons  
Figure 2a. horizon=1: rhr1     

 
Figure 2b. horizon=3: rhr3 

 
Figure 2c. horizon=12: rhr12 

   
 
Note: The relative impact of increased temperature growth on real house price log returns at different horizons 
are displayed. Coefficient values are depicted in absolute terms, implying that a darker shaded state experienced 
a larger negative impact. 


